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This supplement includes identification results for the pattern-mixture parametriza-

tion, efficiency issue for (8), useful lemmas, and proofs of the theorems.

A. Identification Results for the Pattern-Mixture parametriza-

tion

Considering a model pr(x, y, z, r; θ) indexed by θ, we assume Assumption 1, i.e., there

exists a one-to-one mapping between the parameter space and the joint distribution

space. Parallel to the identification framework for the selection model, we must rule

out values of θ that result in the identical distribution of observed data, which are

characterized by

pr(z; θ1) = pr(z; θ2)

pr(y, r = 0 | z; θ1) = pr(y, r = 0 | z; θ2),

pr(x, y, r = 1 | z; θ1) = pr(x, y, r = 1 | z; θ2).
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We have have the following condition for identification.

Condition A.1. The parameter θ is identified, if for any two values θ1 and θ2 of θ such

that pr(z; θ1) = pr(z; θ2) and pr(y, r = 0 | z; θ1) = pr(y, r = 0 | z; θ2) almost surely, the

following inequality holds with a positive probability

pr(x, y | z, r = 0; θ1)

pr(x, y | z, r = 0; θ2)
6= C × exp{OR(x, y | z; θ1)}

exp{OR(x, y | z; θ2)}
, (1)

with

OR(x, y | z; θ) = log
pr(x, y | z, r = 0; θ)pr(x = 0, y | z, r = 1; θ)

pr(x, y | z, r = 1; θ)pr(x = 0, y | z, r = 0; θ)
,

encoding the degree of departure between the two data patterns corresponding to r = 0, 1

respectively, and

C =
E[exp{−OR(x, y | z; θ1)} | r = 0]

E[exp{−OR(x, y | z; θ2)} | r = 0]
.

Condition A.1 is a sufficient condition for identification. One can verify that inequal-

ity (1) is in fact equivalent to pr(x, y, r = 1 | z; θ1) 6= pr(x, y, r = 1 | z; θ2). However, (1)

provides a useful access to check identification of the pattern-mixture parametrization

where one specifies a parametric/semiparametric model for pr(x, y | z, r). In particular,

when one has available a fully observed shadow variable z for the missing covariate x,

i.e., Z R | (X,Y ), one can verify that

OR(x, y | z; θ) = log
pr(r = 0 | x, y; θ)pr(r = 1 | x = 0, y; θ)

pr(r = 1 | x, y; θ)pr(r = 0 | x = 0, y; θ)
,

which is a function only of (x, y). As a result, the right hand side of (1) does not vary

with z. We have the following identification result for pattern-mixture model.

Proposition A.1. Considering models pr(y | x, z, r; θ) and pr(x|z, r; ξ), if for θ1 6= θ2,

the ratio pr(x, y | z, r = 0; θ1, ξ1)/pr(x, y | z, r = 0; θ2, ξ2) varies with z for all ξ1, ξ2,

then the parameter θ indexing the outcome model is identified.
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The proposition follows from the fact that under the shadow variable assumption,

the right hand side of (1) is not a function of z, and thus (1) must hold if the ratio

pr(x, y | z, r = 0; θ1, ξ1)/pr(x, y | z, r = 0; θ2, ξ2) varies with z for distinct values θ1 and

θ2. Assuming the generalized liner models (4)–(5) for pr(x | z, r = 0) and pr(y | x, z, r =

0) respectively, one can apply the results of Theorems 1–3 to check identification of

pattern-mixture models.

B. Efficiency for (8)

We apply Newey and McFadden (1994, Theorem 5.3) to derive the optimal choice of G

leading to the efficient estimator that solves (8). We let

U(G,α) = {r/π(x, y;α)− 1}G(z, y).

