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Supplementary Material

In this supplementary material, we first give the main technically derivations for the theoretical

results. And we include some numerical studies and discussions on the instrumental variables

in the second part. More details about a data example are presented in the last part.

S1 Proof of Theorem 1

The proof is similar to that of Wang, Shao, and Kim (2014). For a given

u, define f1(y) = f(y|u, z1), f2(y) = f(y|u, z2). And we will show that, for



2 FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

all y ∈ R, if

H(g(u) + αy)f1(y) = H(g
′
(u) + α

′
y)f

′

1(y),

H(g(u) + αy)f2(y) = H(g
′
(u) + α

′
y)f

′

2(y)

(S1.1)

then, g = g
′
, α = α

′
, f1 = f

′
1, and f2 = f

′
2.

Since fi, f
′
i , i = 1, 2 are density functions, (S1.1) implies∫ [

H(g(u) + αy)

H(g′(u) + α′y)
− 1

]
f1(y)dy =

∫ [
H(g(u) + αy)

H(g′(u) + α′y)
− 1

]
f2(y)dy = 0.

(S1.2)

We now show in two steps that (S1.2) implies α = α
′
.

First, we show that, when α 6= α
′
, the function K(y) = H(g(u)+αy)

H(g′ (u)+α′y)
− 1

has a single change of sign. Under condition (C1), H(·) is strictly mono-

tone and we consider a strictly increasing H here. The proof for a strictly

decreasing is similar. Note that if one of α and α
′

is 0 or if α and α
′

have

different signs, then K(y) is a strictly monotone function having a unique

root and, hence, it has a single change of sign. For the case where α and

α
′

have the same sign, we assume that α > α
′
> 0. Let y∗ = g(u)−g′ (u)

α′−α ,

which implies g(u) + αy∗ = g
′
(u) + α

′
y∗ and consequently K(y∗) = 0. For

any y > y∗, it is easy to show that g(u) + αy < g
′
(u) + α

′
y. Since H(·)

is strictly increasing, we get H(g(u) + αy) < H(g
′
(u) + α

′
y). Therefore,

K(y) < 0. Similarly, when y < y∗, K(y) > 0. This proves that K(y) has a

single change of sign.
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Next, we prove that if α 6= α
′

and the first integral in (S1.2) is 0, then

the second integral is not 0. Let X be a random variable having f1 or f2 as

its probability density and Ej denote the expectation when X has density

fj. And we will prove that if E1[K(X)] = 0, then E2[K(X)] 6= 0.

Let t0 be the change point of K(·), i.e., K(t) < 0 if t < t0 and K(t) > 0

if t > t0. Define c = supt<t0 f2(t)/f1(t). Under condition (C2), f2(t)/f1(t) is

a nondecreasing function of t. Hence, when f1(t0) > 0, c = f2(t0)/f1(t0) <

∞. When f1(t0) = 0, there exists t1 such that t1 > t0 and f1(t1) > 0

under the assumption that E1[K(X)] = 0. Hence, c ≤ f2(t1)/f1(t1) < ∞.

Thus, c < ∞ is always true. Let A = {t : f1(t) = 0, f2(t) > 0} and

B = {t : f1(t) > 0, f2(t) > 0}∪{t : f1(t) > 0, f2(t) = 0} and E2(K(X)) can

be written as E2(K(X)) =
∫
K(t)f2(t)dt =

∫
A
K(t)f2(t)ft+

∫
B
K(t)f2(t)dt.

If t ∈ A, then f2(t)/f1(t) = ∞, and, therefore, t > t0 and K(t) > 0 for

t ∈ A, which yields that
∫
A
K(t)f2(t) ≥ 0. Then

E2[K(X)] ≥
∫
B

K(t)f2(t)dt

=

∫
B1

K(t)f2(t)dt+

∫
B2

K(t)f2(t)dt

=

∫
B1

K(t)
f2(t)

f1(t)
f1(t)dt+

∫
B2

K(t)
f2(t)

f1(t)
f1(t)dt

≥
∫
B1

cK(t)f1(t)dt+

∫
B2

cK(t)f1(t)dt

= cE1[K(T )] = 0,
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where B1 = {t : t ∈ B, t < t0}, B2 = {t : t ∈ B, t > t0}. If A has a positive

Lebesgue measure,
∫
A
K(t)f2(t)dt > 0 and, hence, E2[K(X)] > 0. If A

has Lebesgue measure 0, the support sets of f1 and f2 are subsets of B. If

E2[K(X)] = 0, then f2(t) = cf1(t) a.e. on B. But f1 and f2 are densities,

thus c = 1, which is a contradiction to condition (C1). Therefore, we have

E2[K(X)] > 0.

