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This is a supplementary document to the corresponding paper submitted to the Statistica
Sinica. It contains proof of Proposition 1, regularity conditions, derivation of score func-

tions, and the extension of the proposed method in main paper to multiple call-backs.

1 Proof of Proposition 1

Consider the linear regression model

Y = Bo + X1.B; + o€, (1
the selection model
Z; = X3y + €2i, )
and the call-back model
U; = X5;€ + €3i. 3)

Let R; = I(Zi > 0)
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Let f(y,r,d|X1, X2, X3; @) be the joint distribution of (Y, R, D) conditional on X; = x1, X2 = Xo,

and X3 = x3. Under models (0), (), and (@),

f(y7T,d‘X1,X27X3;0) = P(Y:y,R:T‘,DIC”Xl IX1,X2:X27X3IX3)

{P(Y =y, R =1]x1,%2,%5)}"
< {P(Y =y, R=0,D = 1[x1,x2, %} """

x{P(R=0,D = 0[x1,x2,x3)} ' "%,

The three terms in f(y, 7, d|X1, X2, X3; @) are discussed in (1.7), (1.8), and (1.10) in the main paper, respec-
tively.

We need to prove that if
f(y,r,d|x1,x2,%3;0) = f(y,r,d|x1,X2,X3;0") 4

for all possible values of y, r, d, X1, X2, and x3, then we must have @ = 0™,

We first consider the identifiability of (37,7, o, p12)". When r = 1, (@) implies that
P(Y =Y, R = 1|X17X27X3;B77>U7 p12) = P(Y =Y, R= 1|X17X27X33/6*77*70*7P9{2)~
By the identifiability of Heckman selection model, see for example, Example 5 of Miao, Ding, and Geng
(2016), we have
B=B"v=7",0=0", pr2 =pra.
Hence the parameters (87,~", 0, p12)" are identifiable. This finishes the proof of the first part of Proposi-
tion 1.

Next we consider the identifiability of (€7, p13, p23)”. When r = 0 and d = 1, together with the

identifiability of (37,~7, o, p12)7, (@) implies that

—X3Y oo —X37Y oo )
/ / 231 (t, u; s)dtdu = / / i ®a31 (t, u; s)dtdu %)
oo -x3¢ —o -xz&
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for all X2, X3, s. Here ¢35, is the the density of the bivariate normal with mean vector (p12s, pi3s)” and
the covariance matrix
2
1—pi2 P23 — P12P13

P33 — P12P13 1- (013)2

From (B), we further get that

ol 13 v £ .
[ esntwsdiau= [ [ (e uis)dra ®)

where v = —x37, £ = —x3&, and ¥ = —x3&”.
With the condition that X> contains a continuous covariate which does not appear in X3, we can find

a 7o such that for ~y in a small neighbourhood of 7o,

¥ € v £
/ / $23)1 (t, u; s)dtdu = / / $33)1 (t, u; ) dtdu,

which implies that for ~ in a small neighbourhood of o

£ £"
/ P231 (7, u; 8)du = / G331 (7, w5 8) du. (7
— 00 —00
With some calculus work, we obtain from (0) that
_ p23— P12P13 _ pi3— PlszJ
1 <'V pP12S > o S 1-p7, v 1-p1y 5
\/1 — iz \/1 — pia \/1 —p2y = 7(’)23;0:2%5“)
% P33—p12pis . Piz—P12p33
_ 1 V= p12s ) g £ =, ! =l °
\/1 - P12 \/1 — Pl 1— (pts)2 — (P33—p12p73)°
P13 1_p§2
Therefore,
_ P23—pP12P13 A _ P13—P12P23 * P33—P12P13 _ Pis— P12P33
& 1—pris 7 1—p%, ® _ £ 1—p3y g 1—piy ®
_ _ (p23—p12p13)? N (pka— )2
Vit TR, \/1 — (pig)? — el
for v in a small neighbourhood of g and all s. Then we must have
3 _ &
\/(1 —pis)(1 — p2y) — (p23 — p12p13)? \/{1 = (p13)2 (1 = pi2) — (P33 — p12p75)?
P23 — P12pP13 _ P33 — P12pis
V(@ = pt5) (1 = piy) — (p23 — pr2p1s)? VAL = (p13)2 (1 — pta) — (P33 — p12p13)?
P13 — P12P23 PIs — P12P33

