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This supplementary material contains the following sections. Sections S.1, S.2, S.3, S.4 give the technical

proofs of Lemma 1, Theorem 1, Cororally 1 and Theorem 2. Then Section S.5 crucially indicates how the

HL methodology can be lifted from the i.i.d. case to regression type models, whereas a Wilks type theorem

based on HL-profiling, useful for constructing confidence curves for focus parameters, is developed in Section

S.6. An implicit goodness-of-fit test for the parametric working model is identified in Section S.7. Finally

Section S.8 describes an alternative hybrid approach, related to, but di↵erent from the HL. This alternative

method is first-order equivalent to the HL method inside O(1/
p
n) neighbourhoods of the parametric vehicle

model, but not at farther distances.

S.1 Proof of Lemma 1

The proof is based on techniques and arguments related to those of Hjort et al. (2009), but with necessary

extensions and modifications.

For the maximiser of Gn(·, s), write b�n(s) = kb�n(s)ku(s) for a vector u(s) of unit length. With arguments

as in Owen (2001, p. 220),

kb�n(s)k
�
u(s)tWn(s)u(s)� En(s)u(s)

tVn(s)
 
 u(s)tVn(s),

with En(s) = n�1/2 maxin kmi,n(s)k, which tends to zero in probability uniformly in s by assumption (iii).

Also from assumption (i), sups2S |u(s)tVn(s)| = Opr(1). Moreover, u(s)tWn(s)u(s) � en,min(s), the smallest

eigenvalue ofWn(s), which converges in probability to the smallest eigenvalue ofW , and this is bounded away

from zero by assumption (ii). It follows that kb�n(s)k = Opr(1) uniformly in s. Also, �⇤n(s) = Wn(s)�1Vn(s)

is bounded in probability uniformly in s. Via log(1 + x) = x� 1
2x

2 + 1
3x

3h(x), where |h(x)|  2 for |x|  1
2 ,
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write

Gn(�, s) = 2�tVn(s)� 1
2�

tWn(s)�+ rn(�, s) = G⇤
n(�, s) + rn(�, s).

For arbitrary c > 0, consider any � with k�k  c. Then we find

|rn(�, s)| 
2

3

nX

i=1

|�tmi,n(s)/
p
n|3 |h(�tmi,n(s)/

p
n)|  4

3
En(s)k�k�tWn(s)�  4

3
En(s)c

3en,max(s),

in terms of the largest eigenvalue of Wn(s), as long as cEn(s)  1
2 . Choose c big enough to have both b�n(s)

and �⇤n(s) inside this ball for all s with probability exceeding 1� "0, for a preassigned small "0. Then,

P
⇣
sup
s2S

|max
�

Gn(�, s)�max
�

G⇤
n(�, s)| � "

⌘

 P
⇣
sup
s2S

sup
k�kc

|Gn(�, s)�G⇤
n(�, s)| � "

⌘

 P
⇣
(4/3)c3 sup

s2S
(En(s)en,max(s)) � "

⌘
+ P

⇣
sup
s2S

kb�n(s)k > c
⌘

+P
⇣
sup
s2S

k�⇤n(s)k > c
⌘
+ P

⇣
c sup
s2S

En(s) >
1
2

⌘
.

The lim-sup of the probability sequence on the left hand side is hence bounded by 4"0. We have proven that

sups2S |max� Gn(�, s)�max� G⇤
n(�, s)| !pr 0.

