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S1 Theoretical Derivations

Verification of the Assumption 2. For the lower bound of ρ−(s), denote Fij =

{|yi| ≤ τ} ∩ {|yj| ≤ τ}, where τ is a positive constant, we have

∇2L(γ∗) ≥ 2

n(n− 1)

∑
1≤i<j≤n

{ψ′′(yi\jxTi\jγ∗)y2
i\jx

⊗2
i\jI(Fij)}

≥ c3
2

n(n− 1)

∑
1≤i<j≤n

{y2
i\jx

⊗2
i\jI(Fij)} , W,

where c3 = exp(−4Bτ){1 + exp(4Bτ)}−2.

According to the arguments in the proof of Theorem 3.10 in Ning et al.

(2017), for any v ∈ F , where

F = {∆ ∈ Rp : ‖∆‖0 = s, ‖∆‖2 = 1},
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we have

|vTWv − vTE(W)v| ≤ ‖v‖2
1‖W − E(W)‖∞

≤ s‖W − E(W)‖∞.

Hence, ρ−(W, s) ≥ ρ−(E(W), s)− s‖W− E(W)‖∞. Note that the kernel

function of W is bounded, i.e., ‖c3y
2
i\jx

⊗2
i\jI(Fij)‖∞ ≤ 16c3M

2τ 2. Then the

Hoeffding’s inequality can be applied to the centered U-statistics Wjk −

E(Wjk). For some constant t > 0 to be chosen, there exist some universal

constants c4, c5 > 0, such that

Pr (s‖W − E(W)‖∞ > t) ≤
∑
j,k

Pr

(
|Wjk − E(Wjk)| >

t

s

)
≤ c4p

2 exp

(
−c5t

2n

s2

)
.

If Y follows the normal linear model, without loss of generality, we

assume Y |X ∼ N(α + βTX, φ), then

E
(
y2
i\jI(Fij)|xi,xj

)
=

1√
2π

∫ τ

−τ

∫ τ

−τ
y2
i\j exp

{
−

(yi − α− xTi β)2 + (yj − α− xTj β)2

2φ

}
dyidyj

≥ 1√
2π

∫ τ

−τ

∫ τ

−τ
y2
i\j exp

{
−
y2
i + y2

j + 2B2 + 2B|yi|+ 2B|yj|
2φ

}
dyidyj , c6.

Therefore, we have

vTE(W)v = vTE(E(W|x))v ≥ c6v
TEx⊗2

i\jv

= 2c6v
TE(xix

T
i )v ≥ 2c6λmin(Σx)
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and hence, ρ−(E(W), s) ≥ 2c6λmin(Σx), where Σx = Cov(X). By the

Hoeffding equality, taking t = c6λmin(Σx) we have

ρ−(s) ≥ ρ−(W, s) ≥ c6λmin(Σx),

with probability at least 1− c4p
2 exp(−c5c

2
6λ

2
min(Σx)n/s

2).

For the upper bound of ρ+(s), notice that

∇2L(γ∗) ≤ 2

n(n− 1)

∑
1≤i<j≤n

y2
i\jx

⊗2
i\j , W′

Similar as before, we have

ρ+(s) ≤ ρ+(W′, s) ≤ ρ+(E(W′), s) + s‖W′ − E(W′)‖∞

If Y |X ∼ N(α + βTX, φ), we have

E(y2
i\j|xi,xj) = 2φ+ (xTi\jβ)2

and hence

ρ+(E(W′), s) ≤ E(2φ(xTi\jxi\j)
2) + E{(xTi\jβ)2(xTi\jv)2}

≤ 4φλmax(Σx) +
1

2
E(xTi\jβ)4 +

1

2
E(xTi\jv)4

≤ 4φλmax(Σx) + 16B4 + 16M4.

Following the similar argument as above, we have

ρ+(s) ≤ ρ+(W′, s) ≤ t+ 4φλmax(Σx) + 16B4 + 16M4
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with probability at least 1 − c1p
2 exp(−c2t

2n/s2), for any constant t > 0.

For simplicity, after taking t = c6λmin(Σx), we have

ρ+(s) ≤ ρ+(W′, s) ≤ c6λmin(Σx) + 4φλmax(Σx) + 16B4 + 16M4

with probability at least 1 − c4p
2 exp(−c5c

2
6λ

2
min(Σx)n/s

2). The choices of

ρ∗ and ρ∗ can be decided accordingly. When Y |X follows a logistic regres-

sion, based on the arguments in the proof of Theorem 3.10 in Ning et al.

(2017) and the above steps, the same conclusion follows. This completes

the verification by taking C1 = 2c4 and C2 = c5c
2
6λ

2
min(Σx).