VI = p3) (A = ply) — (p23 — pr2p13)? VT = (013231 = p3,) — (35 — pr2pts)?
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By solving the above three equations and some algebra work, we further have

= 5*7 P13 = 9137 P23 = P§3~

Recall that the components of X3 are linearly independent. Then £ = £* implies that £ = £*. Hence the

parameters (€7, p13, p23)” are identifiable. This finishes the proof.

2 Regularity conditions

To ensure the asymptotic normality of 6 under the correctly specified models, we need the following regu-

larity conditions.

Al. Suppose the response, missing-data, and call-back models (), (B), and (B) are correctly specified
for (Yi, Z;,U;). Further, the joint distribution of (€15, €2:,€3;)7 is trivariate normal with mean

vector 0 and covariance matrix

1 pi2 pi3
= P12 1 po3
p13 p23 1

A2. The errors (€13, €24, €3,) are independent from (X1;, X2, X3;).

A3. E{|log f(Y, R, D|X1,X2,X3;60)|} < oo, where 0y is the true value of 8 and the expectation is

taken under the assumption that 8 = 0.

Ad4. The Fisher information matrix

E 782 log f(Y, R, D|X1,X2,X3; 00)
0000

is positive definite.
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AS5. There exists a function B(y, 7, d, X1, X2, X3), possible depending on 6o, such that for 8 in a neigh-

borhood of @9,

9*log f(y,r,d|x1,X2,X3;0)
900,01,

< B(y,r,d,X1,X2,X3)

for all (y,r,d,x1,X2,x3) and i, 5,k =1,...,p+q+r+4,and
E{B(Y,R,D,X;,X2,X3)} < co.

Here 0; denotes the ¢th element of 6.

To ensure the consistency of  under the misspecified models, we need a new set of regularity condi-

tions.

B1. Suppose the true model for (Y3, Z;, U;) is (1.14) in the main paper and the joint cumulative distri-

bution function of (w1;, wai, ws;)” is H(s,t,u).

B2. The errors (w1;, wei, w3, ) are independent from (Xi4, X2;, Xs3;).

B3. There exists a function C1 (y, r, d, X1, X2, X3) such that for all 6

[log f(y,r, d|x1,X2,x3;0)| < C1(y,r, d, X1, X2,X3)

and

E‘T{Cfl(yv7 R,D,Xl,Xg,Xg)} < 00.

Here Er means that the expectation is taken under the true model specified in B1.
B4. Er{log f(Y, R, D|X1,X2,X3;0)} is uniquely maximized at 8 = 6.

B5. There exists a function C2(y, 7, d, X1, X2, X3), possible depending on 6*, such that for € in a neigh-

borhood of 8%,

9% log f(y, r,d|x1,X2,X3; 6)

< d
80103916 = CQ(y,T‘, ,Xl,XQ,X3)
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for all (y,r,d,x1,X2,x3) and i, 5,k =1,...,p+q+r+4,and

ET{CQ(K R,D,Xl,Xg,Xg)} < Q0.

B6. The two matrices

g 9°log f(Y, R, D|X1, X5, X5:60")
r 06067

and

VG/T‘T{alogf(Y’R7%‘;(17X27X3;0 )}

are positive definite.