Thus, (S1.2) implies that α = α
′

and (S1.2) reduces to∫ [
H(g(u) + αy)

H(g′(u) + αy)
− 1

]
f1(y)dy =

∫ [
H(g(u) + αy)

H(g′(u) + αy)
− 1

]
f2(y) = 0.

which implies g(u) = g
′
(u) since H(·) is strictly monotone function. Com-

bine these results and (S1.1), we get f1 = f
′
1 and f2 = f

′
2.

S2 Proof of Lemmas 1 and 2

By the definition of ψ̂(Yi, Xi,θ), we have the following decomposition:

1

n

n∑
i=1

ψ̂(Yi, Xi,θ) =
1

n

n∑
i=1

[
δiψ(Yi, Xi,θ) + (1− δi)m̂0(Xi,θ)

]
=

1

n

n∑
i=1

{
δi[ψ(Yi, Xi,θ)−m1(Xi,θ)]

}
+

1

n

n∑
i=1

{
δim1(Xi,θ) + (1− δi)m0(Xi,θ)

}
+

1

n

n∑
i=1

(1− δi)
{
m̂0(Xi,θ)−m0(Xi,θ)

}
:= I1 + I2 + I3,
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where m1(Xi,θ) = E[ψ(Yi, Xi,θ)|Xi, δi = 1].

The first two terms I1 and I2 are sums of independent random variables.

So we only need to deal with I3.

Proof of Lemma 1. Note that

I3 =
1

n

n∑
i=1

(1− δi)
{
m̂0(Xi,θ)−m0(Xi,θ)

}
=

1

n

n∑
i=1

(1− δi)×
∑n

j=1 δjKh(Xj, Xi) exp(γ0Yj)[ψ(Yj, Xj,θ)−m0(Xi,θ)]∑n
j=1 δjKh(Xj, Xi) exp(γ0Yj)

.

For the denominator of I3, we have the following representation for a fixed

point x0,

p lim
n→∞

1

n

n∑
i=1

δiKh(Xi, x0) exp(γ0Yi) = E {δKh(X, x0) exp(γ0Y )}

= E {Kh(X, x0) exp{g(U)}(1− π(U, Y ))}

= E {Kh(X, x0) exp{g(U)}(1− %(X))} ,

where %(X) = E{π(U, Y )|X}. By some calculations, we get that

E{Kh(X, x0) exp{g(U)}(1− %(X))} =
1

hd

∫
K

(
x− x0
h

)
exp{g(u)}(1− %(x))f(x)dx

=

∫
K(t) exp{g(th+ u0)}(1− %(th+ x0))f(th+ x0)dt

= f(x0)(1− %(x0)) exp{g(u0)}+Op(h
2d),

where f(x) is the marginal density ofX. LetH(x0) = f(x0)(1−%(x0)) exp{g(u0)},
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then we have

I3 =
1

n2

n∑
i=1

1− δi
H(Xi)

n∑
j=1

δjKh(Xj, Xi) exp(γ0Yj)[ψ(Yj, Xj,θ)−m0(Xi,θ)]{1 + +Op(cn)}

=: I∗3{1 +Op(cn)},

where cn = (log n/(nhd))1/2 + hm. Next we give the asymptotic representa-

tion of I∗3 . For simplicity, we define a kernel function of the U statistic for

all pairs (i, j),

T (Si, Sj) =
1

2

1− δi
H(Xi)

δjKh(Xj, Xi)e
(γ0Yj)[ψ(Yj, Xj,θ0)−m0(Xi,θ0)]

+
1

2

1− δj
H(Xj)

δiKh(Xi, Xj)e
(γ0Yi)[ψ(Yi, Xi,θ0)−m0(Xj,θ0)]

=:
1

2
J1 +

1

2
J2,

where Sj = (Xj, Yj, δj). Then I∗3 can be written as

I∗3 =
1

n2

n∑
i=1

T (Si, Si) + Un,

where Un = 2
n2

∑n
i=1

∑
i<j T (Si, Sj). For any given θ0 ∈ Θp, it is easy to

show that E{T (Si, Sj)} = 0. By the law of large numbers, the first term

of I∗3 approximates o(n−1) in probability. Hence, it suffices to consider the

U -statistic Un only. Next we calculate the conditional expectation T1(Sj) =
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E{T (Si, Sj)|Sj}. For the first part of T (Si, Sj), we have