Proof of Lemma 3. First, by Lemma 1,

∇L(γ∗) =
2

n(n− 1)

∑
1≤i<j≤n

{ψ′(yi\jxTi\jγ∗)yi\jxi\j − yi\jxi\j}

is a mean-zero U-statistic of order 2. Given the Assumption 1, we have

‖{ψ′(yi\jxTi\jγ∗)yi\jxi\j − yi\jxi\j}‖∞ ≤ 2M |yi\j|.

By the sub-exponential tail condition on yi, for any x > 0 and u = 1, . . . , p,

Pr(|{ψ′(yi\jxTi\jγ∗)yi\jxi\j − yi\jxi\j}u| > x)

≤ Pr(|yi\j| > x/(2M))

≤ Pr(|yi| > x/(4M)) + Pr(|yi| > x/(4M))

≤ 2c1 exp{−c2x/(4M)}.
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By Lemma 2 with k = bn/2c, we have

Pr(‖∇L(γ∗)‖∞ > C3

√
log p/n) ≤

p∑
u=1

Pr(|∇uL(γ∗)| > C3

√
log p/n)

≤ 2p exp

[
−min

{
c2

2C
2
3k log p

29c2
1M

2n
,
c2C3k(log p)1/2

25c1Mn1/2

}]
,

which completes the proof by defining C4 =
c22C

2
3

3·29c21M2 and C5 = c2C3

3·25c1M ,

where we use the fact that k/n > 1/3.

Proof of Lemma 4. We restrict all vectors on S in this proof. For the sake of

easy presentation, the subscript S is omitted throughout. From the Taylor’s

expansion, we have

γ̂O − γ∗ = −{∇2L(γ̃1)}−1∇L(γ∗),

where γ̃1 = γ∗ + t1(γ̂O − γ∗), 0 ≤ t1 ≤ 1. Therefore

‖γ̂O − γ∗‖∞ ≤ ‖{∇2L(γ̃1)}−1‖L∞‖∇L(γ∗)‖∞.

For ‖∇L(γ∗)‖∞, based on the proof of Lemma 3, we have ‖∇L(γ∗)‖∞ ≤

C3

√
log s∗

n
with probability at least 1−2s∗ exp

[
−min

{
C4 log s∗, C5n

1/2(log s∗)1/2
}]

.

For ‖{∇2L(γ̃1)}−1‖L∞ , following the similar argument in Ning et al.

(2017), we have ‖γ̂O−γ∗‖1 ≤ c11s
∗
√

log s∗

n
with probability at least 1−c12p

−1

and

‖{∇2L(γ∗)}−1{∇2L(γ̃1)−∇2L(γ∗)}‖L∞ ≤ s∗min {eb − 1, 1− e−b},
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where

b = max
i,j
|yi\jxTi\j(γ̃1 − γ∗)|

≤ max
i,j
|Yi − Yj|‖Xi −Xj‖∞‖γ̃1 − γ∗‖1

≤ 12c−1
2 log(n)Mc11s

∗

√
log s∗

n

with probability at least 1 − c1n
−1 − c12p

−1 by taking δ = 3c−1
2 log(n) de-

fined in Assumption 1. Therefore, ‖{∇2L(γ∗)}−1{∇2L(γ̃1)−∇2L(γ∗)}‖L∞

is bounded by a term with the order of log(n)(s∗)2
√

log s∗

n
= op(1) with

a high probability. Then we can choose a sufficiently large n, such that

‖{∇2L(γ∗)}−1{∇2L(γ̃1)−∇2L(γ∗)}‖L∞ ≤ 1/2. Then based on the Theo-

rem 2.3.4 in Golub and Van Loan (1996), we have

‖∇2L(γ̃1)−1‖L∞ ≤
‖∇2L(γ∗)−1‖L∞

1− ‖{∇2L(γ∗)}−1{∇2L(γ̃1)−∇2L(γ∗)}‖L∞
< 2C,

and this completes the proof.

Proof of Lemma 5. According to the Assumption 3, since qλ(t) satisfies the

Lipschitz continuity condition, we have

−ζ−‖γ2 − γ1‖2 ≤ (q′λ(γ2)− q′λ(γ1))T (γ2 − γ1) ≤ −ζ+‖γ2 − γ1‖2,

which implies that the convex function −Q(γ) satisfies

(∇(−Qλ(γ2))−∇(−Qλ(γ1)))T (γ2 − γ1) ≤ ζ−‖γ2 − γ1‖2
2,
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and

(∇(−Qλ(γ2))−∇(−Qλ(γ1)))T (γ2 − γ1) ≥ ζ+‖γ2 − γ1‖2
2.

