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1 Sensitivity analysis for CCMV

Identification conditions such as CCMV are not generally empirically testable and therefore, it
is important that inferences in a given analysis are assessed for sensitivity to violation of such

assumptions. Specifically, a violation of the CCMV assumption can occur if for some 7,
R N L(_T)|L(T), R e {1,7”} ,

which can be encoded by specifying the degree of departure from the identifying assumption, on

the odds ratio scale using the selection bias function:

Ty (L Lieny) M (Lo Lier) = 0)
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CCMV corresponds to the null 6, (L(_T),L(T)) =1 for all r, and 0, (L(_T),L(T)) # 1 for some r

O (L(-r), Lir) =

indicates violation of the assumption. The function 6, (-, -) is not nonparametrically identified from
the observed data. Therefore we propose that one may specify a functional form for 6, (-,-) for
use in a sensitivity analysis in the spirit of Robins et al (1999). Hereafter, suppose that one has
specified functions § = {6, : r} . For such specification, we describe IPW, PM and DR estimation
incorporating a non-null 6,.

For IPW estimation, we propose to modify W, of Section 5 as follows. Let W, (G,; «,0,) = G, X
[1{R=r}—-1{R=1}0, (L)1, («) /II; (cv)] , and denote by @ (#) the solution to P,,W, (G,;a (6) .,0,) =

0, then a consistent IPW estimator B\ipw (0) solves equation (10) in the main text with II; replaced



by 15 (@ (0)) = {1+ 55,06, (L) 1L, (& (6) /1L (G (9)}

Likewise, PM estimation hinges on the following expression

E{U(L; 8)IR = 1. L 77,6}

_ S0 (L), L) U=y, Ly B) (=), Loy |1R = 1) dps (=)
J 0r (L= Lir)) f (l=r), Ly | R = Lim) dpe (l—r))

which may be used in place of E {U(L; B)R =1, Lgy; 77} in equation (12), which in turn may be
used to obtain the PM estimator Bpm (A). Finally, for a given value of 8, the DR estimator g, (6)

solves equation (14) with V' (Bdr, &,77) replaced by

where
(D)1, @ (6) /M @)
{14 S0 00 (1)L (@ (0)) /T (@ (0)) }

~

A sensitivity analysis then entails reporting Bipw (0), Bpm (0) or Bar (0) for a range of values of

2 Proof of Lemmas

Proof of Lemma 1: The result follows from the following generalized odds ratio representation
of the joint likelihood of f(R, L) (see Chen, 2007 and Tchetgen Tchetgen et al, 2010)

F(R, L) = f(R|L =0) f(L|R = 1)OR (R, L) |

E / / £ (*|L = 0) f(1*| R = OR (*, 1) dps (r*, 1)




provided that //f (r*|L =0) f(I*|R = 1)OR (r*,I*) dp (r*,1*) < oo, where the generalized odds
ratio function OR (R, L) is defined as

Then

f(RIL=0)f(LIR=1)OR(R, L)
//f (| = 0) F(I*| R = 1)OR (r, 1) dpu (", 1)

AWEZO-OR (R, L) f(L|R = 1)

[ o ) 1R = (1
[T0dds, (L)'= £ (L|R = 1) f(LIR = 1)
r#l

//HOddsT ()= F (1R = 1) dp (1, 1)

r#l

proving the result.

Proof of Lemma 2: The complete-case joint distribution f(L|R = 1) is nonparametrically
just-identified under assumption (1). Furthermore, pairwise MAR implies that Odds, (L) =
Odds, (L) is nonparametrically just-identified from data {(R, L)) : R € {1,7}}, because L_,)
is MAR conditional on L(py and R € {1,r} . Specifically,

Pr{R=r|L,R e {l,r}}
Pr{R=rL}

T Pr{L,Re{1,r}}

B Odds, (L¢y) f(LIR=1) f(LIR =1)

- Odds, (L) f(LIR=1) f(LIR = 1) + f (L|R = 1) f(L|R = 1)
Odds, (L(,,))

~ 0dds, (L) + 17

proving the result.

Proof of Theorem 3: The result essentially follows from the following DR property of V' (3, a, ) .

