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1 Proof of Proposition 1

Consider the linear regression model

Yi = β0 + Xτ
1iβ1 + σϵ1i, (1)

the selection model

Zi = Xτ
2iγ + ϵ2i, (2)

and the call-back model

Ui = Xτ
3iξ + ϵ3i. (3)

Let Ri = I(Zi > 0).
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Let f(y, r, d|x1, x2, x3;θ) be the joint distribution of (Y,R,D) conditional on X1 = x1, X2 = x2,

and X3 = x3. Under models (1), (2), and (3),

f(y, r, d|x1, x2, x3;θ) = P (Y = y,R = r,D = d|X1 = x1,X2 = x2,X3 = x3)

=
{
P (Y = y,R = 1|x1, x2, x3)

}r
×
{
P (Y = y,R = 0, D = 1|x1, x2, x3

}(1−r)d

×
{
P (R = 0, D = 0|x1, x2, x3)

}(1−r)(1−d)
.

The three terms in f(y, r, d|x1, x2, x3;θ) are discussed in (1.7), (1.8), and (1.10) in the main paper, respec-

tively.

We need to prove that if

f(y, r, d|x1, x2, x3;θ) = f(y, r, d|x1, x2, x3;θ
∗) (4)

for all possible values of y, r, d, x1, x2, and x3, then we must have θ = θ∗.

We first consider the identifiability of (βτ ,γτ , σ, ρ12)
τ . When r = 1, (4) implies that

P (Y = y,R = 1|x1, x2, x3;β,γ, σ, ρ12) = P (Y = y,R = 1|x1, x2, x3;β
∗,γ∗, σ∗, ρ∗12).

By the identifiability of Heckman selection model, see for example, Example 5 of Miao, Ding, and Geng

(2016), we have

β = β∗, γ = γ∗, σ = σ∗, ρ12 = ρ∗12.

Hence the parameters (βτ ,γτ , σ, ρ12)
τ are identifiable. This finishes the proof of the first part of Proposi-

tion 1.

Next we consider the identifiability of (ξτ , ρ13, ρ23)
τ . When r = 0 and d = 1, together with the

identifiability of (βτ ,γτ , σ, ρ12)
τ , (4) implies that

∫ −xτ
2γ

−∞

∫ ∞

−xτ
3ξ

ϕ23|1
(
t, u; s

)
dtdu =

∫ −xτ
2γ

−∞

∫ ∞

−xτ
3ξ

∗
ϕ∗
23|1
(
t, u; s

)
dtdu (5)
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for all x2, x3, s. Here ϕ∗
23|1 is the the density of the bivariate normal with mean vector (ρ12s, ρ∗13s)τ and

the covariance matrix  1− ρ212 ρ∗23 − ρ12ρ
∗
13

ρ∗23 − ρ12ρ
∗
13 1− (ρ∗13)

2

 .

From (5), we further get that∫ γ

−∞

∫ ξ

−∞
ϕ23|1

(
t, u; s

)
dtdu =

∫ γ

−∞

∫ ξ∗

−∞
ϕ∗
23|1
(
t, u; s

)
dtdu, (6)

where γ = −xτ
2γ, ξ = −xτ

3ξ, and ξ∗ = −xτ
3ξ

∗.

With the condition that X2 contains a continuous covariate which does not appear in X3, we can find

a γ0 such that for γ in a small neighbourhood of γ0,∫ γ

−∞

∫ ξ

−∞
ϕ23|1

(
t, u; s

)
dtdu =

∫ γ

−∞

∫ ξ∗

−∞
ϕ∗
23|1
(
t, u; s

)
dtdu,

which implies that for γ in a small neighbourhood of γ0∫ ξ

−∞
ϕ23|1

(
γ, u; s

)
du =

∫ ξ∗

−∞
ϕ∗
23|1
(
γ, u; s

)
du. (7)

With some calculus work, we obtain from (7) that

1√
1− ρ212

ϕ

(
γ − ρ12s√
1− ρ212

)
Φ

ξ − ρ23−ρ12ρ13
1−ρ212

γ − ρ13−ρ12ρ23
1−ρ212

s√
1− ρ213 −

(ρ23−ρ12ρ13)2

1−ρ212



=
1√

1− ρ212
ϕ

(
γ − ρ12s√
1− ρ212

)
Φ

ξ∗ − ρ∗23−ρ12ρ
∗
13

1−ρ212
γ − ρ∗13−ρ12ρ

∗
23

1−ρ212
s√

1− (ρ∗13)
2 − (ρ∗23−ρ12ρ

∗
13)

2

1−ρ212

 .