3 Derivation of score functions

Some preparation

Recall that €1; = (y; — Bo — X1:8,)/0, ¢231(t, u|s) is the density of the bivariate normal with
mean Vector {3, and the covariance matrix X3, specified in (1.9) in the main paper, and ¢23(, u) is
the density of the bivariate normal with mean vector 0 and the covariance matrix 3,3 specified in (1.11) in

the main paper. Then

1 1 _ -
¢23\1(75,U|61i) = WGXP{ - i(t — P12€1i, U — ,013611')2231“(15 — P12€1i, U — p13€1i) }
and

das(t,u) = ot exp { — 2 (6, u) S (1)}

23154 C 27201/ P g\ WS bW g

When deriving the form of S;(6), we need the derivatives of ¢o3/1(t, ule1:) with respect to 3, o, p12, p13,

and pa3, and the derivative of ¢23 (¢, u) with respect to p23. We first summarize them.
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Let X7; = (1,X7;)" and

has1 (t,u;s) = —0.5(t — pras,u — p135)22_31|1(t — p128,u — p13s)”
= —0.5|223‘1|_1{(1 — p13)2(t — p128)2 + 2(p12p13 — p23)(t — p125)(u — p138)
+ (1= pr2)*(u = prss)’}.

It can be verified that

Oasz|1 (t, ulers)

B = =0 paa1 (t, ulers) (t — przers, u — przes) Sogp (p12, p13) X1, ®
) t,ulers _ - T
%h) = =0 oz (t, ulers) (t — przeri, u — prsers) Sogy (pr2, pr3) e, ®
Obaz)1 (t, ulers) { ~101Z231| | Ohaspi (t,u; €14) }
IPasi\l, Ui€1i) t,uler;) § —0.5|% + 10

Opus bas)1(t, ulers) Zas)1 Ap12 Op12 (1o
Ohaz|1 (t, ulers) { ~10[Za31| | Ohasp (T, u; €14) }

O3 P31 (t, ulers) [Zospn Ip13 Op13 (a
5 L ulers D> oh t,u; €15
Dorsnbovlar) _ gt ulers) {—0.5|223\1| 1] | sy (v )} L

3o Op2s Opas

Here |Sa3)1| = (1 — pi2)(1 — piz) — (p2s — p12p13)” and

o1z 2 130
|7213‘1| = — (p 2 — P13 23)’
0 223 2 p 3 — P1202
% ( | 3)7
822 2 12
w — (p23 -p p13)'

After some calculus work, we have that

0 _
Th23|1(t7u;61i) = 2|Zasp1| (pr2 — prapas)has (¢, uleri)
P12

—0-5|223\1|_1{ —2e1i(1 — p13)>(t — przers) + 2p13(t — przers)(u — pizers)

—2e14(p12p13 — p23)(u — p1sers) — 2(1 — p12)(u — P13€1i)2}~
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Similarly,
1o} —1
5 hasji(t,us€e1i) = 2|XBagi|” (p13 — prapes)hasi (t, uleri)
P13
70.5|223‘1|’1{ —2(1 — p13)(t — prae1i)® + 2p1a(t — proers)(u — przers)
—2€1i(p12p13 — p23)(t — prz€ri) — 2e15(1 — p12)2(u - P1361i)}
and
0 _ _
Bpms hosj1 (t, u; €15) = 2| a1~ (p2s — pr2p13) hazpn (¢, ulers) + [Sazn |~ (t — przers) (u — prsers).

Combining the above terms, we get the derivatives of ¢23‘1(t, uleq;) with respect to 3, o, p12, p13, and
p23-
As a final piece of preparation, we provide the form of O¢a3(t, u)/Op23. Note that p23(¢, u) can be

rewritten as

1 1 2 2
P23(t,u) = ————exp {—7(15 — 2pastu +u )} .
2m\/1 — p2, 2(1 - p35)
Hence,
Opas(t,u) P23 P23 2 9 tu
——— = ¢as(t,u - t* — 2pastu + u”) + . (13)
Ip23 () 1—p3y (1- P%s)z( 1—p3s
Form of S;(6)
For ease of expression, we denote g(u) = ¢(u)/®(u) and use the result that ¢’ (u) = —uep(u).