According to Theorem 2.1.5 and Theorem 2.1.9 in Nesterov (2013), the

above two expressions are equivalent definitions of strong smoothness and

strong convexity respectively. In other words, −Qλ(γ) satisfies

−Qλ(γ2) ≤ −Qλ(γ1)−∇Q(γ1)T (γ2 − γ1) +
ζ−
2
‖γ2 − γ1‖2

2,

and

−Qλ(γ2) ≥ −Qλ(γ1)−∇Q(γ1)T (γ2 − γ1) +
ζ+

2
‖γ2 − γ1‖2

2.

For our loss function L(γ), by Taylor’s expansion and the mean value

theorem, we have

L(γ2) = L(γ1)+∇L(γ1)T (γ2−γ1)+
1

2
(γ2−γ1)T∇2L(tγ1+(1−t)γ2)(γ2−γ1),

where 0 ≤ t ≤ 1. Since we assume ‖(γ2 − γ1)S̄‖0 ≤ s∗, which implies

‖γ2−γ1‖0 ≤ 2s∗. Therefore, by the definition of sparse eigenvalue, we have

(γ2 − γ1)T

‖γ2 − γ1‖2

∇2L(tγ1 + (1− t)γ2)
(γ2 − γ1)

‖γ2 − γ1‖2

∈ [ρ−(∇2L, 2s∗), ρ+(∇2L, 2s∗)].

Plugging this into the RHS of the Taylor expansion, we have

L(γ2) ≥ L(γ1) +∇L(γ1)T (γ2 − γ1) +
ρ−(∇2L, 2s∗)

2
‖γ2 − γ1‖2

2,

and

L(γ2) ≤ L(γ1) +∇L(γ1)T (γ2 − γ1) +
ρ+(∇2L, 2s∗)

2
‖γ2 − γ1‖2

2.
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Putting all of the above four inequalities together, we have

L̃λ(γ2) ≥ L̃λ(γ1) +∇L̃λ(γ1)T (γ2 − γ1) +
ρ−(∇2L, 2s∗)− ζ−

2
‖γ2 − γ1‖2

2,

and

L̃λ(γ2) ≤ L̃λ(γ1) +∇L̃λ(γ1)T (γ2 − γ1) +
ρ+(∇2L, 2s∗)− ζ+

2
‖γ2 − γ1‖2

2.

Proof of Theorem 1. From the Karush-Kuhn-Tucker condition, we have

∇L̃λ(γ̂) + λξ̂ = 0,

where ξ̂ ∈ ∂‖γ̂‖1 represents the subgradient, i.e., ξ̂j = sign(γ̂j), if γ̂j 6= 0;

ξ̂j ∈ [−1, 1] if γ̂j = 0. Next, we show that, there exists some ξO ∈ ∂‖γ̂O‖1,

such that γ̂O satisfies the exactly same condition as above

∇L̃λ(γ̂O) + λξO = 0.

For j ∈ S, by the condition of the weakest signal strength and the result

of Lemma 4, with probability at least 1− δ2, when n is sufficiently large,

|(γ̂O)j| ≥ |γ∗j | − ‖γ̂O − γ∗‖∞ ≥ 2ν − 2CC3

√
log s∗/n > ν, (S1.1)

then by the condition of the penalty function, we have

(∇Qλ(γ̂O) + λξO)j = (∇Pλ(γ̂O))j = p′λ((γ̂O)j) = 0.



S1. THEORETICAL DERIVATIONS

For j ∈ S̄, (γ̂O)j = 0, so (∇Qλ(γ̂O))j = 0, therefore

(∇L̃λ(γ̂O) + λξO)j = (∇L(γ̂O) + λξO)j,

so we can define (ξO)j = (−∇L(γ̂O)
λ

)j. Note that we choose λ �
√

log p/n,

and from the proof of Lemma 3, with probability at least 1− δ1,

‖∇L(γ̂O)‖∞ ≤ C3

√
log p/n. (S1.2)

So we have ξO ∈ [−1, 1], and therefore we’ve found ξO, such that ξO ∈

∂‖γ̂O‖1, and ∇L̃λ(γ̂O) + λξO = 0, with probability at least 1− δ1 − δ2, by

(S1.1), (S1.2) and the fact that P (A
⋂
B) ≥ P (A) + P (B) − 1, where A

and B are two arbitrary events.

Next, we show that ‖(γ̂ − γ̂O)S̄‖0 ≤ s∗. Due to the analysis of the

convergence properties based on the MM algorithm, presented in Zou and

Li (2008), we only need to prove this result in the l-th iteration, i.e., for

γ̂(l). In the l-th iteration, we define G(l) = {k : γ∗k = 0, ω̂
(l−1)
k ≥ p′λ(c8λ), k =

1, . . . , p}, representing the covariates who are unimportant but heavily pe-

nalized. Its complement G(l) = {k : γ∗k 6= 0, or ω̂
(l−1)
k < p′λ(c8λ), k =

1, . . . , p}. It’s clear that S ⊂ G(l). If we define H := G(l) − S = {k : γ∗k =

0, ω̂
(l−1)
k < p′λ(c8λ), k = 1, . . . , p}, it’s also clear that S and H are disjoint.