The IPW estimator α̂ in this paper in fact solves Ê{U(G, α̂)} = 0. From Newey and

McFadden (1994, Theorem 5.3), the optimal choice Gopt satisfies

E
{
∂U(G,α0)/∂αT

}
= E{U(G,α0)U(Gopt, α0)T }, for all G(y, z),

with α0 the true value of α. Thus,

E
[
G(y, z)

{
(r/π(x, y;α0)− 1)

2 ×GT
opt + r/π2(x, y;α0)× ∂π(x, y;α0)/∂αT

}]
= 0,

for all G(y, z). As a consequence, we have

E
{

(r/π(x, y;α0)− 1)
2 ×Gopt + r/π2(x, y;α0)× ∂π(x, y;α0)/∂α | y, z

}
= 0,

and thus

Gopt(y, z) = −1/E{(r/π(x, y;α0)− 1)
2 | y, z}×E

{
r/π2(x, y;α0)× ∂π(x, y;α0)/∂α | y, z

}
,
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and the variance of the corresponding estimator is

Vopt = [E{U(Gopt, α0)U(Gopt, α0)T }]−1

=
[
E
{
{r/π(x, y, α0)− 1}2 ×Gopt(y, z)G

T
opt(y, z)

}]−1
.

Under the shadow variable setting Z R | (X,Y ), we have

Vopt =
[
E
{
{r/π(x, y, α0)− 1}2 ×Gopt(y, z)G

T
opt(y, z)

}]−1
=

[
E
{
E{(r/π(x, y, α0)− 1)2 | x, y} × E{Gopt(y, z)G

T
opt(y, z) | x, y}

}]−1
=

[
E
{
{1/π(x, y, α0)− 1} × E{Gopt(y, z)G

T
opt(y, z) | x, y}

}]−1
=

[
E
{

1/π(x, y, α0)− 1} ×Gopt(y, z)G
T
opt(y, z)

}]−1
.

The optimal choice Gopt and the variance Vopt depend the shadow variable Z. A choice

of Z such that E
{

1/π(x, y, α0)− 1} ×Gopt(y, z)G
T
opt(y, z)

}
is large is desirable to max-

imize efficiency. Construction of Gopt depends on the unknown true data generating

process and nuisance parameter pr(x | y, z). A feasible approach is to plug-in consistent

nuisance parameter estimates, but it is still difficult in particular for continuous y or z

because pr(x | y, z) may be very complicated.

C. Proofs of Theorems

We prove the identification results of Theorems 1–3 by verifying the condition of Propo-

sition 1, i.e., the ratio pr(y, x | z; θ)/pr(y, x | z; θ′) varies with z for θ 6= θ′, which is

determined by functions η1, η2, B1, B2 of models (4)–(5). We first describe four lemmas

about these functions.

Lemma 1. Suppose pr(x | z) follows model (4) and (γ′, λ′) 6= (γ, λ), then the ratio

pr(x | z; γ′, λ′)/pr(x | z; γ, λ) varies with z.

4



Proof. The proof proceeds by contradiction. Suppose the ratio pr(x|z; γ′, λ′)/pr(x|z; γ, λ)

does not vary with z, and

pr(x|z; γ′, λ′)
pr(x|z; γ, λ)

= h(x),

for some h(x) 6= 1, then we have

∫
x

pr(x | z; γ, λ)dx =

∫
x

pr(x | z; γ′, λ′)dx =

∫
x

pr(x | z; γ, λ)h(x)dx = 1,

for all z, and thus
∫
x

pr(x|z; γ, λ){h(x)− 1}dx = 0 for all z, i.e.,

∫
x

exp

{
x · η1(z; γ)−B1(η1(z; γ))

λ
+A1(x, λ)

}
{h(x)− 1}dx = 0, (2)

for all z. Under the full rank condition for the exponential family, X is complete for

pr(x | z) (Shao, 2003, Proposition 2.1, page 110), i.e., E{f(X) | z} = 0 for all z implies

f(X) = 0. Thus, from (2), we must have h(x) = 1, which contradicts (γ′, λ′) 6= (γ, λ).

As a result, pr(x | z; γ′, λ′)/pr(x | z; γ, λ) must vary with z.

Lemma 2. Suppose the third order derivative function of B2 denoted by B
(3)
2 is not a

constant and let g = B
(3)
2 . If β2g(α+ βt) = β′2g(α′ + β′t) for all t, then we must have

1. β = β′; or

2. β = −β′ 6= 0, and g(α+ βt) = g(α′ − βt) for all t.