Therefore,

ξ − ρ23−ρ12ρ13
1−ρ212

γ − ρ13−ρ12ρ23
1−ρ212

s√
1− ρ213 −

(ρ23−ρ12ρ13)2

1−ρ212

=
ξ∗ − ρ∗23−ρ12ρ

∗
13

1−ρ212
γ − ρ∗13−ρ12ρ

∗
23

1−ρ212
s√

1− (ρ∗13)
2 − (ρ∗23−ρ12ρ

∗
13)

2

1−ρ212

for γ in a small neighbourhood of γ0 and all s. Then we must have

ξ√
(1− ρ213)(1− ρ212)− (ρ23 − ρ12ρ13)2

=
ξ∗√

{1− (ρ∗13)
2}(1− ρ212)− (ρ∗23 − ρ12ρ∗13)

2
,

ρ23 − ρ12ρ13√
(1− ρ213)(1− ρ212)− (ρ23 − ρ12ρ13)2

=
ρ∗23 − ρ12ρ

∗
13√

{1− (ρ∗13)
2}(1− ρ212)− (ρ∗23 − ρ12ρ∗13)

2
,

ρ13 − ρ12ρ23√
(1− ρ213)(1− ρ212)− (ρ23 − ρ12ρ13)2

=
ρ∗13 − ρ12ρ

∗
23√

{1− (ρ∗13)
2}(1− ρ212)− (ρ∗23 − ρ12ρ∗13)

2
.
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By solving the above three equations and some algebra work, we further have

ξ = ξ∗, ρ13 = ρ∗13, ρ23 = ρ∗23.

Recall that the components of X3 are linearly independent. Then ξ = ξ∗ implies that ξ = ξ∗. Hence the

parameters (ξτ , ρ13, ρ23)
τ are identifiable. This finishes the proof.

2 Regularity conditions

To ensure the asymptotic normality of θ̂ under the correctly specified models, we need the following regu-

larity conditions.

A1. Suppose the response, missing-data, and call-back models (1), (2), and (3) are correctly specified

for (Yi, Zi, Ui). Further, the joint distribution of (ϵ1i, ϵ2i, ϵ3i)
τ is trivariate normal with mean

vector 0 and covariance matrix

Σ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

A2. The errors (ϵ1i, ϵ2i, ϵ3i) are independent from (X1i,X2i,X3i).

A3. E{| log f(Y,R,D|X1,X2,X3;θ0)|} < ∞, where θ0 is the true value of θ and the expectation is

taken under the assumption that θ = θ0.

A4. The Fisher information matrix

E

{
−∂2 log f(Y,R,D|X1,X2,X3;θ0)

∂θ∂θτ

}

is positive definite.
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A5. There exists a function B(y, r, d, x1, x2, x3), possible depending on θ0, such that for θ in a neigh-

borhood of θ0, ∣∣∣∣∂3 log f(y, r, d|x1, x2, x3;θ)

∂θiθjθk

∣∣∣∣ ≤ B(y, r, d, x1, x2, x3)

for all (y, r, d, x1, x2, x3) and i, j, k = 1, . . . , p+ q + r + 4, and

E{B(Y,R,D,X1,X2,X3)} < ∞.

Here θi denotes the ith element of θ.

To ensure the consistency of θ̂ under the misspecified models, we need a new set of regularity condi-

tions.

B1. Suppose the true model for (Yi, Zi, Ui) is (1.14) in the main paper and the joint cumulative distri-

bution function of (w1i, w2i, w3i)
τ is H(s, t, u).

B2. The errors (w1i, w2i, w3i) are independent from (X1i,X2i,X3i).

B3. There exists a function C1(y, r, d, x1, x2, x3) such that for all θ

| log f(y, r, d|x1, x2, x3;θ)| ≤ C1(y, r, d, x1, x2, x3)

and

ET {C1(Y,R,D,X1,X2,X3)} < ∞.