We are going to first show that |G(l)| ≤ 2s∗ by induction.

For l = 1, because we have ω̂
(0)
k = λ, G(1) = S, hence |G(1)| ≤ s∗. Now
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we assume that |G(l)| ≤ 2s∗ for some integer l and our goal is to prove that

|G(l+1)| ≤ 2s∗.

Suppose γ̂(l) is the solution in the l-th iteration, from the Karush-Kuhn-

Tucker condition, we have

∇L(γ̂(l)) + ω̂(l−1) ◦ ξ(l) = 0,

where ξ(l) ∈ ∂‖γ̂(l)‖1. In the following, we denote δ = γ̂(l) − γ∗. By the

mean value theorem, we have

∇L(γ̂(l))−∇L(γ∗) = ∇2L(γ̃)δ,

where γ̃ = tγ∗ + (1− t)γ̂(l), which implies

0 ≤ δT∇2L(γ̃)δ = −δT ω̂(l−1) ◦ ξ(l) −∇L(γ∗)Tδ.

For the second term, Holder’s inequality implies

∇L(γ∗)Tδ ≥ −‖∇L(γ∗)‖∞‖δ‖1.

For the first term, also use Holder’s inequality, we have

δT (ω̂(l−1) ◦ ξ(l)) = δTS (ω̂(l−1) ◦ ξ(l))S + |δTHω̂
(l−1)
H |+ |δTGω̂

(l−1)
G |

≥ −‖δS‖1‖ω̂(l−1)
S ‖∞ + ‖δH‖1‖ω̂(l−1)

H ‖min + ‖δG‖1‖ω̂(l−1)
G ‖min.

Combining these two inequalities, we have

−‖δS‖1‖ω̂(l−1)
S ‖∞+‖δH‖1‖ω̂(l−1)

H ‖min+‖δG‖1‖ω̂(l−1)
G ‖min−‖∇L(γ∗)‖∞‖δ‖1 ≤ 0.
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Hence

p′λ(c8λ)‖δG‖1 ≤ ‖δG‖1‖ω̂(l−1)
G ‖min ≤ ‖∇L(γ∗)‖∞‖δ‖1 + ‖δS‖1‖ω̂(l−1)

S ‖∞.

Therefore, we have

[p′λ(c8λ)− ‖∇L(γ∗)‖∞] ‖δG‖1 ≤
[
‖ω̂(l−1)

S ‖∞ + ‖∇L(γ∗)‖∞
]
‖δḠ‖1,

which implies

‖δG‖1 ≤
‖ω̂(l−1)

S ‖∞ + ‖∇L(γ∗)‖∞
p′λ(c8λ)− ‖∇L(γ∗)‖∞

‖δḠ‖1 ≤ c13‖δḠ‖1,

which is equivalent to

‖γ̂(l) − γ∗‖1 ≤ (1 + c13)‖γ̂(l)

G(l) − γ∗G(l)‖1.

Similarly, we can also show that

‖γ̂(l) − γ∗‖2 ≤ (1 + c13)‖γ̂(l)

I(l)
− γ∗I(l)‖2.

Next, following the proof of Lemma A.3 in Yang et al. (2014), based on

the Assumption 2 and the condition that s∗
√

log p
n

= op(1), with probability

at least 1− δ3, we can establish the following crude rates of convergence for

l ≥ 1:

‖γ̂(l) − γ∗‖2 ≤ c14ρ
−1
∗
√
s∗λ. (S1.3)

By the concavity of pλ, for any k ∈ A := G(l+1) − S, we have |γ̂(l)
k | ≥ c8λ.

Therefore we have

√
|A| ≤ ‖γ̂(l)

A ‖2/(c8λ) = ‖γ̂(l)
A − γ

∗
A‖2/(c8λ) ≤ c14ρ

−1
∗
√
s∗/c8 ≤

√
s∗,
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where the first inequality follows from |A| ≤
∑

k∈A |γ̂
(l)
k |2/(c8λ)2, and the

last inequality follows from the appropriate choice of c14 by the similar

argument in Yang et al. (2014). Note that this implies that |G(l+1)| ≤ 2s∗.

Therefore, by induction, |G(l)| ≤ 2s∗ for any l ≥ 1. Then, from (S1.3) we

can follow the similar arguments in Zhang (2013); Yang et al. (2014) to

conclude that ‖(γ̂ − γ̂O)S̄‖0 ≤ s∗, with probability at least 1− δ3.

