# A MIXED-EFFECTS ESTIMATING EQUATION APPROACH TO NONIGNORABLE MISSING LONGITUDINAL DATA WITH REFRESHMENT SAMPLES

Xuan Bi and Annie Qu

Department of Statistics, University of Illinois at Urbana-Champaign

### Supplementary Material

# S1 Notation and Regularity Conditions

Define the quadratic inference function:

$$Q_n(\boldsymbol{\beta}|\mathbf{b}) = (\bar{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\bar{\mathbf{g}}_n^f),$$

its first partial derivative:

$$\dot{Q}_n(\boldsymbol{\beta}|\mathbf{b}) = \frac{\partial}{\partial \beta} Q_n(\boldsymbol{\beta}|\mathbf{b}) = 2(\dot{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\bar{\mathbf{g}}_n^f) + o(1),$$

and its second partial derivative:

$$\ddot{Q}_n(\boldsymbol{\beta}|\mathbf{b}) = \frac{\partial^2}{\partial \beta^2} Q_n(\boldsymbol{\beta}|\mathbf{b}) = 2(\dot{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\dot{\mathbf{g}}_n^f) + o(1).$$

Define  $\dot{\mathbf{g}}_0 = \mathrm{E}(\dot{\mathbf{g}}_i^f|\mathbf{b}_0)$ , and  $C_0 = \mathrm{Var}(\mathbf{g}_i|\mathbf{b}_0)$ .

We here provide the regularity conditions to prove Lemma 1 and Theorem 1.

- (i) The response variables  $\mathbf{y}_1, \dots, \mathbf{y}_n$  are i.i.d.
- (ii) The fixed effect  $\boldsymbol{\beta}$  is identifiable; that is, there exists a unique  $\boldsymbol{\beta}_0$ , such that  $\mathrm{E}\{\mathbf{g}_i^f(\boldsymbol{\beta}_0|\mathbf{b}_0)\}=\mathbf{0}$ .

- (iii) The estimating function  $\mathbf{g}_i(\boldsymbol{\beta}|\mathbf{b})$  is differentiable with respect to both  $\boldsymbol{\beta}$  and  $\mathbf{b}$ ,  $i=1,\ldots,n$ .
- (iv)  $Var(\mathbf{g}_i|\mathbf{b}) < \infty$  in probability, for i = 1, ..., n.
- (v)  $\dot{\mathbf{g}}_n^f(\boldsymbol{\beta}|\mathbf{b})$  is uniformly bounded in probability with respect to both  $\boldsymbol{\beta}$  and  $\mathbf{b}$  in an open bounded space containing  $\boldsymbol{\beta}_0$  and  $\mathbf{b}_0$ , and conditional on  $\mathbf{b}_0$ ,  $\dot{\mathbf{g}}_n^f \stackrel{a.s.}{\to} \dot{\mathbf{g}}_0$  as  $n \to \infty$ .
- (vi)  $\bar{C}_n^f(\boldsymbol{\beta}|\mathbf{b})$  is uniformly bounded in probability with respect to both  $\boldsymbol{\beta}$  and  $\mathbf{b}$  in an open bounded space containing  $\boldsymbol{\beta}_0$  and  $\mathbf{b}_0$ , and conditional on  $\mathbf{b}_0$ ,  $\bar{C}_n^f \stackrel{a.s.}{\to} C_0$  as  $n \to \infty$ .
- (vii) There exists an open bounded parameter space  $\mathcal{S} \subseteq \mathbb{R}^p$ , such that  $\beta_0 \in \mathcal{S}$  and  $Q_n(\beta|\mathbf{b}_0)$  is uniformly convergent in probability in  $\mathcal{S}$ . Define:

$$Q(\boldsymbol{\beta}|\mathbf{b}_0) = \lim_{n \to \infty} Q_n(\boldsymbol{\beta}|\mathbf{b}_0),$$

and thus:

$$\dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0) = \lim_{n \to \infty} \dot{Q}_n(\boldsymbol{\beta}|\mathbf{b}_0).$$

### S2 Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. Solving  $\hat{\boldsymbol{\beta}} = \arg\min(\bar{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\bar{\mathbf{g}}_n^f)$  is equivalent to solving

$$\dot{Q}_n(\hat{\boldsymbol{\beta}}|\mathbf{b}_0) = \mathbf{0}.$$

By Taylor expansion, we have:

$$\mathbf{0} = \dot{Q}_n(\hat{\boldsymbol{\beta}}|\mathbf{b}_0) = \dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0) + \ddot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) + o(\frac{1}{\sqrt{n}}),$$