Here ET means that the expectation is taken under the true model specified in B1.

B4. ET {log f(Y,R,D|X1,X2,X3;θ)} is uniquely maximized at θ = θ∗.

B5. There exists a function C2(y, r, d, x1, x2, x3), possible depending on θ∗, such that for θ in a neigh-

borhood of θ∗, ∣∣∣∣∂3 log f(y, r, d|x1, x2, x3;θ)

∂θiθjθk

∣∣∣∣ ≤ C2(y, r, d, x1, x2, x3)
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for all (y, r, d, x1, x2, x3) and i, j, k = 1, . . . , p+ q + r + 4, and

ET {C2(Y,R,D,X1,X2,X3)} < ∞.

B6. The two matrices

ET

{
−∂2 log f(Y,R,D|X1,X2,X3;θ

∗)

∂θ∂θτ

}

and

V arT

{
∂ log f(Y,R,D|X1,X2,X3;θ

∗)

∂θ

}

are positive definite.

3 Derivation of score functions

Some preparation

Recall that ϵ1i = (yi − β0 − Xτ
1iβ1)/σ, ϕ23|1(t, u|s) is the density of the bivariate normal with

mean vector µ23|1 and the covariance matrix Σ23|1 specified in (1.9) in the main paper, and ϕ23(t, u) is

the density of the bivariate normal with mean vector 0 and the covariance matrix Σ23 specified in (1.11) in

the main paper. Then

ϕ23|1(t, u|ϵ1i) =
1

2π|Σ23|1|1/2
exp

{
− 1

2
(t− ρ12ϵ1i, u− ρ13ϵ1i)Σ

−1
23|1(t− ρ12ϵ1i, u− ρ13ϵ1i)

τ
}

and

ϕ23(t, u) =
1

2π|Σ23|1/2
exp

{
− 1

2
(t, u)Σ−1

23 (t, u)
τ
}
.

When deriving the form of Si(θ), we need the derivatives of ϕ23|1(t, u|ϵ1i) with respect to β, σ, ρ12, ρ13,

and ρ23, and the derivative of ϕ23(t, u) with respect to ρ23. We first summarize them.
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Let X∗
1i = (1,Xτ

1i)
τ and

h23|1(t, u; s) = −0.5(t− ρ12s, u− ρ13s)Σ
−1
23|1(t− ρ12s, u− ρ13s)

τ

= −0.5|Σ23|1|−1
{
(1− ρ13)

2(t− ρ12s)
2 + 2(ρ12ρ13 − ρ23)(t− ρ12s)(u− ρ13s)

+ (1− ρ12)
2(u− ρ13s)

2
}
.

It can be verified that

∂ϕ23|1(t, u|ϵ1i)
∂β

= −σ−1ϕ23|1(t, u|ϵ1i)(t− ρ12ϵ1i, u− ρ13ϵ1i)Σ
−1
23|1(ρ12, ρ13)

τX∗
1i, (8)

∂ϕ23|1(t, u|ϵ1i)
∂σ

= −σ−1ϕ23|1(t, u|ϵ1i)(t− ρ12ϵ1i, u− ρ13ϵ1i)Σ
−1
23|1(ρ12, ρ13)

τ ϵ1i, (9)

∂ϕ23|1(t, u|ϵ1i)
∂ρ12

= ϕ23|1(t, u|ϵ1i)
{
−0.5|Σ23|1|−1 ∂|Σ23|1|

∂ρ12
+

∂h23|1(t, u; ϵ1i)

∂ρ12

}
, (10)

∂ϕ23|1(t, u|ϵ1i)
∂ρ13

= ϕ23|1(t, u|ϵ1i)
{
−0.5|Σ23|1|−1 ∂|Σ23|1|

∂ρ13
+

∂h23|1(t, u; ϵ1i)

∂ρ13

}
, (11)

∂ϕ23|1(t, u|ϵ1i)
∂ρ23

= ϕ23|1(t, u|ϵ1i)
{
−0.5|Σ23|1|−1 ∂|Σ23|1|

∂ρ23
+

∂h23|1(t, u; ϵ1i)

∂ρ23

}
. (12)

Here |Σ23|1| = (1− ρ212)(1− ρ213)− (ρ23 − ρ12ρ13)
2 and

∂|Σ23|1|
∂ρ12

= −2(ρ12 − ρ13ρ23),

∂|Σ23|1|
∂ρ13

= −2(ρ13 − ρ12ρ23),

∂|Σ23|1|
∂ρ23

= −2(ρ23 − ρ12ρ13).