Next we are showing γ̂ = γ̂O when n is sufficiently large. By Lemma

5, it yields

L̃λ(γ̂) ≥ L̃λ(γ̂O) +∇L̃λ(γ̂O)T (γ̂ − γ̂O) +
ρ−(∇2L, 2s∗)− ζ−

2
‖γ̂ − γ̂O‖2

2,

and

L̃λ(γ̂O) ≥ L̃λ(γ̂) +∇L̃λ(γ̂)T (γ̂O − γ̂) +
ρ−(∇2L, 2s∗)− ζ−

2
‖γ̂O − γ̂‖2

2.

By the convexity of L1 norm, we have

λ‖γ̂‖1 ≥ λ‖γ̂O‖1 + λ(γ̂ − γ̂O)TξO,

and

λ‖γ̂O‖1 ≥ λ‖γ̂‖1 + λ(γ̂O − γ̂)T ξ̂.

Adding the above four inequalities, we have

0 ≥ (∇L̃λ(γ̂)+λξ̂)T (γ̂O−γ̂)+(∇L̃λ(γ̂O)+λξO)T (γ̂−γ̂O)+(ρ−(∇2L, 2s∗)−ζ−)‖γ̂−γ̂O‖2
2.
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Since ∇L̃λ(γ̂) + λξ̂ = 0, ∇L̃λ(γ̂O) + λξO = 0, ρ−(∇2L, 2s∗) − ζ− > 0, we

must have γ̂ = γ̂O, i.e., we conclude that γ̂ is the oracle estimator γ̂O. Also,

since minj∈S |(γ̂O)j| > 0 and the fact that supp(γ̂O) ⊂ S, we have

supp(γ̂) = supp(γ̂O) = supp(γ∗),

with probability at least 1− δ1− δ2− δ3, where this high probability comes

from (S1.1), (S1.2), (S1.3) in the process of this proof, and the fact that

P (A
⋂
B
⋂
C) ≥ P (A) + P (B

⋂
C)− 1 ≥ P (A) + P (B) + P (C)− 2 where

A, B and C are three arbitrary events, and this completes the proof.

S2 More Simulation Studies

In general the assumption imposed on the missing data mechanism is un-

verifiable. Although the assumption (2.3) we discuss in this paper is al-

ready very flexible, it is still plausible to be violated in real applications.

Therefore, in the next four simulations, we evaluate the robustness of our

proposed method when the assumption (2.3) is slightly violated. The sim-

ulation settings (S5)–(S8) are as follows:

(S5): same as (S1) except that Pr(R = 1|Y,X) = I{Y+0.1X3>γ1}I{X1>γ2}.

(S6): same as (S2) except that Pr(R = 1|Y,X) = I{Y+0.1X3>γ1}I{X1>γ2}.

(S7): same as (S3) except that Pr(R = 1|Y,X) = I{X1>γ}·
{

2Y+3
5
− 0.1(|X3|∧3)

1+0.1(|X3|∧3)

}
.
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(S8): same as (S4) except that Pr(R = 1|Y,X) = I{X1>γ}·
{

2Y+3
5
− 0.1(|X3|∧3)

1+0.1(|X3|∧3)

}
.

Similar as before, we count the number of false positives (#FP) and

the number of false negatives (#FN) and report them in a boxplot in each

setting in Figures 1–4 respectively. We also list the mean and standard

deviation (SD) of #FP and #FN for each setting in Tables 1–2. It can be

seen that, although the assumption (2.3) is slightly violated, our proposed

method still performs better than the one assuming MAR in many sce-

narios. This phenomenon shows that our proposed method possesses some

robustness to the misspecification of the missing data mechanism assump-

tion.

Finally, we provide some results on the computing time of our proposed

method. We report the mean and standard deviation (SD) of the computing

time for simulation settings (S1)–(S2) in Table 3. The simulations are con-

ducted on an OS X system version 10.9.5 with 2.2 GHz Intel Core i7 CPU

and 16GB memory. It’s not surprising that our proposed method is more

time-consuming than the others. This phenomenon is consistent with the

theoretical implication. In theory, from the algorithms we developed in Sec-

tion 3, the computing time of the proposed method is equivalent to solving

a standard penalized logistic regression with sample size n(n− 1)/2, while

the computing time of the method assuming no missing data (or assuming
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MAR) is the same as to solving a standard penalized logistic regression

with sample size N (or n). Eventually we will make our algorithm publicly

available by creating an R package with some core part implemented by C.