S.2 Proof of Theorem 1

We work with the two components of (5) separately. First, with Un = n�1/2
Pn

i=1 u(Yi, ✓0), which tends to

U0 ⇠ Np(0, J), cf. (6),

`n(✓0 + s/
p
n)� `n(✓0) = stUn � 1

2s
tJs+ "n(s), with sup

s2S
|"n(s)| !pr 0, (19)

under various sets of mild regularity conditions. If log f(y, ✓) is concave in ✓, no other conditions are required,

beyond finiteness of the Fisher information matrix J , see Hjort and Pollard (1994). Without concavity, but

assuming the existence of third order derivatives Di,j,k(y, ✓) = @3 log f(y, ✓)/@✓i@✓j@✓k, it is straightforward

via Tayor expansion to verify (19) under the condition that sup✓2N maxi,j,k |Di,j,k(Y, ✓)| has finite mean,

with N a neighbourhood around ✓0. This condition is met for most of the usually employed parametric

families. We finally point out that (19) can be established without third order derivatives, with a mild

continuity condition on the second derivatives, see e.g. Ferguson (1996, Ch. 18).
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Secondly, we shall see that Lemma 1 may be applied, implying

logRn(µ(✓0 + s/
p
n)) = � 1

2Vn(s)
tWn(s)

�1Vn(s) + opr(1), (20)

uniformly in s 2 S. For this to be valid it is in view of Lemma 1 su�cient to check condition (i) of that

lemma (we assumed conditions (ii) and (iii)). Here (i) follows using (4), since

sup
s

kVn(s)k = sup
s

kVn(0) + ⇠nsk+ opr(1) !d sup
s

kV0 + ⇠0sk.

Hence, sups kVn(s)k = Opr(1).

From these e↵orts we find

logRn(µ(✓0 + s/
p
n))� logRn(µ(✓0)) !d � 1

2 (V0 + ⇠0s)
tW�1(V0 + ⇠0s) +

1
2V

t
0W

�1V0

= �V t
0W

�1⇠0s� 1
2s

t⇠t0W
�1⇠0s.

This convergence also takes place jointly with (19), in view of (6), and we arrive at the conclusion of the

theorem.

S.3 Proof of Corollary 1

Corollary 1 is valid under the following conditions, where �(·) is defined in (8):

(A1) For all " > 0, supk✓�✓0k>" �(✓) < �(✓0).

(A2) The class
�
y 7! @

@✓ log f(y, ✓) : ✓ 2 ⇥
 
is P -Donsker (see e.g. van der Vaart and Wellner (1996, Ch. 2)).

(A3) Conditions (C0)–(C2) and (C4)–(C6) in Molanes López et al. (2009) are valid, with their function

g(X,µ0, ⌫) replaced by our function m(Y, µ(✓)), with ✓ playing the role of ⌫, except that instead of

demanding boundedness of our function m(Y, µ) we assume merely that the class

y 7! m(y, µ)m(y, µ)t

{1 + ⇠tm(y, µ)}2 ,

with µ and ⇠ in a neighbourhood of µ(✓0) and 0, is P -Donsker (this is a much milder condition than

boundedness).
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First note that �n(✓) can be written as

�n(✓) = (1� a)n�1
nX

i=1

{log f(Yi, ✓)� log f(Yi, ✓0)}� an�1
nX

i=1

log
�
1 + b⇠(✓)tm(Yi, µ(✓))

�
,

where b⇠(✓) is the solution of

n�1
nX

i=1

m(Yi, µ(✓))

1 + ⇠tm(Yi, µ(✓))
= 0.

Note that this corresponds with the formula of logRn given below Lemma 1 but with �(✓)/
p
n relabelled

as ⇠(✓). That the b⇠(✓) solution is unique follows from considerations along the lines of Molanes López et al.

(2009, p. 415). To prove the consistency part, we make use of Theorem 5.7 in van der Vaart (1998). It

su�ces by condition (A1) to show that sup✓ |�n(✓) � �(✓)| !pr 0, which we show separately for the ML

and the EL part. For the parametric part we know that n�1`n(✓) � E log f(Y, ✓) is opr(1) uniformly in ✓

by condition (A2). For the EL part, the proof is similar to the proof of Lemma 4 in Molanes López et al.

(2009) (except that no rate is required here and that the convergence is uniformly in ✓), and hence details

are omitted.