Recall that S;(0) = 9¢;(0)/00. Next we find each term in S;(0).

For 0¢;(0) /03, we have that

oL:(0) 001:(0) n 002;(0)
B oB oB

Ri0'71 {Eli — g(XQi’Y + p1acui

P12 *
Xli
\/1_952 )\/(1_9%2) }
_X;','Y s 9
f—oo fixgbg m¢23‘1(t,u|61i)dtdu

-X7. )
f,oom’y I*X;iﬁ ¢23‘1(t, u\eli)dtdu

—|—D1(1 —RZ) —|—O'_1€1iXL- 5
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where O¢a3)1 (t, u|€1:)/0B is given in (B).
For 9¢;(0) /0, we have that

0¢;(0) _ 001:(0) n 002;(0) n 003;(0)
12207 o~ oy 100%

X3y + pi2€i 1

Ri g X i
{ ( Vlfp%2 ) (1—p3,) ’ }
X7 ¢ P23 (= X3, ulers)du
—Di(1-Ry) { f X3,€ 92311 2 X,
I

:30(2;\/ fooXT E ¢23|1(t U|€1i)dtdu

X3:€
_(1 - Rl)(l - Dz) j)‘( ¢23( X21A/7 )du X2i .
f:oo Sal f,oogig P23(t, u)dtdu

For 0¢;(0)/9€&, we have that

o:(0) _ 0i(6) | 005:(0)
o o€ o€

X5y €14
D,L(l - Rl) f ¢23\1( X3'L£‘ ) Xgl
fioomﬁy fixglg ¢23|1(t,u\61¢)dtdu

—(1—R))(1—Dy) f:o)fgﬂ’ Pa3(t, —X5;€)du Xa,
f:;(;” f:ff;ig ¢23(t, w)dtdu

For 0¢;(0) /9o, we have that

0ti(0) _  04:(0)  0t(0)
do oo oo

_ R¢071{6§i (in + ,012611) P12€1i2 B 1}
\/1 — i \/1 — P12
_sz"y f o d)
_ 4 X7 € 90 23‘1(15, u|e1i)dtdu
+D;(1 — R;) O—OX’.'y )O(jzﬁ 2 e A
f—oo% f_ngg ¢23‘1(t,u\61¢)dtdu
where O¢a3)1(t, ule1:) /0o is given in (B).

For 9¢;(0)/0p12, we have that

06:(0) _  00i(0)  06:(0)

apm N 8p12 8012
- R g(in’ + 912611) €1; t+ PlQXQz’Y
\/Tu (1= ot

-X7 0o
(1= Ry) —oo 7 f X:1.€ ap12 Ga31 (L, ulers)dtdu
f X f,X§i§ G231 (L, uleri)dtdu
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where O¢a3)1 (t, ul€1:)/Op12 is given in ().
For 9¢;(0)/dp13, we have that

—X7,v poo
f_oom'v f_X;{ 73;?13 Gas)1 (¢, ulers)dtdu
-X7,Y oo
f7w217 fix;g ¢23‘1(t7 U|€1i)dtdu

00;(0)  002;(0)
= =D;(1—-R;
Op13 Op13 ( )

where O¢os3)1(t, ule1:)/Op1s is given in ().

For 0¢;(0)/dp23, we have that

06:(6) _ O:(6) | 90si(6)
3#’23 ang 8p23
-XZY oo E)
S22 EXG € g 2sn (4 ulers)didu
f:o§2ﬁ ffOX;ig 4523\1(157 ule1s)dtdu
f:;(%’Y f:30(37£ %Qba(t, u)dtdu

f:o)g;ﬁ f:zfgig $23(t, u)dtdu

— Di(1-R)

+(1—Ri)(1 - Dy)

where O¢o3)1(t, ul€1:)/Opas is given in (IA) and D23 (t, u)/Ipas is given in ().