Proof. If β = 0, β′2g(α′ + β′t) = β2g(α + βt) = 0 for all t. Because g is a nonzero

function, we must have β′ = 0;

For β 6= 0, we must have β′ 6= 0. For |β′/β| < 1, letting s = βt, because β2g(α +

βt) = β′2g(α′ + β′t) for any t, we have

g(α+ s) = (β′/β)2 · g(α′ + β′/β · s),
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and thus

g(α+ s) = (β′/β)2 · g(α+ (α′ − α) + β′/β · s)

= (β′/β)4 · g(α′ + β′/β(α′ − α) + β′2/β2 · s).

By iteration, we have g(α + s) = 0 for all s, which is impossible for a nonzero function

g. So we have |β′/β| ≥ 1, and similarly, |β′/β| ≤ 1. As a result, we have |β| = |β′| > 0.

If β = β′ 6= 0, we have g(α + βt) = g(α′ + βt) for all t. If β = −β′ 6= 0, we have

g(α+ βt) = g(α′ − βt) for all t.

Lemma 3. Suppose the first order derivative function of η2 denoted by η
(1)
2 is not a

constant and let g = η
(1)
2 . For arbitrary φ, φ′ > 0, if β/φ · g(α+ βt) = β′/φ′ · g(α′ + β′t)

for all t, then we must have

1. β = β′; or

2. β = −β′ 6= 0, φ = φ′, and g(α+ βt) = −g(α′ − βt) for any t.

Proof. We first prove that |β′| 6= |β| is impossible by an argument of contradiction.

Suppose β 6= 0. For |β′/β| < 1, because β/φ · g(α + βt) = β′/φ′ · g(α′ + β′t) for any t,

letting s = βt, we have g(α+s) = β′/β ·φ/φ′ ·g(α′+β′/β ·s). By iteration of the former

formula, β/φ = β′/φ′ and g(α+ s) must be a constant, which contradicts that g = η
(1)
2

is not a constant. Thus, |β′/β| < 1 is impossible and similarly |β′/β| > 1 is impossible.

Thus, if β 6= 0, we must have |β| = |β′|. By switching (α, β, φ) and (α′, β′, φ′) in the

above argument, if β′ 6= 0, we have |β| = |β′|. As a result, we have |β′| = |β|.

If further β = −β′ 6= 0, we have g(α + βt) = −φ′/φ · g(α′ − βt) for all t, and thus

g(α′ − βt) = −φ′/φ · g(α + βt) for all t. We let s1 and s2 denote two points such that
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g(s1), g(s2) 6= 0, and let t1, t2 denote two values such that α′ − βt1 = α+ βt2 = s1, and

α′ − βt2 = α + βt1 = s2, then we have g(s1)/g(s2) = g(α′ − βt1)/g(α + βt1) = −φ′/φ,

and g(s1)/g(s2) = g(α + βt2)/g(α′ − βt2) = −φ/φ′. As a result, we must have φ = φ′,

and thus g(α+ βt) = −g(α′ − βt) for all t.

Lemma 4. Suppose the third order derivative function of B2 denoted by B
(3)
2 is not

a constant and let g = B
(3)
2 . If g(α + βt) = g(α′ + β′t) for all t, then we must have

|β| = |β′|.

Proof. We prove |β| = |β′| by an argument of contradiction. Suppose β 6= 0, because

g(α+ βt) = g(α′ + β′t) for all t, by letting s = βt, we have

g(α+ s) = g(α′ + β′/β · s), for all s. (3)

For |β′/β| < 1, by iteration of (3), we have g(α + s) = g{α +
∑+∞

k=0(β′/β)k(α′ − α)}.

Thus, g(α + s) is a constant, which is a contradiction. Thus, |β′/β| ≤ 1 is impossible,

and similarly, |β′/β| > 1 is impossible. STherefore, if β 6= 0, we must have |β| = |β′|.

By switching (α, β) and (α′, β′) in the above argument, if β′ 6= 0, we have |β| = |β′|. In

summary, we have |β′| = |β|.

Proof of Theorem 1

According to Proposition 1, we prove the identification results of Theorem 1 by show-

ing that the ratio pr(y, x|z; θ)/pr(y, x|z; θ′) varies with z when particular components of

two different parameter sets θ and θ′ are not equal. Letting L(y, x, z) = log{pr(y, x |
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z; θ)/pr(y, x | z; θ′)} and assuming models (4)–(5), we have

L(y, x, z) = y ·
(
η2
φ
− η′2
φ′

)
−
{
B2(η2)

φ
− B2(η′2)

φ′

}
+ x ·

{
η1
λ
− η′1
λ′

}
−
{
B1(η1)

λ
− B1(η′1)

λ′

}
+ {A2(y, φ)−A2(y, φ′)}+ {A1(x, λ)−A1(x, λ′)}.