Next, to prove statement (ii) of the corollary, we make use of Theorems 1 and 2 in Sherman (1993)

about the asymptotics for the maximiser of a (not necessarily concave) criterion function, and the results

in Molanes López et al. (2009), who use the Sherman (1993) paper to establish asymptotic normality and

a version of the Wilks theorem in an EL context with nuisance parameters. For the verification of the

conditions of Theorem 1 (which shows root-n consistency of b✓hl) and Theorem 2 (which shows asymptotic

normality of b✓hl) in Sherman (1993), we consider separately the ML part and the EL part. We note that

Theorem 1 in Sherman (1993) requires consistency of the estimator, which we here have established by

arguments above. For the EL part all the work is already done using our Theorem 1 and Lemmas 1–6 in

Molanes López et al. (2009), which are valid under condition (A3). Next, the conditions of Theorems 1 and

2 in Sherman (1993) for the ML part follow using standard arguments from parametric likelihood theory

and condition (A2). It now follows that b✓hl is asymptotically normal, and its asymptotic variance is equal

to (J⇤)�1K⇤(J⇤)�1 using Theorem 1.

Finally, claim (iii) of the corollary follows from a combination of Theorem 1 with s =
p
n(b✓hl � ✓0) and
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the asymptotic normality of
p
n(b✓hl � ✓0) to (J⇤)�1U⇤. Indeed,

2{hn(b✓hl)� hn(✓0)} !d 2{(U⇤)t(J⇤)�1U⇤ � 1
2 (U

⇤)t(J⇤)�1J⇤(J⇤)�1U⇤} = (U⇤)t(J⇤)�1U⇤,

and this finishes the proof of the corollary.

S.4 Proof of Theorem 2

To prove Theorem 2, we revisit several previous arguments for the An(·) !d A(·) part of Theorem 1, but

now needing to extend these to the case of the model departure parameter � being present. First, we have

`n(✓0 + s/
p
n)� `n(✓0) = Uns� 1

2s
tJns+ opr(1) !d (U + J01�)

ts� 1
2s

tJ00s.

This is essentially since Un = n�1/2
Pn

i=1 u(Yi, ✓0) now is seen to have mean J01�, but the same variance,

up to the required order. We need a parallel result for Vn,0 = n�1/2
Pn

i=1 m(Yi, µ(✓0)) under ftrue. Here

Etrue m(Y, µ(✓0)) =

Z
m(y, µ(✓0))f(y, ✓0){1 + S(y)t�/

p
n+ o(1/

p
n)} dy

= 0 +K01�/
p
n+ o(1/

p
n),

yielding Vn,0 !d V0 + K01�. Along with some further details, this leads to the required extension of the

An !d A part of Theorem 1 and its proof, to the present local neighbourhood model state of a↵airs;

An(s) = hn(✓0 + s/
p
n)� hn(✓0) !d A(s) = stU⇤

plus � 1
2s

tJ⇤s,

with J⇤ as defined earlier and with

U⇤
plus = (1� a)(U + J01�)� a⇠t0W

�1(V0 +K01�) = U⇤ + L01�.

Following and then modifying the technical details of the proof of Corollary 1, we arrive at

p
n(b✓hl � ✓0) !d (J⇤)�1(U⇤ + L01�) ⇠ Np((J

⇤)�1L01�, (J
⇤)�1K⇤(J⇤)�1),

as required.
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S.5 The HL for regression models

Our HL machinery can be lifted from the iid framework to regression. The following example illustrates

the general idea. Consider the normal linear regression model for data (xi, yi), with covariate vector xi

of dimension say d, and with yi having mean xt
i�. The ML solution is associated with the estimation

equation Em(Y,X,�) = 0, where m(y, x,�) = (y � xt�)x. The underlying regression parameter can be

expressed as � = (EXXt)�1 EXY , involving also the covariate distribution. Consider now a subvector x0,

of dimension say d0 < d, and the associated estimating equation m0(y, x, �) = (y � xt
0�)x0. This invites the

HL construction (1� a)`n(�) + a logRn(�(�)). Here `n(�) is the ordinary parametric log-likelihood; Rn(�)

is the EL associated with m0; and �(�) is (EX0Xt
0)

�1 EX0Y seen through the lens of the smaller regression,

where EX0Y = X0Xt�. This leads to inference about � where it is taken into account that regression with

respect to the x0 components is of particular importance.