By regularity conditions (ii), (v) and (vi), we have  $E\{\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)\}=\mathbf{0}$ . Then by regularity condition (iv) and the central limit theorem, we conclude that:

$$\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0) \sim O(\frac{1}{\sqrt{n}}) \text{ and } \sqrt{n}(\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)) \to \mathrm{N}(\mathbf{0},\Omega_0),$$

where

$$\Omega_0 = \lim_{n \to \infty} n \operatorname{Var}(\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0))$$

$$= 4 \lim_{n \to \infty} (\dot{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1} \{ \frac{1}{n} \sum_{i=1}^n \operatorname{Var}(\mathbf{g}_i|\mathbf{b}_0) \} (\bar{C}_n^f)^{-1} (\dot{\mathbf{g}}_n^f) \}$$

$$= 4(\dot{\mathbf{g}}_0)'(C_0)^{-1}(\dot{\mathbf{g}}_0).$$

Since  $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = -\ddot{Q}_n^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0) \cdot \sqrt{n}\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0) + o(1)$ , we conclude that:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \to \mathrm{N}(\mathbf{0}, \Sigma_0),$$

where 
$$\Sigma_0 = \lim_{n \to \infty} {\{\ddot{Q}_n^{-1}(\boldsymbol{\beta}_0 | \mathbf{b}_0)\}} \Omega_0 {\{\ddot{Q}_n^{-1}(\boldsymbol{\beta}_0 | \mathbf{b}_0)\}'} = {\{(\dot{\mathbf{g}}_0)'(C_0)^{-1}(\dot{\mathbf{g}}_0)\}^{-1}}.$$

Proof of Theorem 1. Solving  $\hat{\boldsymbol{\beta}} = \arg\min(\bar{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\bar{\mathbf{g}}_n^f)$  is equivalent to finding  $\hat{\boldsymbol{\beta}}$  such that  $\dot{Q}_n(\hat{\boldsymbol{\beta}}|\hat{\mathbf{b}}) = \mathbf{0}$ .

Based on regularity conditions (ii), (v), (vi) and (vii), we have  $Q(\beta_0|\mathbf{b}_0) = 0$  and  $\dot{Q}(\beta_0|\mathbf{b}_0) = \mathbf{0}$ . And based on regularity conditions (v) and (vi) and the condition that  $\frac{1}{n}\sum_{i=1}^{n}\mathbf{g}_i(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) \to \mathbf{0}$  as  $n \to \infty$ , we have:

$$\lim_{n \to \infty} \dot{Q}_n(\boldsymbol{\beta}_0 | \hat{\mathbf{b}}) = \mathbf{0} = \dot{Q}(\boldsymbol{\beta}_0 | \mathbf{b}_0). \tag{S2.1}$$

Define the boundary of a ball in S with center  $\beta_0$  and radius  $\frac{1}{\sqrt{n}}$  as  $\partial B_n(\beta_0) = \{\beta : \|\beta - \beta_0\| = \frac{1}{\sqrt{n}}\}$ . Then for any  $\beta \in \partial B_n(\beta_0)$ , we have:

$$\mathbf{0} = Q(\boldsymbol{\beta}_0|\mathbf{b}_0) = Q(\boldsymbol{\beta}|\mathbf{b}_0) + \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0)(\boldsymbol{\beta}_0 - \boldsymbol{\beta}) + o(\frac{1}{\sqrt{n}}).$$

Since  $Q(\boldsymbol{\beta}|\mathbf{b}_0) > 0$  when  $\boldsymbol{\beta} \neq \boldsymbol{\beta}_0$ , we can find an  $\epsilon > 0$ , such that:

$$(\boldsymbol{\beta} - \boldsymbol{\beta}_0)\dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0) = Q(\boldsymbol{\beta}|\mathbf{b}_0) + o(\frac{1}{\sqrt{n}}) > \epsilon > 0.$$

Then based on (S2.1), for such  $\epsilon$ , there exists a large N, such that when n > N,

$$\begin{aligned} & \|\dot{Q}_{n}(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_{0})\| \\ & \leq & \|\dot{Q}_{n}(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}_{n}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}})\| + \|\dot{Q}_{n}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}}) - \dot{Q}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\| + \|\dot{Q}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0}) - \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_{0})\| \\ & < & \epsilon \end{aligned}$$

for  $\boldsymbol{\beta} \in \partial B_n(\boldsymbol{\beta}_0)$ . This is because  $\dot{\mathbf{g}}_n^f(\boldsymbol{\beta}|\mathbf{b})$  and  $\bar{C}_n^f(\boldsymbol{\beta}|\mathbf{b})$  are uniformly bounded and  $\bar{\mathbf{g}}_n^f$  is continuous with respect to  $\boldsymbol{\beta}$ , so

$$\|\dot{Q}_n(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}_n(\boldsymbol{\beta}_0|\hat{\mathbf{b}})\| < \frac{1}{3}\epsilon$$
, and  $\|\dot{Q}(\boldsymbol{\beta}_0|\mathbf{b}_0) - \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0)\| < \frac{1}{3}\epsilon$ 

for a large N. And because of (S2.1),

$$\|\dot{Q}_n(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) - \dot{Q}(\boldsymbol{\beta}_0|\mathbf{b}_0)\| < \frac{1}{3}\epsilon.$$