(a) Letting

∂2L

∂y∂z
=
β1
φ
η
(1)
2 (β0 + β1z + β2x)− β′1

φ′
η
(1)
2 (β′0 + β′1z + β′2x),

if ∂2L/(∂y∂z) is not equal to zero, then L(y, x, z) varies with z. We prove identi-

fication of β1/φ by showing that ∂2L/(∂y∂z) 6= 0 for β1/φ 6= β′1/φ
′.

If η2 is a linear function, i.e., η
(1)
2 is a nonzero constant, then ∂2L/(∂y∂z) cannot

equal zero for β1/φ 6= β′1/φ
′. Thus, β1/φ must be identified.

(b) We first prove identification under (i) β2 = β′2 = 0. We then prove identification

under (ii) β2 = β′2 = 0 does not hold, by showing that ∂3L/(∂2x∂z) 6= 0 for

(β1, β2, φ) 6= (β′1, β
′
2, φ
′).

Under (i), we have Y X|Z, and thus pr(y | z, x) = pr(y | z) can be identified from

the observed data, thus, (β1, β2, φ) is identified.

Under (ii), we prove identification of (β1, β2, φ) by applying Lemmas 2 and 4 to

show that ∂3L/(∂2x∂z) 6= 0 for (β1, β2, φ) 6= (β′1, β
′
2, φ
′).

Because η2 is a linear function, from (a) we have β1/φ = β′1/φ
′ and

∂3L

∂2x∂z
= −β1

φ
{β2

2B
(3)
2 (β0 + β1z + β2x)− β′22 B

(3)
2 (β′0 + β′1z + β′2x)}.

Because B
(2)
2 is a nonlinear function, B

(3)
2 is not a constant. We consider the

following three cases for (ii).
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(b1) If |β1| 6= |β′1|, from Lemma 2, ∂3L/(∂2x∂z) 6= 0.

(b2) If β2 = −β′2 6= 0, letting z = −(β0 + β2x)/β1, we have

∂3L

∂2x∂z
= −β1

φ
β2
2{B

(3)
2 (0)−B(3)

2 (β′0 − β0 − 2β2x)}.

Because B
(2)
2 is not a linear function, i.e., B

(3)
2 is not a constant, from Lemma

2, it is impossible that ∂3L/(∂2x∂z) = 0 for all x.

(b3) If β2 = β′2 6= 0 and (β1, φ) 6= (β′1, φ
′), we apply Lemma 4 to show ∂3L/(∂2x∂z) 6=

0. We have

∂3L

∂2x∂z
= −β1β

2
2

φ
{B(3)

2 (β0 + β1z + β2x)−B(3)
2 (β′0 + β′1z + β2x)}.

Because η2 is a linear function, we have proved that β1/φ = β′1/φ
′ in (a).

Because φ, φ′ > 0, β1 and β′1 must have the same sign. For fixed x, from

Lemma 4, ∂3L/(∂2x∂z) 6= 0 for β1 6= β′1 or φ 6= φ′.

From (b1)–(b3), we have shown that under (ii), ∂3L/(∂2x∂z) 6= 0 for (β1, β2, φ) 6=

(β′1, β
′
2, φ
′). Thus, applying Proposition 1, (β1, β2, φ) must be identified under (ii).

Therefore, we have proved that when η2 is a linear function and B
(2)
2 is a nonlinear

function, (β1, β2, φ) are identified.

(c) We first prove identification under (i) β1 = β′1 = 0. We then prove identifica-

tion when (ii) β1 = β′1 = 0 does not hold, by showing that ∂2L/(∂y∂z) 6= 0 for

(β1, β2, φ) 6= (β′1, β
′
2, φ
′).

