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Supplementary Material

This supplement contains proofs for the Theorems, Propositions and Examples in the main

manuscript.

S1 Proof of Result 1

The proof is based on contradiction. By the exclusion restriction assump-

tion (IV.1) the decomposition of the joint distribution for (Z, Y,R) is

Pθi,ηi,ξi(z, y, r) = Pθi(r|z, y)Pηi(z)Pξi(y), i = 1, 2, ..., n
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Suppose we have two sets of candidates satisfying the same observed quan-

tities:

Pθ1(z, y, R = 1) = Pθ2(z, y, R = 1)

Pη1(z) = Pη2(z)

Substituting the above observed quantities into the joint distribution

gives

Pθ1(R = 1|z, y)

Pθ2(R = 1|z, y)
=
Pξ2(y)

Pξ1(y)

This contradicts with the requirement that the ratios are unequal.

S2 Proofs of Examples 1 and 2

Proof of Example 1

For binary outcome Y and binary instrument Z, let P (R = 1|Z, Y ; θ) =

expit [θ0 + θ1Z + θ2Y + θ3ZY ] and P (Y = 1; ξ) = exp(ξ). We show that

for every (θ, ξ), there exists (θ̃, ξ̃) 6= (θ, ξ) such that

P (R = 1|Z, Y ; θ)

P (R = 1|Z, Y ; θ̃)
=
P (Y ; ξ̃)

P (Y ; ξ)
(A)

Let P (Y=0;ξ̃)
P (Y=0;ξ)

= exp(ρ0) for some ρ0 6= 0, then P (Y ;ξ̃)
P (Y ;ξ)

= exp(ρ0 + ρ1Y ) where

ρ1 = log {exp(−ρ0 − ξ) + [exp(ξ)− 1]/ exp(ξ)} .
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Equality (A) then holds by choosing (θ̃, ξ̃) such that

θ̃0 = θ0 − ρ0 − log(α0)

θ̃1 = θ1 + log(α0)− log(α1)

θ̃2 = θ2 − ρ1 + log(α0)− log(α2)

θ̃3 = θ3 + log(α1) + log(α2)− log(α0)− log(α3)

ξ̃ = ξ + ρ0 + ρ1,

where α0 = 1+exp(θ0)−exp(θ0−ρ0), α1 = 1+exp(θ0+θ1)−exp(θ0+θ1−ρ0),

α2 = 1+exp(θ0+θ2)−exp(θ0+θ2−ρ0−ρ1) and α3 = 1+exp(θ0+θ1+θ2+θ3)−

exp(θ0 + θ1 + θ2 + θ3− ρ0− ρ1). For example, choose (ρ0, ρ1) = (0.3,−0.38)

and equality (A) holds for (θ0, θ1, θ2, θ3, ξ) = (0.3, 0.6, 0.1, 0.7,−0.2) and

(θ̃0, θ̃1, θ̃2, θ̃3, ξ̃) = (−0.3, 0.41, 0.91, 1.37,−0.28).

Next, we consider the missingness mechanism P (R = 1|Z, Y ; θ) =

expit [θ0 + θ1Z + θ2Y ], where the interaction effect between (Z, Y ) is ab-

sent. Under this mechanism, we have θ3 = θ̃3 = 0 and therefore α1α2 =

α0α3 which implies the equality

exp(ρ0 + ρ1) =
exp(θ2 + ρ0)

exp(θ2 + ρ0) + [1− exp(ρ0)]
. (B)

Since exp(ρ0+ρ1Y ) is the ratio of the two probability mass distributions for

Y , ρ0 and ρ0 + ρ1 should be of opposite signs. Based on (B), if exp(ρ0) > 1

then exp(ρ0 + ρ1) > 1 and similarly if exp(ρ0) < 1 then exp(ρ0 + ρ1) < 1,
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which implies that the only possibility is ρ0 = ρ1 = 0 and hence (θ̃, ξ̃) =

(θ, ξ).