S.6 Confidence curve for a focus parameter

For a focus parameter  =  (✓), consider the profiled log-hybrid-likelihood function hn,prof( ) = max{hn(✓) :

 (✓) =  }. Note that hn,max = hn(b✓hl) is also the same as hn,prof( b hl). We shall find use for the hybrid

deviance function associated with  ,

�n( ) = 2{hn,prof( b hl)� hn,prof( )}.

Essentially relying on Theorem 1, which involves matrices J⇤ and K⇤ and the limit variable U⇤ ⇠ Np(0,K⇤),

we show below that

�n( 0) !d � =
{ct(J⇤)�1U⇤}2

ct(J⇤)�1c
⇠ k�2

1, (21)

where k = ct(J⇤)�1K⇤(J⇤)�1c/ct(J⇤)�1c. Here c = @ (✓0)/@✓, as in (9). Estimating this k via plug-in

then leads to the full confidence curve cc( ) = �1(�n( )/bk), see Schweder and Hjort (2016, Chs. 2–3),

often improving on the usual symmetric normal-approximation based confidence intervals. Here �1(·) is the

distribution function of the �2
1.

To show (21), we go via a profiled version of An(s) in (5), namely Bn(t) = hn,prof( 0+t/
p
n)�hn,prof( 0),
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where  0 =  (✓0). For Bn(t) and �n( ) we have the following.

Theorem 3. Assume the conditions of Theorem 1 are in force. With  0 =  (✓0) the true parameter value,

and c = @ (✓0)/@✓, we have Bn(t) !d B(t) = {ct(J⇤)�1U⇤t� 1
2 t

2}/ct(J⇤)�1c. Also,

�n( 0) = 2 maxBn !d � = 2 maxB =
{ct(J⇤)�1U⇤}2

ct(J⇤)�1c
.

It is clear that � ⇠ k�2
1, with the k given above. Proving the theorem is achieved via Theorem 1, along

the lines of a similar type of result for log-likelihood profiling given in Schweder and Hjort (2016, Section

2.4), and we leave out the details.

Remark 1. The special case of a = 0 for the HL construction corresponds to parametric ML estimation, and

results reached above specialise to the classical results
p
n(b✓ml�✓0) !d Np(0, J�1), 2{`n,max�`n(✓0)} !d �2

p,

and
p
n( b ml �  0) !d N(0, ctJ�1c). Theorem 3 is then the Wilks theorem for the profiled log-likelihood

function. The other extreme case is that of a ! 1, with the EL applied to µ = µ(✓). Here Theorem 1

yields U⇤ = �⇠t0W�1V0, and with both J⇤ and K⇤ equal to ⇠t0W
�1⇠0. This case corresponds to a version of

the classic EL chi-squared result, now filtered through the parametric model, and with �2 logRn(µ(✓0)) !d

(U⇤)t(J⇤)�1U⇤ ⇠ �2
p. Also,

p
n( b el �  0) !d N(0,2), with 2 = ct⇠t0W

�1⇠0c; here b el =  (b✓el) in terms of

the EL estimator, the maximiser of Rn(µ(✓)).

S.7 An implied goodness-of-fit test for the parametric model

Methods developed in Section 4, in particular those associated with estimating the mean squared error of

the final estimator, lend themselves nicely to a goodness-of-fit test for the parametric working model, as

follows. We accept the parametric model if the fic(a) criterion of Section 4 tells us that ba = 0 is the best

balance, and if ba > 0 the model is rejected. This model test can be accurately examined, by working out an

expression for the derivative of fic(a) at a = 0, say bZ0
n; we reject the model if bZ0

n > 0 (since then and only

then is ba positive).