4 Extension to multiple call-backs

The proposed method in Section 4 of the main paper can easily be extended to multiple call-backs.

Suppose there are K call-backs, and let D;; = 1 if the ith subject is called back, and 0 otherwise,
k =1,..., K. We again assume that D;; is a manifestation of a latent variable U;x, which is from the
multivariate regression model

Ui = X3i€p + €36k, 14

k=1,..., K, where X3, is an r; X 1 vector with the first element being 1 and the remaining 7, — 1
elements being covariates associated with U;. We further assume that €3, ~ N(0,1), k = 1,..., K,
and (€1, €24, €31, - - ., €3ikc)” follows a multivariate normal distribution with the covariance matrix X.
The diagonal elements of X are all equal to 1 and the off-diagonal elements of 3 are unknown. Let

Xi = (XIwX‘Qergzh s 7X§iK)T'
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We now derive the likelihood function. Let 8 be the vector of unknown parameters in models (),

(D), and (). For ease of expression, we denote R; = D;o. When D;o = 1, we observe (Y; = yi, Dio =

1,X;); when D;, = 1, we observe (Y; = yi, Dio = 0,...,D; xs—1 = 0, Dy = 1,X;) for k < K; when

D;kx =0, we observe (D;o =0, ..., D;x = 0,X;). Therefore, the likelihood function of € is

n

Le) = [] [{P(Y,- = ys, Dio = 1X,)} 710
i=1
K
X H{P(}/z = yi,DiO = O, .. ~7Di,k71 = O,le = 1|Xi)}(l_DiO)'"(I_Di’k_l)Dik
k=1

X{P(DZO = 07 ey DlK = 0|Xi)}(1_Di0)m(1_DiK)i| .
The first term in the likelihood is

P(Dio=1,Ys=y:i|Xs) = P(R;i=1Yi=y:;,X:)PY;i =yi|Xs)

o (Xgm + p12€14

1 )
\/m )U (,23(611),

where e1; = (y; — fo — X1;8,)/0.

The second term in the likelihood is

P(K = yiniO = 07 cen ,Diykfl = 0, le = 1|X1)
= P(Dio=0,...,D;r-1=0,Dir = 1|Y; = y5, Xi) P(Yi = ys|Xs)
= Plea < =X3;v, €301 < —X31&1, .-, €061 < —X3ip1&p_1, €3i6 > —X53:6€4|Ye = v, Xa)

xP(Y; = y:|X;)

=X -X5a& —XZik_16k—1 [oo
= / / / / G2,31,..3601 (B ur, - .o uklens) dtduy - - - dug
—o0 —o0 —0o0 —X;kgk

xa_lqﬁ(yi —Bo *XL‘B1>7

o

where ¢2 31, 3x1 (t, U1, ..., uk|s) is the density function of (€2;, €341, - . . , €35 )7 conditional on €1; = s.
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The third term in the likelihood is

P(Dzo = O,...,Di}( = lez)

= Plezi < =X5v, €301 < —X3i1&q, .-, €3ix < — X3 € x| Xi)

where ¢2,31,... 3k (£, u1, . . ., ux) is the density function for (e2;, €si1, . . ., €3ix)".

Let

0(6) = log L(9) = i :(0)

-X2: . CR 3 Xik€r
/ / / (1)2’31,“A73k(t7’u,1,...,'MK)dtdu1~..

duK,

15)

be the log-likelihood, where 1;(0) is the log-likelihood contribution from individual 7. Maximizing (I3)

with respect to 8, we obtain the maximum likelihood estimator, 0. Similarly, we can show that the maxi-

mum likelihood estimate 8 satisfies

n'/2(0 - 6y) — N(0,J ")

in distribution as n — oo, where J = —E[0%£;(0,)/{0000"}).
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