Let V (83, o, n,) denote the estimating function evaluated at the incorrect II,. and true E[U(L; 8)| L, R =

3



1] for all r. Likewise let V' (3, ag, *) for the opposite setting. DR property holds if £ {V (5o, a*,n,)} =
E{V (6o, a0,nm*)} = 0. First, note that under Mg, @ — ap and 77 — n* in probability, then

P,V (Bo,a,n) — EA{V (B, 2, n*)} in probability by Continuous Mapping Theorem and the Law
of Large Numbers. We also have that

E(V (8, a0,1)) — E {Mwwg)

T (ao)
S (HESHEA) (=) £ 08 o, R = W}}
= E{E{lff(zs) 30z )
) ;(E o :nf)&?} - (iO) - EB{(R=r) |L}>/E [U(L: B)| Ly, R =10
= E[U(L; %) =0 :

By the same token, under My, & — a* and 77 — 7y in probability, then P,V (5o, a,n) —

E{V (Bo,a*,ng)} . Next we show that E{V (B, a*,n,)} = 0. Note that for all «

I 11, («)
m () 1+§H1(a)

=1+ Z Odds, (L(r); a) .
r#l



Then we have that

BV (3.00,1) =E{11§i;§){ )= 3T () B [U(L: 8)| L, R = 1;%]}

r#l1

+> 1(R 1 8)| L) —1;770]}
r#l
- S P, R—lm&

:E{1<R:1{

+Zl s B)| Ly —1;770]}

r#1

=E > 0dds, (Liy; o) (E [U(L; Bo)|R =1, L)) — E [U(L; )| Ly, R = 1;m5) )
r#1

J/

-~
=0

( 50 +Zl )|L(r —1;770]}

r#£1

:E{l( L; o)+ Y 1(R )!LmR—lUO]}
r#1
:E{l( (LiBo) + Y 1(R )]L(T)R_r]}
r#1
=E{1<R=1>E[U<L;ﬁo>|R=11+21<R=r>E[U<L;ﬁ>|R=r]}
r#1

E[U(L; Bo)] = 0

proving the result.



Proof of Corollary 4: E (V (5,«,n)) can be written

EV(B8,a,m))
[ 1R=DL () - L(R= DT, (o) )
_E{g; T P in e G L LR
_1_21 ; 8)| Ly, —1;77]+1(R:1)U(L;50)}

r#£1

:E{Z1(R;1)Hr(a)U<L;ﬁo)_Zl(R 11, (a )E[U(L;ﬁﬂL(r),R:l;n}

= 1 (@) = ()

+3 1(R=7){E[U(L; B)|Lty, R = Lin] — U(L; B) } +U(L;6o)}

r#£1

=F

> {1(R=1)0dds, (Liy; @) = 1(R=r)} {U(L; fo) = E [U(L; B)| Ly, R = 1;1] }]

r#1

Under Mg, (r), we have that Odds, ( (r); @ ) — Odds, ( ozo) in probability, and

E [{1(R=1)0dds, (Lyya0) — 1(R=1)} {U(L; Bo) — E [U(L: B)|Lir, R = 1317] }]

_ [{uR— DL - 1R = r>} (U(L: Bo) — B [U(L: B)| Loy, B = L]}

=E[{Il, - E[L(R=7)|[LI}{U(L; o) — E [U(L; B)|Lry, R = Lin"] }]

Likewise, under My, (r), we have that E [U(L; 8)|Ly, R =1;7] = E [U(L; 8)| L), R = 1;10] in

probability, and



E[{1(R=1)0dds, (Lyy;a*) =1 (R=71)} {U(L; Bo) — E [U(L; B)|L¢y, R = 1;m0] }]

= E[1(R= )Oddsr( ") {E{U(L: Bo)|R =1, Ln} — E [U(L; B)| Ly, R = 1;10] }]

—E[{1(R=r)} {E{U Bo)[R =1, L} = E [U(L; B)|Liry, B = 1;70] }]
E[{1(R=r)}{E{U(L; Bo)|[R=1,L¢)} — E[U(L; 8)| Ly, R = 1;m0] }]

—0

proving the result.



Table S1: Monte Carlo results of the IPW, PM and DR estimators: bias, standard error and root
mean squared error. The true value of £ is 0.634, and the sample size is 2000.

bth* nrm ccm bad
Bias(SE)
IPW -0.004(0.002) -0.004(0.002) -0.641(0.012) -0.641(0.012)
PM -0.002(0.001) -0.367(0.002) -0.002(0.001) -0.367(0.002)
DR -0.002(0.002) -0.006(0.002) -0.002(0.002) -0.371(0.003)
RMSE
IPW 0.072 0.072 0.748 0.748
PM 0.046 0.373 0.046 0.373
DR 0.048 0.057 0.057 0.385

*: bth: both models correct; nrm: nonresponse model correct; ccm: complete-case model correct; bad: both models

incorrect.

3 Additional Simulation Results

Table S1 shows Monte Carlo results comparing the proposed large sample estimator of standard

deviation (and corresponding coverage probabilities of Wald 95% confidence intervals) of IPW,

PM and DR estimators of 8 to corresponding Monte Carlo standard deviations .
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