Proof of Example 2

Consider the case where Z and Y are both continuous random vari-

ables. Suppose two sets of candidates in the separable logistic missing data

mechanism has the following relationship

expit(q1(z) + h1(y))

expit(q2(z) + h2(y))
= g(y)

for some function g(·), i.e. the ratio is a function of y only. Taking derivative

with respect to Z on both sides (assuming IV relevance (IV.2) holds) gives

∂
∂z

expit(q1(z) + h1(y))

expit(q1(z) + h1(y))
=

∂
∂z

expit(q2(z) + h2(y))

expit(q2(z) + h2(y))

or equivalently

∂q1(z)/∂z

∂q2(z)/∂z
=

1 + exp(q1(z) + h1(y))

1 + exp(q2(z) + h2(y))
(A)

Taking derivatives with respect to Y on both sides leads to

∂q1(z)/∂z

∂q2(z)/∂z
exp(q2(z)− q1(z)) =

∂h1(y)/∂y

∂h2(y)/∂y
exp(h1(y)− h2(y))

The left hand side of the above equation depends only on Z but the right

hand side depends only on Y , so it must be that

∂q1(z)/∂z

∂q2(z)/∂z
exp(q2(z)− q1(z)) = c1
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for some constant c1. Substituting the above expression into equality (A)

leads to

c1 {exp(−q2(z)) + exp(h2(y))} = exp(−q1(z)) + exp(h1(y))

and therefore

c1 exp(−q2(z)) + c2 = exp((−q1(z)), c1 exp(h2(y))− c2 = exp((h1(y))

for some constant c2. Substituting the above equalities into the ratio of

propensity scores

expit(q1(z) + h1(y))

expit(q2(z) + h2(y))
= 1 + c2 exp(−h1(y)) = g(y)

Note that g(y) is the ratio of two candidate densities of Y , and so it must

be that c2 = 0 and the two sets of candidates are equivalent, leading to a

contradiction. Therefore the ratio

expit(q1(z) + h1(y))

expit(q2(z) + h2(y))

is either a constant or depends on z, which by Corollary 1 leads to identi-

fiability of this class of missing data models.

Consider the case where Z is a binary random variable, and assume two

sets of candidates in the separable logistic missing data mechanism has the

following relationship

expit(η1z + h1(y))

expit(η2z + h2(y))
= g(y).
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The above relationship holds for z = 0, 1, therefore

expit(h1(y))

expit(h2(y))
=

expit(η1 + h1(y))

expit(η2 + h2(y))

and

g(y) = 1 +
exp(η2)− exp(η1)

exp(η2)− exp(η1 + η2)
exp[−h2(y)].

Since g(y) is the ratio of two densities, we must have η1 = η2 and g(y) = 1,

leading to a contradiction. The proof for Y or Z as discrete variables is

similar to the above proof for binary Z.

S3 Proofs of Propositions

Proof of Proposition 1

Let (η0, ω0, ξ0) denote the true values of the parameters for parametric

models η(x, y, z; ζ), P (r|Y = 0, x, z;ω) and q(z|x; ξ) which are assumed to

be correctly specified. Assume the model q(z|x; ξ) is identifiable, its param-

eter space Ξ is compact and the remaining conditions in Theorem 2.5 of

Newey and McFadden (1994) hold, which are sufficient to establish consis-

tency of maximum likelihood estimators. Then ξ̂MLE has a probability limit

equal to ξ0. Consider estimating function for (4.6) which under the law of
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iterated expectations equals to

E

{
E

{[
R

π(ζ0, ω0)
− 1

]
h1(X,Z)

}∣∣∣∣X, Y, Z}
=E

{
E

{[
π(ζ0, ω0)

π(ζ0, ω0)
− 1

]
h1(X,Z)

}}
= 0.

Under the law of iterated expectations, the estimating function for (4.7)

equals

E

{
R

π(ζ0, ω0)
g(Y,X){h2(Z,X)− E[h2(Z,X)|X; ξ0]}

}
=E {g(Y,X){h2(Z,X)− E[h2(Z,X)|X; ξ0]}}

=E {E[g(Y,X)|X]{h2(Z,X)− E[h2(Z,X)|X; ξ0]}} by (IV.1)

=E {E[g(Y,X)|X]{E[h2(Z,X)|X; ξ0]− E[h2(Z,X)|X; ξ0]}} . = 0.

Therefore (η0, ω0) are the probability limits of the solutions to estimating

equations (4.6) and (4.7). The IPW estimator is also unbiased,

E

{
RY

π(ζ0, ω0)

}
= E{Y } = φ0,

by taking iterated expectations with respect to (X, Y, Z). The consistency

and asymptotic normality of φ̂IPW can be established under standard regu-

larity conditions for GMM estimators (Newey and McFadden (1994)) , typ-

ically by placing moment restrictions on the vector of estimating functions.

In particular, we require that the probability of observing the outcome is

bounded away from zero, a necessary assumption for identification of a full
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data functional (Robins et al. (1994)).

π(x, y, z) > σ > 0 with probability 1 (S1)

for a non-zero positive constant σ > 0.