Here bZ0
n is the estimated version of the limit experiment variable Z0, which we shall identify below, as a

function of D ⇠ Nq(�, Q), cf. (18). Let us write !hl(a) = ! + a⌫ + O(a2). Since ⌧0,hl(a)2 = ⌧20 + O(a2), the
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derivative of

fic(a) = (! + a⌫)t(DDt �Q)(! + a⌫) + ⌧20 +O(a2)

with respect to a, at zero, is seen to be Z0 = 2!t(DDt � Q)⌫. Hence the limit experiment version of the

test is to reject the parametric model if (!tD)(⌫tD) > !tQ⌫, or

Z =
!tD

(!tQ!)1/2
⌫tD

(⌫tQ⌫)1/2
> ⇢ =

!tQ⌫

(!tQ!)1/2(⌫tQ⌫)1/2
.

Under the null hypothesis of the model, Z is equal in distribution toX1X2, where (X1, X2) is a binormal pair,

with zero means, unit variances, and correlation ⇢. The implied significance level, of the implied goodness

of fit test, is hence ↵ = P{X1X2 > ⇢}, which can be read o↵ via numerical integration or simulation, for a

given ⇢.

The ⌫ quantity can be identified with a bit of algebraic work, and then estimated consistently from the

data. We note that for the special case of m(y, µ) = g(y) � µ, and with focus on this mean parameter

µ = E g(Y ), then ⌫ becomes proportional to !. The test above is then equivalent to rejecting the model if

(b!tDn)2/b!t bQb! > 1, which under the null model happens with probability converging to ↵ = P{�2
1 > 1} =

0.317.

S.8 A related hybrid estimation method

In earlier sections we have motivated and developed theory for the hybrid likelihood and the HL estimator.

A crucial factor has been the quadratic approximation (20). The latter is essentially valid within a O(1/
p
n)

neighbourhood around the true data generating mechanism, and has yielded the results of Sections 2 and 4.

A related though di↵erent strategy is however to take this quadratic approximation as the starting point.

The suggestion is then to define the alternative hybrid estimator as the maximiser e✓ of

Nn(✓) = (1� a)`n(✓)� 1
2aVn(✓)

tWn(✓)
�1Vn(✓). (22)

Under and close to the parametric working model, the HL estimator b✓ and the new-HL estimator e✓ are

first-order equivalent, in the sense of
p
n(b✓� e✓) !pr 0. Of course we could have put up (22) without knowing

or caring about EL or HL in the first place, and with di↵erent balance weights. But here we are naturally led
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to the balance weights 1�a for the log-likelihood and � 1
2a for the quadratic form, from the HL construction.

The advantage of (22) is partly that it is easier computationally, without a layer of Lagrange maximisation

for each ✓. More importantly, it manages well also outside the O(1/
p
n) neighbourhoods of the working

model. The new-HL estimator tends under weak regularity conditions to the maximiser ✓0 of the limit

function of Nn(✓)/n, which may written

N(✓) = (1� a)

Z
g log f✓ dy � 1

2a v
t
✓(⌃✓ + v✓v

t
✓)

�1v✓,

in terms of v✓ = Ef m(Y, µ(✓)) and ⌃✓ = Varfm(Y, µ(✓)). Note next that (A+xxt)�1 = A�1�A�1xxtA�1/(1+

xtA�1x), for invertible A and vector x of appropriate dimension. This leads to the identity

xt(A+ xxt)�1x =
xtA�1x

1 + xtA�1x
.

Hence the ✓0 associated with the new-HL method is the miminiser of the statistical distance function

da(f, f✓) = (1� a)KL(f, f✓) +
1
2a

vt✓⌃
�1
✓ v✓

1 + vt✓⌃
�1
✓ v✓

(23)

from the real f to the modelled f✓; here KL(f, f✓) =
R
f log(f/f✓) dy is the Kullback–Leibler distance. For

a close to zero, the new-HL is essentially maximising the log-likelihood function, associated with attempting

to minimise the KL divergence. For a coming close to 1 the method amounts to minimising an empirical

version of vt✓⌃
�1
✓ v✓, which means making v✓ = Ef m(Y, µ(✓)) close to zero. This is also what the empirical

likelihood is aiming at.
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