Under (i) β1 = β′1 = 0, we have Y Z | X. Noting the shadow variable assumption

Z R | (Y,X), we have Z R | X, and thus

L(y, x, z) = log
pr(x | z; γ, λ)

pr(x | z; γ′, λ′)
+ log

pr(y | x;β2, φ)

pr(y | x;β′2, φ
′)
.
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If (γ, λ) 6= (γ′, λ′), from Lemma 1, pr(x | z; γ, λ)/pr(x | z; γ′, λ′) varies with z, and

so does L(y, x, z).

If (γ, λ) = (γ′, λ′), we note that pr(y | z) is identified and

pr(y | z) =

∫
x

pr(x|z; γ, λ)pr(y | x;β2, φ)dx =

∫
x

pr(x | z)pr(y | x;β′2, φ
′)dx,

i.e., for all z, we have the following integral equation∫
x

exp

{
x · η1(z; γ)

λ
−B1(η1(z; γ)) +A1(x;λ)

}
{pr(y | x;β2, φ)−pr(y | x;β′2, φ

′)}dx = 0,

thus, by completeness of the exponential families under the full rank condition

(Shao, 2003, Proposition 2.1, page 110), we have pr(y | x;β2, φ) = pr(y | x;β′2, φ
′).

As a result, we have shown identification of (β1, β2, φ) under (i).

Under (ii), we apply Lemma 3 to prove identification of (β1, β2) by showing that

∂2L/(∂y∂z) 6= 0 for (β1, β2) 6= (β′1, β
′
2). We consider the following three cases.

(c1) Because η2 is a nonlinear function, η
(1)
2 is not a constant. If |β1| 6= |β′1|, then

from Lemma 3, ∂2L/(∂y∂z) 6= 0.

(c2) If β1 = −β′1 6= 0, we show that ∂2L/(∂y∂z) cannot equal zero for all x.

If β1 = −β′1 6= 0 and φ 6= φ′, from Lemma 3, ∂2L/(∂y∂z) cannot equal zero

for all x.

If β1 = −β′1 6= 0, φ = φ′, and β2 6= −β′2, letting z = −(β0 + β2x)/β1, we have

∂2L

∂y∂z
=
β1
φ

[η
(1)
2 (0) + η

(1)
2 {β0 + β′0 + (β2 + β′2)x}],

which cannot equal 0 for all x because η
(1)
2 is not a constant.

If β1 = −β′1 6= 0 and (φ, β2) = (φ′,−β′2), we let g(x, z) = η2(β0 + β1z +

β2x)− η2(β′0−β1z−β2x). If ∂g(x, z)/∂z 6= 0, we have ∂2L/(∂y∂z) = β1/φ×
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∂g(x, z)/∂z 6= 0; otherwise if ∂g(x, z)/∂z = 0, i.e., g(z, x) = g(x) is a function

only of x, we let z = (β′0 − β0 − 2β2x)/(2β1) and then we must have g(x) =

η2{(β0+β′0)/2}−η2{(β0+β′0)/2} = 0 for all x. Therefore, η2(β0+β1z+β2x) =

η2(β′0 − β1z − β2x) for all z and for all x. Note that φ = φ′, then the

two different sets (β0, β1, β2, φ) and (β′0, β
′
1, β
′
2, φ
′) must index the identical

distribution pr(y | z, x), which contradicts Assumption 1 that we assume a

one-to-one mapping between parameters and the joint distribution.

As a result, if β1 = −β′1 6= 0, ∂2L/(∂y∂z) cannot equal zero for all x.

(c3) If β1 = β′1 6= 0 and β2 6= β′2, we show ∂2L/(∂y∂z) 6= 0. For β1 = β′1 6= 0, we

have

∂2L

∂y∂z
= β1

{
1

φ
η
(1)
2 (β0 + β1z + β2x)− 1

φ′
η
(1)
2 (β′0 + β1z + β′2x)

}
.

Letting z = −(β0 + β2x)/β1, we have

∂2L

∂y∂z
= β1

[
1

φ
η
(1)
2 (0)− 1

φ′
η
(1)
2 {β′0 − β0 + (β′2 − β2)x}

]
,

which cannot equal 0 for all x because η
(1)
2 is not a constant. Thus, ∂2L/(∂y∂z) 6=

0.

From (c1)–(c3), we have shown that under (ii), ∂L/(∂y∂z) 6= 0 for (β1, β2) 6=

(β′1, β
′
2). Thus, applying Proposition 1, (β1, β2) must be identified under (ii).