Let M (δ) represent the stacked vector of the following estimating func-

tions: score functions for estimating ξ, U IPW(ξ, ζ, ω) and G(φ, ζ, ω)

=
{

RY
π(ζ,ω)

− φ
}

, where δ = (ζ, ω, ξ, φ). Then under standard regularity

conditions for M-estimation (Newey and McFadden (1994)), the asymp-

totic variance VIPW is given by the diagonal entry corresponding to φ of

the following variance-covariance matrix[
E

{
∂M (δ)

∂δT

∣∣∣∣
δ0

}]−1
E
{
M(δ0)M (δ0)

T
}[

E

{
∂M (δ)

∂δT

} ∣∣∣∣
δ0

]−1T
, (S2)

where δ0 = (ζ0, ω0, ξ0, φ0) is the probability limit of δ̂ = (ζ̂ , ω̂, ξ̂, φ̂). A

consistent sandwich estimator for the above asymptotic variance can be

constructed by evaluating unknown expectations as sample means at the

estimated parameter value δ̂.

Proof of Proposition 2

Let (η0, θ0, ξ0) denote the true values of the parameters for parametric

models η(x, y, z; ζ), f(y|R = 1, x, z; θ) and q(z|x; ξ) which are assumed to

be correctly specified. Assume the conditions in Theorem 2.5 of Newey

and McFadden (1994) hold for models f(y|R = 1, x, z; θ) and q(z|x; ξ).
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Then the probability limits of the MLEs (θ̂MLE, ξ̂MLE) are (θ0, ξ0). Under

true parameter values, the expectation of the estimating function for (4.9)

is

E
{
{q1(X,Z)− E [q1(X,Z)|X; ξ0]}×

{(1−R)E (q2(X, Y )|R = 0, X, Z; ζ0, θ0) +Rq2(X, Y )}
}

=E{E(·|R = 0, X, Z)× Pr(R = 0|X,Z)}

+ E{E(·|R = 1, X, Z)× Pr(R = 1|X,Z)}

=E ({q1(X,Z)− E[q1(X,Z)|X; ξ0]}E[q2(X, Y )|X,Z])

=E ({q1(X,Z)− E[q1(X,Z)|X; ξ0]}E[q2(X, Y )|X]) by (IV.1)

=E ({E[q1(X,Z)|X; ξ0]− E[[q1(X,Z)|X; ξ0]}E[q2(X, Y )|X])

=0,

so that ζ0 is the probability limit of the solution ζ̂ of (4.9). The OR esti-
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mator is unbiased since

E {RY + (1−R)E(Y |R = 0, X, Z; ζ0, θ0)}

=E {E{RY + (1−R)E(Y |R = 0, X, Z)|R = 0, X, Z} × Pr(R = 0|X,Z)}

+E {E{RY + (1−R)E(Y |R = 0, X, Z)|R = 1, X, Z} × Pr(R = 1|X,Z)}

=E {E{Y |R = 0, X, Z} × Pr(R = 0|X,Z)}

+ E {E{Y |R = 1, X, Z} × Pr(R = 1|X,Z)}

=E {E{Y |X,Z}}

=E{Y } = φ0.

The consistency and asymptotic normality of φ̂OR can be established under

standard regularity conditions for GMM estimators (Newey and McFadden

(1994)). A necessary condition is that the probability of observing the

outcome is bounded away from zero (S1). Let M (δ) represent the stacked

vector of the following estimating functions: score functions for estimating

ξ and θ, UOR(ξ, ζ, θ) and

G(φ, ζ, θ) = {RY + (1−R)E(Y |R = 0, X, Z; ζ, θ)− φ},

where δ = (ζ, θ, ξ, φ). Then under standard regularity conditions for M-

estimation (Newey and McFadden (1994)), the asymptotic variance VOR is

given by the diagonal entry corresponding to φ of the following variance-
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covariance matrix

[
E

{
∂M (δ)

∂δT

∣∣∣∣
δ0

}]−1
E
{
M(δ0)M (δ0)

T
}[

E

{
∂M (δ)

∂δT

} ∣∣∣∣
δ0

]−1T
, (S3)

where δ0 = (ζ0, θ0, ξ0, φ0) is the probability limit of δ̂ = (ζ̂ , θ̂, ξ̂, φ̂). A

consistent sandwich estimator for the above asymptotic variance can be

constructed by evaluating unknown expectations as sample means at the

estimated parameter value δ̂.