E{J1|Sj} = δje
γ0YjE

{
1− δi
H(Xi)

Kh(Xj, Xi)[ψ(Yj, Xj,θ0)−m0(Xi,θ0)]
∣∣∣Sj}

= δje
γ0YjE

{
1− %(Xi)

H(Xi)
Kh(Xj, Xi)[ψ(Yj, Xj,θ0)−m0(Xi,θ0)]

∣∣∣Sj}
= δje

γ0Yj
f(Xj)

H(Xj)
(1− %(Xj))[ψ(Yj, Xj,θ0)−m0(Xj,θ0)]{1 +O(h2d)}

= δj

{
1

π(Uj, Yj)
− 1

}
{ψ(Yj, Xj,θ0)−m0(Xj,θ0)}{1 +O(h2d)},

Similarly, we have

E(J2|Sj) =
1− δj
H(Xj)

E
{
δiKh(Xi, Xj)e

γ0Yi [ψ(Yi, Xi,θ0)−m0(Xj,θ0)]
∣∣∣Sj}

=
1− δj
H(Xj)

E
{
δeγ0Y [ψ(Y,X,θ0)−m0(Xj,θ0)]|X = Xj

}
f(Xj){1 +O(h2d)}

=
1− δj
H(Xj)

f(Xj)
{
E[δeγ0Y ψ(Y,X,θ0)|X = Xj]− E[δeγ0Y |X = Xj]m0(Xj,θ0)

}
+O(h2d)

= O(h2d).

Therefore, the conditional expectation can be written as T1(Sj) = 1
2
δj

[
1

π(Uj ,Yj)
− 1
]

[ψ(Yj, Xj,θ0)−

m0(Xj,θ0)]{1 +O(h2d)}. Denote the U -statistic projection of Un as

Ûn =
2

n

n∑
i=1

T1(Si).

Then we will show that Un can be approximated by Ûn. By some tedious

calculations, we have

χ1(θ0) = V ar(T1(Si)) =
1

4
E

{
δi

[
1

π(Ui, Yi)
− 1

]2
[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]

⊗2

}
{1 +O(h2d)}

=
1

4
E

{
(1− π(U, Y ))2

π(U, Y )
[ψ(Y,X,θ0)−m0(Xi,θ0)]

⊗2
}
{1 +O(h2d)},
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and

χ2(θ0) = V ar(T (Si, Sj)) =
1

2
E

{
1− δi
H(Xi)2

δjK
2
h(Xi, Xj)e

2γ0Yj [ψ(Yj, Xj,θ0)−m0(Xi,θ0)]
⊗2
}

=
1

2hd
E

{
δj

H(Xj)2
e2γ0Yjf(Xj)(1− %(Xj))[ψ(Yj, Xj,θ0)−m0(Xj,θ0)]

⊗2
}∫

K2(x)dx+O(1)

=
1

2hd
E

{
(1− π(U, Y ))2

π(U, Y )f(X)(1− %(X))
[ψ(Y,X,θ0)−m0(X,θ0)]

⊗2
}∫

K2(x)dx+O(1).

Furthermore, E(Û2
n) = 4

n
χ1(θ0) and EU2

n = V ar(Un) = 4(n−2)χ1(θ0)
n(n−1) +

2χ2(θ0)
n(n−1) . Therefore,

E(Un − Ûn)2 =
2χ2(θ0)

n(n− 1)
+O(n−2),

which means that

Un = Ûn +

{
2χ2(θ0)

n(n− 1)
+O(n−2)

}1/2

=
1

n

n∑
i=1

δi

[
1

π(Ui, Yi)
− 1

]
[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]{1 +O(cn)}+O((n2hd)−1/2).

Thus, we summarize the above conclusion as the following equation:

√
n(I3 − I∗∗3 ) = op(1),

which complete the proof.