After some calculus work, we have that

∂

∂ρ12
h23|1(t, u; ϵ1i) = 2|Σ23|1|−1(ρ12 − ρ13ρ23)h23|1(t, u|ϵ1i)

−0.5|Σ23|1|−1
{
− 2ϵ1i(1− ρ13)

2(t− ρ12ϵ1i) + 2ρ13(t− ρ12ϵ1i)(u− ρ13ϵ1i)

−2ϵ1i(ρ12ρ13 − ρ23)(u− ρ13ϵ1i)− 2(1− ρ12)(u− ρ13ϵ1i)
2
}
.
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Similarly,

∂

∂ρ13
h23|1(t, u; ϵ1i) = 2|Σ23|1|−1(ρ13 − ρ12ρ23)h23|1(t, u|ϵ1i)

−0.5|Σ23|1|−1
{
− 2(1− ρ13)(t− ρ12ϵ1i)

2 + 2ρ12(t− ρ12ϵ1i)(u− ρ13ϵ1i)

−2ϵ1i(ρ12ρ13 − ρ23)(t− ρ12ϵ1i)− 2ϵ1i(1− ρ12)
2(u− ρ13ϵ1i)

}

and

∂

∂ρ23
h23|1(t, u; ϵ1i) = 2|Σ23|1|−1(ρ23 − ρ12ρ13)h23|1(t, u|ϵ1i) + |Σ23|1|−1(t− ρ12ϵ1i)(u− ρ13ϵ1i).

Combining the above terms, we get the derivatives of ϕ23|1(t, u|ϵ1i) with respect to β, σ, ρ12, ρ13, and

ρ23.

As a final piece of preparation, we provide the form of ∂ϕ23(t, u)/∂ρ23. Note that ϕ23(t, u) can be

rewritten as

ϕ23(t, u) =
1

2π
√

1− ρ223
exp

{
− 1

2(1− ρ223)
(t2 − 2ρ23tu+ u2)

}
.

Hence,

∂ϕ23(t, u)

∂ρ23
= ϕ23(t, u)

{
ρ23

1− ρ223
− ρ23

(1− ρ223)
2
(t2 − 2ρ23tu+ u2) +

tu

1− ρ223

}
. (13)

Form of Si(θ)

For ease of expression, we denote g(u) = ϕ(u)/Φ(u) and use the result that ϕ′(u) = −uϕ(u).

Recall that Si(θ) = ∂ℓi(θ)/∂θ. Next we find each term in Si(θ).

For ∂ℓi(θ)/∂β, we have that

∂ℓi(θ)

∂β
=

∂ℓ1i(θ)

∂β
+

∂ℓ2i(θ)

∂β

= Riσ
−1

{
ϵ1i − g

(Xτ
2iγ + ρ12ϵ1i√

1− ρ212

) ρ12√
(1− ρ212)

X∗
1i

}

+Di(1−Ri)


∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
∂

∂β
ϕ23|1(t, u|ϵ1i)dtdu∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

+ σ−1ϵ1iX∗
1i

 ,
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where ∂ϕ23|1(t, u|ϵ1i)/∂β is given in (8).

For ∂ℓi(θ)/∂γ, we have that

∂ℓi(θ)

∂γ
=

∂ℓ1i(θ)

∂γ
+

∂ℓ2i(θ)

∂γ
+

∂ℓ3i(θ)

∂γ

= Ri

{
g
(Xτ

2iγ + ρ12ϵ1i√
1− ρ212

) 1√
(1− ρ212)

X2i

}

−Di(1−Ri)


∫∞
−Xτ

3iξ
ϕ23|1(−Xτ

2iγ, u|ϵ1i)du∫ −Xτ
2iγ

−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

X2i


−(1−Ri)(1−Di)


∫ −Xτ

3iξ
−∞ ϕ23(−Xτ

2iγ, u)du∫ −Xτ
2iγ

−∞

∫ −Xτ
3iξ

−∞ ϕ23(t, u)dtdu
X2i

 .