S3 Real Data Analyses

In this Section, we present two data analyses to demonstrate the usefulness

of our proposed method in real applications. The first study concerns the

melanoma cancer through the observation-controlled Eastern Cooperative

Oncology Group (ECOG) phase III clinical trial E1684. The second study

(GEO GDS3289) investigates the association between prostate cancer tu-

mors and genomic biomarkers, sponsored by the US National Institutes of

Health.

S3.1 Melanoma Study

Melanoma is the most dangerous type of skin cancer and its incidence is in-

creasing at a rate that exceeds all solid tumors. Although education efforts

have resulted in earlier detection of melanoma, high-risk melanoma patients

continue to have high relapse and mortality rate of 50% or higher. Sev-

eral post-operative (adjuvant) chemotherapies have been proposed for this

class of melanoma patients, and the one which seems to provide the most
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significant impact on relapse-free survival and survival is Interferon Alpha-

2b (IFN). This immunotherapy was evaluated in E1684, an observation-

controlled Eastern Cooperative Oncology Group (ECOG) phase III clinical

trial Kirkwood et al. (1996).

In this trial, there are in total N = 286 patients and all the patients

were randomized to one of two treatment trials: high dose interferon or

observation. In this analysis, the outcome variable Y , was taken to be

binary, and was assigned a 1 if the patient had an overall survival time

greater than or equal to 0.55 years, and 0 otherwise. There are several

prognostic factors that were identified as potentially important predictors:

X1, treatment (two levels); X2, age (in years); X3, nodes1 (four levels); X4,

sex (two levels); X5, perform (two levels); and X6, logarithm of Breslow

thickness (in mm). Among all six covariates, X3 and X6 have missing

values and the total number of completely observed samples is n = 234.

The data set is available from Ibrahim et al. (2001).

To illustrate the proposed method, we assume that the original data

set fits into a logistic regression and we minimize the penalized pairwise

pseudo likelihood (2.8) to obtain the estimates. In contrast, under the MAR

assumption, the corresponding estimates can be calculated by a penalized

logistic regression with the completely observed subjects. We examine both
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methods using three penalty functions: LASSO, SCAD and MCP. The

variable selection and parameter estimation results are reported in Table 4.

The comparison of the results shown by both methods is as follows.

Variables sex, perform, log(Breslow) are never selected by any method or

any penalty, showing some agreement of the two methods. However, vari-

able age is selected by the proposed method but not the method assuming

MAR; variable nodes1 is selected by either method and either penalty, but

the proposed method always show an elevation of the parameter estimate;

the selection of the variable treatment depends on the method and the

penalty.

A similar data set was previously analyzed in Ibrahim et al. (2001)

and Garcia et al. (2010), and the latter showed that, both variable age

and variable treatment can be selected by the adaptive LASSO method

but not by the SCAD method. Variable age is negatively associated with

a longer survival time, and its effect is not significant in the maximum

likelihood estimate (MLE) method; while variable treatment is positively

associated with a longer survival time, and its effect is significant according

to the MLE. Both these agreements and disagreements of these methods

reveal some more information that is contained in the data but cannot be

disclosed if only one single method is explored. This could certainly provide
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more insight of the data to investigators and clinicians.

S3.2 Prostate Cancer Study

We also analyze a data set from a study (GEO GDS3289) investigating the

association between prostate cancer tumors and genomic biomarkers (Tom-

lins et al., 2007). The whole data set can be accessed from the website of the

National Center for Biotechnology Information of the National Institutes of

Health. Briefly, this data set contains N = 104 samples, out of which 34 are

benign epithelium samples (Y = 0) and 70 non-benign samples (Y = 1).

There are missing values for various biomarkers in this data set. In our

analysis, we include p = 64 biomarkers in total and six of them have missing

values with the number of missing samples for each biomarker ranging from

1 to 53. The missing values result in a complete data set with the sample

size n = 49, and there are 36 non-benign samples in this complete data

set. We adopt the penalized logistic regression in this analysis, and we

examine the results under two different assumptions: one assuming MAR,

and the other assuming (2.3), with three different representative penalty

functions: LASSO, SCAD and MCP. Similar to the previous data analysis,

the variable selection and the parameter estimation results are reported in

Table 5.
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Our major findings and the comparison with previous literature can be

summarized as follows. First, some biomarkers like RHOB, can be selected

by either method or either penalty function. Second, some other biomark-

ers, for example, MME, ANXA1, CLDN4 and SOX4 can be selected by

our proposed method but not the method assuming MAR. Interestingly,

they were all investigated in the previous literature Kälin et al. (2011);