Proof of Lemma 2. By Lemma 1, we have

1√
n

n∑
i=1

ψ̂(Yi, Xi,θ0) =
√
n(I1 + I2 + I∗∗3 ) + op(1)

=
1√
n

n∑
i=1

{
m0(Xi,θ0) +

δi
π(Ui, Yi)

[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]

}
+ op(1)

:=
1√
n

n∑
i=1

ηi + op(1),
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where ηi = ψ(Yi, Xi,θ0) + ( δi
π(Ui,Yi)

− 1)[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]. Appar-

ently, we have Eηi = 0 and the variance of ηi is

D1(θ0) = E

{
ψ(Yi, Xi,θ0)

⊗2 + 2

(
δi

π(Ui, Yi)
− 1

)
ψ(Yi, Xi,θ0)[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]

τ

+

(
δi

π(Ui, Yi)
− 1

)2

[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]
⊗2
}

= E{ψ(Yi, Xi,θ0)
⊗2}+ E

{
[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]

⊗2E

[(
δi

π(Ui, Yi)
− 1

)2 ∣∣∣∣Xi, Yi

]}
= E{ψ(Yi, Xi,θ0)

⊗2}+ E

{(
1

π(Ui, Yi)
− 1

)
[ψ(Yi, Xi,θ0)−m0(Xi,θ0)]

⊗2
}

,

therefore, by the central limit theorem, we have

1√
n

n∑
i=1

ηi
D→ N(0, D1(θ0)),

which complete the proof.

When the tilting parameter γ is unknown, the proof is similar, we omit

the details.

S3 The Study of Instrumental Variable

In this section, we study the choice of instrumental variable and the impact

on the estimators through some numerical examples.

Test 1. Violation of conditions for instrument

We consider a two dimensional covariates vector X = (Z,U), where Z

is generated from a discrete distribution with P (Z = 1) = 0.25, P (Z = 2) =
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0.25, P (Z = 3) = 0.3, P (Z = 4) = 0.1, P (Z = 5) = 0.1, and U ∼ N(0, 1).

The response variable Y is generated from the linear regression model Y =

θ0 + θ1Z + θ2U + ε, where ε ∼ N(0, 1). Z is treated as the true instrument

and the propensity model is given by

π(Y,X) =
exp(φ0 + φ1Z + φ2U + φ3Y )

1 + exp(φ0 + φ1Z + φ2U + φ3Y )
.

To estimate θ = (θ0, θ1, θ2) and γ = −φ3, we construct the following esti-

mating equations

ψ(Y, U, Z,θ) =



Y − θ0 − θ1U − θ2Z

U(Y − θ0 − θ1U − θ2Z)

I(Z = 1)(Y − θ0 − θ1U − θ2Z)

I(Z = 2)(Y − θ0 − θ1U − θ2Z)

I(Z = 3)(Y − θ0 − θ1U − θ2Z)


,

where I(·) is an indicator function.

We examine the performance of the proposed method under different

combinations of the identifiability conditions (C1) and (C2) as follows:

V1. (C1) is satisfied while (C2) is violated with that Y is not associated

with instrument Z. We choose (θ0, θ1, θ2) = (1, 0, 1), (φ0, φ1, φ2, φ3) =

(0.8, 0, 0.5, 0.1), the corresponding missing rate is about 30%.

V2. (C2) is satisfied while (C1) is violated with Z, U and Y in the propen-
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sity model. We choose (θ0, θ1, θ2) = (1, 1, 1), (φ0, φ1, φ2, φ3) = (0.8, 0.5, 0.5, 0.1).

Missing rate is around 10%.

V3. Both (C1) and (C2) are violated. We choose (θ0, θ1, θ2) = (1, 0, 1),

(φ0, φ1, φ2, φ3) = (0.8, 0.5, 0.5, 0.1). Missing rate is about 12%.

V4. Both (C1) and (C2) are satisfied. We choose (θ0, θ1, θ2) = (1, 1, 1),

(φ0, φ1, φ2, φ3) = (0.8, 0, 0.5, 0.1). Missing rate is about 25%.

For each case, we conduct 1000 replications with sample size 500. Table

1 summarizes the simulated results. From this table, we can see that the

bias and MSE (mean squared error) of the estimates in V4 are the smallest

since the identifiability conditions are satisfied. The estimation has a poor

performance in V3 with biased estimate for γ due to the violation of the

identifiability conditions. And the estimates for cases V1 and V2, which

violate one of the identifiability conditions respectively, have a comparable

performances between that of V3 and V4. Above all, the ideal situation is

that we can choose an instrumental variable meeting the two identifiability

conditions. Or at least, one of the conditions should be satisfied.