For ∂ℓi(θ)/∂ξ, we have that

∂ℓi(θ)

∂ξ
=

∂ℓ2i(θ)

∂ξ
+

∂ℓ3i(θ)

∂ξ

= Di(1−Ri)


∫ −Xτ

2iγ
−∞ ϕ23|1(t,−Xτ

3iξ|ϵ1i)du∫ −Xτ
2iγ

−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

X3i


−(1−Ri)(1−Di)


∫ −Xτ

2iγ
−∞ ϕ23(t,−Xτ

3iξ)du∫ −Xτ
2iγ

−∞

∫ −Xτ
3iξ

−∞ ϕ23(t, u)dtdu
X3i

 .

For ∂ℓi(θ)/∂σ, we have that

∂ℓi(θ)

∂σ
=

∂ℓ1i(θ)

∂σ
+

∂ℓ2i(θ)

∂σ

= Riσ
−1
{
ϵ21i − g

(Xτ
2iγ + ρ12ϵ1i√

1− ρ212

) ρ12ϵ1i√
1− ρ212

− 1
}

+Di(1−Ri)


∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
∂
∂σ

ϕ23|1(t, u|ϵ1i)dtdu∫ −Xτ
2iγ

−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

− σ−1 + σ−1ϵ21i

 ,

where ∂ϕ23|1(t, u|ϵ1i)/∂σ is given in (9).

For ∂ℓi(θ)/∂ρ12, we have that

∂ℓi(θ)

∂ρ12
=

∂ℓ1i(θ)

∂ρ12
+

∂ℓ2i(θ)

∂ρ12

= Ri

{
g
(Xτ

2iγ + ρ12ϵ1i√
1− ρ212

) ϵ1i + ρ12Xτ
2iγ

(1− ρ212)
3/2

}

+Di(1−Ri)


∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
∂

∂ρ12
ϕ23|1(t, u|ϵ1i)dtdu∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

 ,
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where ∂ϕ23|1(t, u|ϵ1i)/∂ρ12 is given in (10).

For ∂ℓi(θ)/∂ρ13, we have that

∂ℓi(θ)

∂ρ13
=

∂ℓ2i(θ)

∂ρ13
= Di(1−Ri)


∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
∂

∂ρ13
ϕ23|1(t, u|ϵ1i)dtdu∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu

 ,

where ∂ϕ23|1(t, u|ϵ1i)/∂ρ13 is given in (11).

For ∂ℓi(θ)/∂ρ23, we have that

∂ℓi(θ)

∂ρ23
=

∂ℓ2i(θ)

∂ρ23
+

∂ℓ3i(θ)

∂ρ23

= Di(1−Ri)


∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
∂

∂ρ23
ϕ23|1(t, u|ϵ1i)dtdu∫ −Xτ

2iγ
−∞

∫∞
−Xτ

3iξ
ϕ23|1(t, u|ϵ1i)dtdu


+(1−Ri)(1−Di)


∫ −Xτ

2iγ
−∞

∫ −Xτ
3iξ

−∞
∂

∂ρ23
ϕ23(t, u)dtdu∫ −Xτ

2iγ
−∞

∫ −Xτ
3iξ

−∞ ϕ23(t, u)dtdu

 ,

where ∂ϕ23|1(t, u|ϵ1i)/∂ρ23 is given in (12) and ∂ϕ23(t, u)/∂ρ23 is given in (13).

4 Extension to multiple call-backs

The proposed method in Section 4 of the main paper can easily be extended to multiple call-backs.

Suppose there are K call-backs, and let Dik = 1 if the ith subject is called back, and 0 otherwise,

k = 1, . . . ,K. We again assume that Dik is a manifestation of a latent variable Uik, which is from the

multivariate regression model

Uik = Xτ
3ikξk + ϵ3ik, (14)

k = 1, . . . ,K, where X3ik is an rk × 1 vector with the first element being 1 and the remaining rk − 1

elements being covariates associated with Uik. We further assume that ϵ3ik ∼ N(0, 1), k = 1, . . . ,K,

and (ϵ1i, ϵ2i, ϵ3i1, . . . , ϵ3iK)τ follows a multivariate normal distribution with the covariance matrix Σ.