Geary et al. (2014); Maeda et al. (2012); Wang et al. (2013) and clinically

concluded to be associated with the prostate cancer. Although we cannot

reach a uniform conclusion that our method outperforms the MAR method

in this real data exploration, the analysis demonstrates that it can reveal

some extra genetic information by using our proposed method. This illus-

trates the potential usefulness of our proposed method and it will be very

interesting to medical investigators and clinical practitioners.
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Figure 1: Boxplots of #FP and #FN in simulation setting (S5). The three columns

represent the methods with no missing data, MAR and proposed, respectively. The first

and third rows show #FP while the second and fourth rows show #FN. The first two

rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.
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Figure 2: Boxplots of #FP and #FN in simulation setting (S6). The three columns

represent the methods with no missing data, MAR and proposed, respectively. The first

and third rows show #FP while the second and fourth rows show #FN. The first two

rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.
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Figure 3: Boxplots of #FP and #FN in simulation setting (S7). The three columns

represent the methods with no missing data, MAR and proposed, respectively. The first

and third rows show #FP while the second and fourth rows show #FN. The first two

rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.
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Figure 4: Boxplots of #FP and #FN in simulation setting (S8). The three columns

represent the methods with no missing data, MAR and proposed, respectively. The first

and third rows show #FP while the second and fourth rows show #FN. The first two

rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.
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Table 1: Mean and standard deviation (SD; in parentheses) of #FP and #FN in simu-

lation settings (S5)–(S6). The proposed method is compared to two other methods: the

method with no missing data, which uses all simulated data; and the method assuming

MAR, which uses completely observed samples only.

Method Penalty
ρ = 0 ρ = 0.5

#FP #FN #FP #FN

p=8

with no

missing data

LASSO 1.42 (1.44) 0 (0) 1.32 (1.48) 0 (0)

SCAD 0.62 (1.10) 0 (0) 1.10 (1.62) 0 (0)

MCP 0.46 (1.14) 0 (0) 0.65 (1.27) 0 (0)

MAR

LASSO 2.19 (1.48) 0 (0) 1.90 (1.49) 0.01 (0.10)

SCAD 0.87 (1.16) 0 (0) 1.15 (1.29) 0.03 (0.17)

MCP 0.65 (1.13) 0 (0) 0.77 (1.18) 0.02 (0.14)

proposed

LASSO 1.98 (1.21) 0 (0) 2.48 (1.38) 0 (0)

SCAD 0.79 (1.17) 0 (0) 1.20 (1.40) 0.01 (0.10)

MCP 0.58 (1.11) 0 (0) 0.81 (1.25) 0.01 (0.10)

p=200

with no

missing data

LASSO 11.20 (9.45) 0 (0) 8.12 (8.68) 0 (0)

SCAD 3.37 (3.41) 0 (0) 1.37 (1.59) 0.02 (0.14)

MCP 1.37 (2.30) 0 (0) 1.01 (1.31) 0 (0)

MAR

LASSO 14.00 (11.95) 0.01 (0.10) 7.91 (7.80) 0 (0)

SCAD 5.35 (5.29) 0.02 (0.14) 5.72 (5.53) 0.10 (0.30)

MCP 2.47 (3.41) 0.06 (0.24) 2.35 (2.92) 0.17 (0.38)

proposed

LASSO 11.11 (5.96) 0 (0) 9.68 (6.59) 0 (0)

SCAD 3.67 (2.85) 0.01 (0.10) 4.02 (2.27) 0.05 (0.22)

MCP 2.10 (2.30) 0.03 (0.17) 2.46 (1.94) 0.10 (0.30)
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Table 2: Mean and standard deviation (SD; in parentheses) of #FP and #FN in simu-

lation settings (S7)–(S8). The proposed method is compared to two other methods: the

method with no missing data, which uses all simulated data; and the method assuming

MAR, which uses completely observed samples only.

Method Penalty
ρ = 0 ρ = 0.5

#FP #FN #FP #FN

p=8

with no

missing data

LASSO 2.51 (1.12) 0 (0) 2.35 (1.17) 0 (0)

SCAD 0.79 (1.03) 0 (0) 0.51 (1.02) 0 (0)

MCP 0.60 (1.10) 0 (0) 0.41 (1.02) 0 (0)

MAR

LASSO 2.57 (1.09) 0 (0) 2.68 (1.03) 0 (0)

SCAD 0.92 (1.04) 0 (0) 0.81 (1.18) 0.01 (0.10)

MCP 0.64 (1.01) 0 (0) 0.61 (1.07) 0 (0))

proposed

LASSO 2.21 (1.13) 0 (0) 2.54 (1.18) 0 (0)

SCAD 0.59 (0.99) 0 (0) 0.59 (0.96) 0 (0)

MCP 0.56 (1.04) 0 (0) 0.53 (1.03) 0 (0)

p=500

with no

missing data

LASSO 22.97 (13.77) 0 (0) 19.54 (10.03) 0.04 (0.20)

