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In this supplementary material, we prove the lemma 1, equations (3.7) and (3.8), and Theorem

1.

S1 Proof of Lemma 1

The key idea is to use the calibrated condition (3.3) and cluster-specific

nonignorable assumptions (2.2). We first state the lemma again.

Lemma 1.
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where T; = n; Z;L;l {0i/7i5(v) — 1} w5, and

E {2(yij—xij5)} =FE {Z%(yu_:pwﬁ)} - Ci(n)|,

(S1.2)

where Cy(n) = 2?21 {513/7}%(7) - 1} 0.

Proof. For (S1.1)), it is enough to show
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where the last equality holds by definition of z; and the second equality

holds because CSNI implies

E(eij ’ x,;j,ai,&-j) = E(eij | xij,ai) =0. (Sl?))



A ROBUST CALIBRATION-ASSISTED METHOD

For the equation (S1.2)),
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Thus, we have (S1.2)).

Additionally, for the equation (3.7),
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where the second equality follows from (S1.3). Similarly, for the equation
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(3.8) in the paper, it is enough to show that

{Z -1} - mijmz] 0 (51.4)

Note that
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where the fourth equality follows from (S1.3|) and the last equality follows

from (3.3). Therefore, (S1.4)) is established.
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S2 Proof of Theorem 1

We first check the conditions for the asymptotic normality of Ui(n) =

Zfil Uyi(n) for p = 1. Since

- 52’]’ ~ _ 5ij
Uu(??) = z; {m(% - xi)(yz‘j - %gﬂ) - QCszm(ym - $z‘j5)}

where
cii(7) = 77 (zij — Ti — Timi) -

Define BZ = S°5  V{Uy(n)}. Since > iy 0ij > 0, 7y5(v) is bounded away

from zero. Under conditions of bounded moments, we have

K K
Y ni-Cr<BR <Y ni-Ch
=1 =1

for some constants Cy > C; > 0.
Now, to achieve the asymptotic normality of B 'U;(n), we can use

Liapounov condition:

K 246
-~ E{|Uy;
K

Now, there exists C3 = O(1) such that

K
E{|Uu(n)|**} < ZH?M - Cs,
i=1
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and we have

L By _ YR
BE{H = (ZK 2>(2+5)/2 ’

i=1"%
for some Cy = O(1). Thus, (3.13) implies and the asymptotic nor-
mality of Uj(n) can be established. Asymptotic normality of U;(n) when
p > 1 and that of ¥(n) = {Ui(n),Uaz(n),Us(n),¥(y)} can be established
similarly, using Cramer-Wold device.
To establish the asymptotic normality of the solution 7 to Vi (n) = 0,

where W (n) = ¥(n), we apply the first-order Taylor expansion to get
0= Bog Wi (n*) + T () (e — 17°), (S2.6)

where B3 = 325 V{U;(n)}, T(-) = (B3 Uk )(-)/0nT, and 7k lies on the

line segment between 7 and n*. Now, define

Note that J& = O(K~') by condition (3.12). Then,
JiT (i) = JL (1) + 0p(1).
Since we can obtain J%I'(n*) converges in probability to its mean
*\ 13 2 *
Mi(n7) = lim E{JT(n)},

and Byp Vi (n*) = O,(J5") by central limit theorem. Therefore, if M, (n*)
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is nonsigular,
Tic (i = 0") = —{Mi(n")} " By Wi (n") + 0p(1)

which establishes the asymptotic normality of J;* (jx —n*). Since K/2(fj—
n) = (KJR)V2I i — ) = CJi' (i — 0*) + 0p(1), where € =
limg oo (KJ%), the asymptotic normality of K'/2(fx — n*) also follows.
See Chapter 6.2.1 of Bickel and Doksum| (1977) for more details about reg-

ularity conditions.
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