The diagonal elements of Σ are all equal to 1 and the off-diagonal elements of Σ are unknown. Let

Xi = (Xτ
1i,Xτ

2i,Xτ
3i1, . . . ,Xτ

3iK)τ .
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We now derive the likelihood function. Let θ be the vector of unknown parameters in models (1),

(2), and (14). For ease of expression, we denote Ri = Di0. When Di0 = 1, we observe (Yi = yi, Di0 =

1,Xi); when Dik = 1, we observe (Yi = yi, Di0 = 0, . . . , Di,k−1 = 0, Dik = 1,Xi) for k ≤ K; when

DiK = 0, we observe (Di0 = 0, . . . , DiK = 0,Xi). Therefore, the likelihood function of θ is

L(θ) =

n∏
i=1

[
{P (Yi = yi, Di0 = 1|Xi)}Di0

×
K∏

k=1

{P (Yi = yi, Di0 = 0, . . . , Di,k−1 = 0, Dik = 1|Xi)}(1−Di0)···(1−Di,k−1)Dik

×{P (Di0 = 0, . . . , DiK = 0|Xi)}(1−Di0)···(1−DiK)
]
.

The first term in the likelihood is

P (Di0 = 1, Yi = yi|Xi) = P (Ri = 1|Yi = yi,Xi)P (Yi = yi|Xi)

= Φ
(Xτ

2iγ + ρ12ϵ1i√
1− ρ212

)
σ−1ϕ(ϵ1i),

where ϵ1i = (yi − β0 − Xτ
1iβ1)/σ.

The second term in the likelihood is

P (Yi = yi, Di0 = 0, . . . , Di,k−1 = 0, Dik = 1|Xi)

= P (Di0 = 0, . . . , Di,k−1 = 0, Dik = 1|Yi = yi,Xi)P (Yi = yi|Xi)

= P (ϵ2i < −Xτ
2iγ, ϵ3i1 < −Xτ

3i1ξ1, . . . , ϵ3ik−1 < −Xτ
3ik−1ξk−1, ϵ3ik > −Xτ

3ikξk|Yi = yi,Xi)

×P (Yi = yi|Xi)

=

∫ −Xτ
2iγ

−∞

∫ −Xτ
3i1ξ1

−∞
· · ·
∫ −Xτ

3ik−1ξk−1

−∞

∫ ∞

−Xτ
3ikξk

ϕ2,31,...,3k|1
(
t, u1, . . . , uk|ϵ1i

)
dtdu1 · · · duk

×σ−1ϕ
(yi − β0 − Xτ

1iβ1

σ

)
,

where ϕ2,31,...,3k|1
(
t, u1, . . . , uk|s) is the density function of (ϵ2i, ϵ3i1, . . . , ϵ3ik)τ conditional on ϵ1i = s.
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The third term in the likelihood is

P (Di0 = 0, . . . , DiK = 0|Xi)

= P (ϵ2i < −Xτ
2iγ, ϵ3i1 < −Xτ

3i1ξ1, . . . , ϵ3iK < −Xτ
3iKξK |Xi)

=

∫ −Xτ
2iγ

−∞

∫ −Xτ
3i1ξ1

−∞
· · ·
∫ −Xτ

3iKξK

−∞
ϕ2,31,...,3k

(
t, u1, . . . , uK)dtdu1 · · · duK ,

where ϕ2,31,...,3k

(
t, u1, . . . , uK) is the density function for (ϵ2i, ϵ3i1, . . . , ϵ3iK)τ .

Let

ℓ(θ) = logL(θ) =
n∑

i=1

ℓi(θ) (15)

be the log-likelihood, where li(θ) is the log-likelihood contribution from individual i. Maximizing (15)

with respect to θ, we obtain the maximum likelihood estimator, θ̂. Similarly, we can show that the maxi-

mum likelihood estimate θ̂ satisfies

n1/2(θ̂ − θ0) → N(0,J−1)

in distribution as n → ∞, where J = −E[∂2ℓi(θ0)/{∂θ∂θτ}].
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