Therefore, we have proved that when η2 is a non-linear function, (β1, β2) are

identified.

Proof of Theorem 2

Assume the normal models: Y | X,Z ∼ N(β0 + β1z + β2x, φ) and X | Z ∼
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N(γ0 + γ1z, λ), then we have the following conditional distribution

X | Y,Z ∼ N(γ′0 + γ′1z + γ′2y, λ
′),

with

γ′0 = γ0 −
β2λ(β0 + β2γ0)

φ+ β2
2λ

, γ′1 = γ1 −
β2λ(β1 + β2γ1)

φ+ β2
2λ

,

γ′2 =
β2λ

φ+ β2
2λ
, λ′ =

φλ

φ+ β2
2λ
.

Because X Z | Y if and only if γ′1 = 0, the shadow variable assumption is satisfied when

γ′1 6= 0, i.e., β1β2/φ 6= γ1/λ. Under such a condition, because pr(x | y, z) follows a normal

model, Miao et al. (2015) proved that for any two candidate models pr(x | y, z) and pr′(x |

y, z), the ratio pr(x | y, z)/pr′(x | y, z) must vary with z. Thus, pr(x, y, z)/pr′(x, y, z)

must vary with z, and therefore, all parameters (β0, β1, β2, φ, λ, α0, α1, α2) are identified.

Proof of Theorem 3

(a) If β1 = β′1 = 0, i.e., Y Z | X, then from the shadow variable assumption Z R |

(Y,X), we have Z R | X, and thus

L(y, x, z) = log
pr(x | z; γ, λ)

pr(x | z; γ′, λ′)
+ log

pr(y | x;β2, φ)

pr(y | x;β′2, φ
′)
.

If (γ, λ) 6= (γ′, λ′), from Lemma 1, pr(x | z; γ, λ)/pr(x | z; γ′, λ′) varies with z, and

so does L(y, x, z).

If (γ, λ) = (γ′, λ′), we note that pr(y | z) is identified and

pr(y | z) =

∫
x

pr(x|z; γ, λ)pr(y | x;β2, φ)dx =

∫
x

pr(x | z)pr(y | x;β′2, φ
′)dx,

i.e., for all z, we have the following integral equation

∫
x

exp

{
x · η1(z; γ)

λ
−B1(η1(z; γ)) +A1(x;λ)

}
{pr(y | x;β2, φ)−pr(y | x;β′2, φ

′)}dx = 0,
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thus, by completeness of the exponential families under the full rank condition

(Shao, 2003, Proposition 2.1, page 110), we have pr(y | x;β2, φ) = pr(y | x;β′2, φ
′).

As a result, we have shown identification of (β2, φ) for model 6.

(b) If β2 = β′2 = 0, we have Y X|Z, and thus pr(y | z, x) = pr(y | z), which can

be identified from the observed data. As a result, (β0, β1, φ) are identified under

model 7.

Proof of Theorem 4

We prove that (8) and (9) are unbiased estimating equations, when both pr(r = 1 |

x, y;α) and pr(y | x, z;β) are correctly specified. Under the shadow variable assumption

Z R | (X,Y ), at the true value α0 of α, we have

E

[{
r

π(x, y;α0)
− 1

}
G(z, y)

]
= E

[
E

{(
r

π(x, y;α0)
− 1

)
G(z, y) | x, y

}]
= E

[
E

{
r

π(x, y;α0)
− 1 | x, y

}
× E {G(z, y) | x, y}

]
.

When pr(r = 1 | x, y;α) is correctly specified, E{r/π(x, y;α0) − 1 | x, y} = 0, and thus

E
[{
r/π(x, y;α0)− 1

}
G(z, y)

]
= 0, i.e., (8) is an unbiased estimating equation for α.

Furthermore, under true values (α0, β0, φ0), we have

E

{
r

π(x, y;α)
S(x, y;β, φ)

}
= E

{
E

(
r

π(x, y;α)
| x, y

)
× S(x, y;β, φ)

}
= E {S(x, y;β, φ)} ,

which equals zero under correct specification of both pr(r = 1 | x, y;α) and pr(y | x, z;β).

Thus, (9) is an unbiased estimating equation for (β, φ).
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