Test 2. The choice of instrument

As discussed in Shao and Wang (2016), we need to choose an instrument

Z to meet the conditions (C1) and (C2) of Theorem 1. Suppose that Z is
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related to Y , otherwise, Z can be excluded from the study. Next, we need

to check that Z can be excluded from the propensity π(X, Y ), i.e., (C2)

holds. If we can specify the right formulation for the propensity π(U, Y ) =

π(U, Y ;α, g(U)) with true instrument Z, the tilting parameter α can be

estimated by maximizing the profile likelihood function

L(α) =
n∏
i=1

π(Ui, Yi;α, g(Ui))
δi(1− π(Ui, Yi;α, g(Ui)))

1−δi ,

where g(Ui) is replaced by its kernel estimate. And it is equivalent to solve

the score equation S(α) = ∂ logL(α)/∂α = 0, which can be expressed as

S(α) =
∑n

i=1 s(δi, Ui, Yi;α) =
∑n

i=1{δi − π(Ui, Yi;α)}h(Ui, Yi;α) = 0, and

h(Ui, Yi;α) = π(Ui, Yi;α)−1{1 − π(Ui, Yi;α)}−1∂π(Ui, Yi;α)/∂α. Consider-

ing that Yi is missing when δi = 0, we propose to estimate α by solving the

imputed mean score equation

S̃(α) =
n∑
i=1

δis(δi, Ui, Yi;α) + (1− δi)E[s(δ, U, Y ;α)|X = Xi, δi = 0] = 0,

where E[s(δ, U, Y ;α)|X = Xi, δi = 0] can be estimated using the kernel

regression method. Denote the resulting estimator by π̃(U, Y ), which does

not converge to the true propensity π(U, Y ) if Z can not be excluded from

the propensity. Consequently,

D =

∥∥∥∥∥ 1

n

n∑
i=1

δiXi

π̃(Ui, Yi)
− 1

n

n∑
i=1

Xi

∥∥∥∥∥
does not converge to zero in probability. In other word, D converges to zero
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if and only if Z is an instrument and π(U, Y ) is a correct model. Hence,

we can select an instrument by minimizing D over a group of candidate

variables.

To test the reliability of the criterion D, we conduct a numerical study.

Let X = (U,Z), where U ∼ N(1, 1) and Z ∼ Bernoulli(0.5) are indepen-

dent. Given X, Y ∼ λN(U, 1)2 + (1− λ)N(Z, 1)2, 0 ≤ λ ≤ 1. We consider

two cases for the propensity:

π(U, Y ) =
exp(φ0 + φ1U + αY )

1 + exp(φ0 + φ1U + αY )
, (S3.1)

and

π(U, Y ) =
exp(φ2 + φ3U + sin(Y ))

1 + exp(φ2 + φ3U + sin(Y ))
, (S3.2)

which correspond to the right and misspecified model, respectively. For

both cases, Z plays the role of instrument. Several settings are considered

for (λ, φ0, φ1, α, φ2, φ3) to assess the performance of D.

(a) (λ, φ0, φ1, α, φ2, φ3) = (0.5, 0.6, 0.4, 0.2, 0.6, 0.5).

(b) (λ, φ0, φ1, α, φ2, φ3) = (0.5, 0.6, 0.4,−0.3,−0.5, 0.5).

(c) (λ, φ0, φ1, α, φ2, φ3) = (0, 0.2, 0.8, 0.3, 1, 0.2).

(d) (λ, φ0, φ1, α, φ2, φ3) = (0, 0.6, 0.4,−0.5, 0.2,−0.2).

(e) (λ, φ0, φ1, α, φ2, φ3) = (0.9, 0.2, 0.7, 0.4, 0.6, 0.5).
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(f) (λ, φ0, φ1, α, φ2, φ3) = (0.9, 0.2, 0.7,−0.2,−0.5, 0.6).