Proof of Proposition 3

Under model MIPW, let ξ0 denote the true value for parametric model

q(z|x; ξ) and it is clear that ξ̂MLE has a probability limit equal to ξ0. Let

superscript asterisks denote possibly misspecified models. Let θ∗ denote

the probability limit of estimation under model f ∗(y|R = 1, x, z; θ) and let

ρ(X,Z) =
∫
u(x, y) exp[−η(x,y,z;ζ)]f(y|R=1,x,z;θ)∫

exp[−η(x,y,z)]f(y|R=1,x,z;θ)dµ(y)
dµ(y). Then at true param-

eter values (ζ0, ω0),

E {GDR (R,X, Y, Z; ζ0, ω0, θ
∗,u)|X, Y, Z}

=u(X, Y )− ρ∗(X,Z; ζ0, θ
∗) + ρ∗(X,Z; ζ0, θ

∗) = u(X, Y ),

and therefore the estimating function for (4.12), under iterated expectations
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with respect to (X, Y, Z) at (ξ0, ζ0, ω0), is

E

{
[v(X,Z)− E (v(X,Z)|X)] {u(X, Y )}

}
=E

{
[v(X,Z)− E (v(X,Z)|X)] {E (u(X, Y )|X,Z)}

}
=E

{
[v(X,Z)− E (v(X,Z)|X)] {E (u(X, Y )|X)}

}
by (IV.1)

=E

{
[E (v(X,Z)|X)− E (v(X,Z)|X)] {E (u(X, Y )|X)}

}
=0.

In addtion, under iterated expectations with respect to (X, Y, Z),

E {GDR (R,X, Y, Z, ζ0, ω0, θ
∗,u = Y )} = E{Y }.

Under model MOR, let ω∗ denote the probability limit of estimation under

model P ∗(r|Y = 0, x, z;ω). Then at true parameter values (ζ0, θ0),

E {GDR (R,X, Y, Z; ζ0, ω
∗, θ0,u)|X,Z}

=E

{
R

π(ζ0, ω∗)
{u(X, Y )− ρ(X,Z)}+ ρ(X,Z)

∣∣∣∣X,Z}
=E

{
R{1− π(ζ0, ω

∗)}
π(ζ0, ω∗)

{u(X, Y )− ρ(X,Z)}
∣∣∣∣X,Z}

+ E {ρ(X,Z) +R{u(X, Y )− ρ(X,Z)}|X,Z}

=E
{
R
{

e−{λ(X,Z;ω
∗)+η(X,Y,Z;ζ0)}

}
{u(X, Y )− ρ(X,Z)}

∣∣X,Z}
+ E {u(X, Y )|X,Z}

=E {u(X, Y )|X,Z} . (S4)
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The estimating function for (4.12), under iterated expectations with respect

to (X,Z) at (ξ0, ζ0, θ0), is

=E

{
[v(X,Z)− E (v(X,Z)|X)] {E (u(X, Y )|Z,X)}

}
=E

{
[v(X,Z)− E (v(X,Z)|X)] {E (u(X, Y )|X)}

}
by (IV.1)

=E

{
[E (v(X,Z)|X)− E (v(X,Z)|X)] {E (u(X, Y )|X)}

}
=0.

In addition, under iterated expectations with respect to (X,Z) and with

similar reasoning given in (S4),

E {GDR (R,X, Y, Z, ζ0, ω
∗, θ0,u = Y )} = E{Y }.

The consistency and asymptotic normality of φ̂DR can be established under

standard regularity conditions for GMM estimators (Newey and McFad-

den (1994)). A necessary condition is that the probability of observing the

outcome is bounded away from zero (S1). Let M (δ) represent the stacked

vector of the following estimating functions: score functions for estimat-

ing ξ and θ, estimating function (4.7) for estimating ω, UDR(ξ, ζ, θ, ω) and

G(φ, ζ, ω, θ) = {GDR(R,X, Y, Z; ζ, θ, ω,u†) − φ}, where δ = (ω, ζ, θ, ξ, φ)

and u†(X, Y ) = Y . Then under standard regularity conditions for M-

estimation (Newey and McFadden (1994)), the asymptotic variance VDR is

given by the diagonal entry corresponding to φ of the following variance-
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covariance matrix[
E

{
∂M (δ)

∂δT

∣∣∣∣
δ0

}]−1
E
{
M(δ0)M (δ0)

T
}[

E

{
∂M (δ)

∂δT

} ∣∣∣∣
δ0

]−1T
, (S5)

where δ0 = (ω0, ζ0, θ0, ξ0, φ0) is the probability limit of δ̂ = (ω̂, ζ̂, θ̂, ξ̂, φ̂).

A consistent sandwich estimator for the above asymptotic variance can be

constructed by evaluating unknown expectations as sample means at the

estimated parameter value δ̂.
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