SCAD 9.64 (7.99) 0 (0) 14.72 (9.87) 0.05 (0.30)

MCP 2.36 (2.77) 0 (0) 4.35 (4.56) 0.07 (0.36)

MAR

LASSO 30.02 (12.19) 0 (0) 24.93 (14.94) 0.58 (0.59)

SCAD 15.10 (7.15) 0 (0) 19.72 (11.47) 0.36 (0.56)

MCP 4.46 (3.19) 0.01 (0.10) 4.83 (4.28) 0.55 (0.73)

proposed

LASSO 23.37 (12.42) 0 (0) 19.27 (12.49) 0.52 (0.64)

SCAD 14.66 (5.30) 0 (0) 15.40 (7.03) 0.19 (0.44)

MCP 5.50 (3.32) 0 (0) 5.05 (3.77) 0.42 (0.67)
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Table 3: Mean and standard deviation (SD; in parentheses) of computing time (in sec-

onds) in simulation settings (S1)–(S2).

Method LASSO SCAD MCP

p=8

ρ = 0

with no missing data 0.04(0.00) 0.02(0.00) 0.02(0.00)

MAR 0.04(0.01) 0.02(0.00) 0.02(0.00)

proposed 0.45(0.06) 1.47(0.76) 1.05(0.15)

ρ = 0.5

with no missing data 0.04(0.01) 0.02(0.00) 0.02(0.01)

MAR 0.04(0.02) 0.02(0.00) 0.02(0.00)

proposed 0.44(0.06) 1.53(0.62) 1.48(0.22)

p=200

ρ = 0

with no missing data 0.17(0.02) 0.05(0.00) 0.06(0.01)

MAR 0.08(0.01) 0.05(0.01) 0.05(0.01)

proposed 9.74(1.89) 47.71(9.24) 22.44(4.36)

ρ = 0.5

with no missing data 0.17(0.02) 0.05(0.01) 0.05(0.01)

MAR 0.07(0.01) 0.04(0.01) 0.05(0.01)

proposed 6.91(1.41) 36.81(7.07) 19.58(3.82)

Table 4: The variable selection and parameter estimation results in the melanoma study

contrasting the method assuming MAR and the proposed method.

LASSO SCAD MCP

MAR proposed MAR proposed MAR proposed

|{i : γ̂i 6= 0}| 2 3 2 2 1 2

treatment -0.035 -0.024 -0.022 0.000 0.000 0.000

age 0.000 0.014 0.000 0.016 0.000 0.016

nodes1 0.422 0.564 0.539 0.691 0.528 0.691

sex 0.000 0.000 0.000 0.000 0.000 0.000

perform 0.000 0.000 0.000 0.000 0.000 0.000

log(Breslow) 0.000 0.000 0.000 0.000 0.000 0.000
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Table 5: The variable selection and parameter estimation results in the prostate cancer

study contrasting the method assuming MAR and the proposed method.

LASSO SCAD MCP

MAR proposed MAR proposed MAR proposed

|{i : γ̂i 6= 0}| 13 13 10 11 3 6

RHOB -4.593 -3.224 -3.640 -0.868 -2.459 -0.885

MME -0.111 -0.821 0.000 -0.276 0.000 -0.588

ANXA1 0.000 -0.280 0.000 -0.950 -1.140 -0.690

FAM89A -2.917 -2.574 -0.937 -0.779 0.000 0.000

SETD5 1.279 2.727 0.555 0.434 0.000 0.000

CLDN4 0.000 0.577 0.000 0.483 0.000 0.586

SOX4 0.000 3.352 0.000 1.199 0.000 2.016

IMAGE:133130 0.000 2.455 0.000 1.418 0.000 3.487

ADAM22 -1.240 0.000 -0.535 0.000 -6.052 0.000

AMACR 0.098 1.066 0.000 0.345 0.000 0.000

ODF2 3.039 0.042 0.519 0.000 0.000 0.000

ST14 2.513 0.490 0.843 0.000 0.000 0.000

IMAGE:490971 0.638 0.000 1.615 0.000 0.000 0.000

RND3 -2.251 0.000 -0.182 0.000 0.000 0.000

KIAA0020 8.011 0.000 4.559 0.000 0.000 0.000

SLC25A6 1.660 0.000 0.485 0.000 0.000 0.000

MYO6 0.000 0.965 0.000 0.385 0.000 0.000

MYC 0.000 0.117 0.000 0.000 0.000 0.000

EFEMP2 -0.977 0.000 0.000 0.000 0.000 0.000

SERPING1 0.000 0.000 0.000 -0.163 0.000 0.000

others 0.000 0.000 0.000 0.000 0.000 0.000
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