In settings (a) and (b), both Z and U are related to Y . And, only Z is

related to Y in settings (c) and (d) due to that λ = 0. Settings (e) and

(f) correspond to the case where the instrument Z has a relatively little

impact on Y . The missing rates in settings (a), (c) and (e) are about 20%

and the others are about 42%. For each setting, the sample size n is 500

or 1000. The simulated results based on 1000 replications for model (S3.1)

and model (S3.2) are summarized in Tables 2 and 3, respectively. From

Table 2, we can see that the D values based on the true instrument Z

are always smaller than that using U as instrument. Moreover, both D

values and the standard deviation of D are reduced with increasing sample

size. We also report the selected probabilities in 1000 replications that the

correct instrument is selected by the criterion D. For different cases, the

proposed criterion selects the correct instrument in almost all replications,

which means that the proposed criterion D is a reliable method to select

instrument. From Table 3, we can see that the probability of correctly

selecting the instrument is lower than that in Table 2 as expected, which

means that an accurate propensity model is also important in selecting the

instrument using the criterion D.

Remark 1. In this study, we use the nonresponse instrument, which is
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related to the response but can be excluded from the propensity, to avoid

the identifiability issue. This nonresponse instrument is different from the

usual instrument in standard IV (instrumental variable) estimation where

IV is independent of the error term. The validity of standard instrument

can be tested by examining the orthogonality conditions in an overidenti-

fied model. In the context of GMM, the overidentifying restrictions may

be tested via Anderson and Rubin (1949) test statistic or the commonly

employed J-statistic of Hansen (1982). In the IV context, this statistic is

known as the Sargan (1958) statistic. The Hansen-Sargan tests for overi-

dentification evaluate the entire set of overidentifying restrictions. When

the researcher has prior suspicions about the validity of a subset of instru-

ments, a “difference-in-Sargan” statistic can be employed to test a subset

of orthogonality conditions.

In our paper, all covariates are exogenous and thus the standard instru-

ments are themselves, however, we still need the nonresponse instrument

to identify the response model. Our main interest is to estimate θ, the

titling parameter γ is a nuisance parameter, when γ is unknown the tar-

get is to estimate θ and γ simultaneously. We assume that the estimating

equations are overidentified for θ, thus for β = (θ, γ)T , the equations are at

least exactly identified. To test whether the model fits the data, tests for
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overidentification presented above can be employed for our equations.

To verify the validity of a nonresponse instrumental variable, we should

check the two conditions in Theorem 1. Condition (C1) can be assessed

by an examination of the significance of the excluded instruments in es-

timation. For Condition (C2), we should demonstrate the conditional in-

dependence of Z and δ, however this independence is not embodied in the

estimating equations as in the standard IV estimator context. In our paper,

we use the criterion D to select the nonresponse instrument and verify the

effect of the conditions through simulation studies. Theoretical proofs are

our future research.

S4 Data example

In the data example, we use the proposed criterion D to identify the instru-

mental variable and find that years in the major leagues (X1) is the best

candidate instrument with the smallest D value. To investigate the effect

of invalid instrumental variable, we consider the estimates with all possible

instrument subsets. We use S1-S6 to represent the scenarios with different

instrumental variables respectively, and the corresponding estimates are

reported in Tables 4 and 5.

The D values based on years in the major leagues or players’ division
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are smaller than that based on hits. When hits is added to the instrument,

the D value increases a lot, which means that hits should be excluded from

the instrument. Although the D value using years in the major leagues

is smaller than that of division, the estimates of parameters for S1 and

S2 are not significantly different. And, the estimates of γ indicate that

the nonignorable missing assumption holds for the response variable. In

addition, the estimates of S3-S6 are very similar, except for the estimate

of γ in S5 with Z = (X1, X3)
τ , that has the largest D value. Overall, the

estimates of (θ0, θ1, θ2, θ3) are not much different among these six scenarios.
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Table 1: Simulation results for V1–V4

True Bias MSE True Bias MSE

V 1 V 2

θ̂0 1.0000 0.0423 0.0143 1.0000 -0.0027 0.0688

θ̂1 0 -0.0083 0.0029 1.0000 0.0046 0.0041

θ̂2 1.0000 0.0041 0.0114 1.0000 0.0044 0.0052

γ̂ -0.1000 0.0969 0.2954 -0.1000 -0.0162 0.3839

V 3 V 4

θ̂0 1.0000 0.0542 0.0883 1.0000 0.0028 0.0097

θ̂1 0 -0.0096 0.0051 1.0000 0.0045 0.0033

θ̂2 1.0000 0.0045 0.0159 1.0000 0.0038 0.0093

γ̂ -0.1000 0.2321 0.4228 -0.1000 0.0025 0.0017
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Table 2: Simulation results for D based on 1000 replications

n = 500 n = 1000

Scenario instrument D SD(D) Selects(%) D SD(D) Selects(%)

(a) Z 0.0002 0.0003 93.0 0.0001 0.0002 98.4

U 0.0022 0.0020 0.0017 0.0013

(b) Z 0.0009 0.0014 92.7 0.0004 0.0007 99.0

U 0.0841 0.0585 0.0883 0.0434

(c) Z 0.0006 0.0009 99.8 0.0003 0.0006 99.9

U 0.0297 0.0127 0.0289 0.0102

(d) Z 0.0012 0.0021 98.6 0.0006 0.0015 99.8

U 0.0345 0.0256 0.0314 0.0169

(e) Z 0.0002 0.0004 99.7 0.0001 0.0002 100

U 0.0065 0.0040 0.0058 0.0028

(f) Z 0.0007 0.0009 99.4 0.0003 0.0004 100

U 0.2688 0.1263 0.2822 0.0911
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Table 3: Simulation results for D based on 1000 replications

n = 500 n = 1000

Scenario instrument D SD(D) Selects(%) D SD(D) Selects(%)

(a) Z 0.0007 0.0018 73.8 0.0005 0.0010 80.8

U 0.0020 0.0039 0.0019 0.0035

(b) Z 0.0020 0.0041 78.9 0.0015 0.0040 86.3

U 0.0060 0.0078 0.0058 0.0100

(c) Z 0.0013 0.0017 63.2 0.0012 0.0015 61.2

U 0.0021 0.0024 0.0017 0.0019

(d) Z 0.0068 0.0096 61.2 0.0069 0.0087 62.5

U 0.0085 0.0105 0.0085 0.0087

(e) Z 0.0006 0.0015 74.5 0.0003 0.0009 84.1

U 0.0029 0.0053 0.0032 0.0066

(f) Z 0.0019 0.0047 72.7 0.0011 0.0035 76.5

U 0.0061 0.0101 0.0076 0.0154
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Table 4: Results for Baseball data with one instrument variable

Scenario Instrument D parameters Estimates SE Confidence interval

S1 years 0.0327 θ0 4.0252 0.1303 [3.7698, 4.2807]

θ1 0.0963 0.0069 [0.0829, 0.1098]

θ2 0.2084 0.0685 [0.0741, 0.3427]

θ3 0.0095 0.0010 [0.0076, 0.0114]

γ -3.1300 0.0094 [-3.1484, -3.1117]

S2 division 2.1027 θ0 4.0255 0.1289 [3.7729, 4.2782]

θ1 0.0963 0.0068 [0.0830, 0.1097]

θ2 0.2080 0.0690 [0.0727, 0.3432]

θ3 0.0095 0.0010 [0.0076, 0.0114]

γ -3.1301 0.0093 [-3.1482, -3.1119]

S3 hits 33.5695 θ0 3.8162 0.1278 [3.5657, 4.0666]

θ1 0.1021 0.0075 [0.0874 , 0.1167]

θ2 0.2568 0.0763 [0.1073 , 0.4063]

θ3 0.0100 0.0010 [ 0.0080, 0.0120]

γ -34.8898 0.0001 [-34.8900, -34.8895]
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Table 5: Results for Baseball data with two instrument variables

Scenario Instrument D parameters Estimates SE Confidence interval

S4 years, division 0.1284 θ0 3.8158 0.1278 [3.5653 , 4.0664]

θ1 0.1021 0.0075 [0.0875 , 0.1167]

θ2 0.2571 0.0763 [0.1076 , 0.4066]

θ3 0.0100 0.0010 [0.0080 , 0.0120]

γ -34.8891 0.0001 [-34.8893 , -34.8888]

S5 years, hits 39.3146 θ0 3.7738 0.2017 [3.3784 , 4.1693]

θ1 0.1058 0.0217 [0.0632 , 0.1484]

θ2 0.2508 0.0760 [ 0.1018 , 0.3998]

θ3 0.0102 0.0011 [0.0081, 0.0122]

γ -48.1348 57.2586 [-160.3617 , 64.0920]

S6 division, hits 34.7616 θ0 3.8162 0.1278 [3.5658 , 4.0666]

θ1 0.1021 0.0074 [ 0.0875, 0.1167]

θ2 0.2564 0.0762 [0.1070 , 0.4058]

θ3 0.0100 0.0010 [0.0080 , 0.0120]

γ -34.8906 0.0001 [-34.8908 ,-34.8903]
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