By the Cauchy-Schwarz Inequality:

$$|(\boldsymbol{\beta} - \boldsymbol{\beta}_0)[\dot{Q}_n(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0)]| \leq ||\boldsymbol{\beta} - \boldsymbol{\beta}_0|| \cdot ||\dot{Q}_n(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}(\boldsymbol{\beta}|\mathbf{b}_0)|| < \frac{1}{\sqrt{n}}\epsilon.$$

Therefore,

$$(\boldsymbol{\beta} - \boldsymbol{\beta}_0) \dot{Q}_n(\boldsymbol{\beta} | \hat{\mathbf{b}}) > (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \dot{Q}(\boldsymbol{\beta} | \mathbf{b}_0) - \frac{1}{\sqrt{n}} \epsilon$$
$$> (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \dot{Q}(\boldsymbol{\beta} | \mathbf{b}_0) - \epsilon > 0.$$

Then based on Theorem 6.3.4 of Ortega and Rheinboldt (1970, p(163)), there exists a  $\hat{\beta}_n \in B_n(\beta_0)$ , such that

$$\dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\hat{\mathbf{b}}) = \mathbf{0}.$$

This is a direct application of the *p*-dimensional intermediate value theorem. Since  $\hat{\boldsymbol{\beta}}_n \in B_n(\boldsymbol{\beta}_0)$ , we have  $\hat{\boldsymbol{\beta}}_n = O(\frac{1}{\sqrt{n}})$  and  $\hat{\boldsymbol{\beta}}_n \to \boldsymbol{\beta}_0$  as  $n \to \infty$ .

The following part shows the asymptotic normality of  $\hat{\boldsymbol{\beta}}_n$ .

From Lemma 1, we have:

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0) = -\ddot{\boldsymbol{Q}}_n^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0) \cdot \sqrt{n}\dot{\boldsymbol{Q}}_n(\boldsymbol{\beta}_0|\mathbf{b}_0) + O(\frac{1}{\sqrt{n}}), \tag{S2.2}$$

where  $\hat{\boldsymbol{\beta}}_0$  is the solution of  $\hat{\boldsymbol{\beta}} = \arg\min(\bar{\mathbf{g}}_n^f)'(\bar{C}_n^f)^{-1}(\bar{\mathbf{g}}_n^f)$  conditional on  $\mathbf{b}_0$ .

Since  $\hat{\boldsymbol{\beta}}_n \in B_n(\boldsymbol{\beta}_0)$ , for any  $\epsilon > 0$ , we have  $\|\dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\hat{\mathbf{b}}) - \dot{Q}(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0)\| < \epsilon$ , and hence  $\|\dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\hat{\mathbf{b}}) - \dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0)\| < \epsilon$  for a large N and n > N. In addition,

$$\begin{split} \dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0) &= \dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0) - \dot{Q}_n(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) \\ &= \ddot{Q}_n(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)(\hat{\boldsymbol{\beta}}_n - \hat{\boldsymbol{\beta}}_0) + O(\frac{1}{n}). \end{split}$$

Thus, conditional on  $\hat{\mathbf{b}}$ ,

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_n - \hat{\boldsymbol{\beta}}_0) = \ddot{Q}_n^{-1}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) \cdot \sqrt{n}\dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0) + o(1). \tag{S2.3}$$

From (S2.2) and (S2.3), and because  $\lim_{n\to\infty}\ddot{Q}_n(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) = \lim_{n\to\infty}\ddot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)$ , we have:

$$\begin{split} \sqrt{n}(\hat{\boldsymbol{\beta}}_{n} - \boldsymbol{\beta}_{0}) &= \sqrt{n}(\hat{\boldsymbol{\beta}}_{n} - \hat{\boldsymbol{\beta}}_{0}) + \sqrt{n}(\hat{\boldsymbol{\beta}}_{0} - \boldsymbol{\beta}_{0}) \\ &= \ddot{Q}_{n}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\{\sqrt{n}\dot{Q}_{n}(\hat{\boldsymbol{\beta}}_{n}|\mathbf{b}_{0}) - \sqrt{n}\dot{Q}_{n}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\} + o(1). \end{split}$$

From the central limit theorem and the consistency of  $\hat{\boldsymbol{\beta}}_n$ , we know that  $\sqrt{n}\dot{Q}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0)$  and  $\sqrt{n}\dot{Q}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)$  are asymptotically normal. Therefore

$$\begin{split} \sqrt{n}(\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_0) &\to \mathrm{N}(\mathbf{0}, \boldsymbol{\Sigma}), \\ \text{where } \boldsymbol{\Sigma} &= \{\ddot{\boldsymbol{Q}}_n^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0)\}\boldsymbol{\Omega}\{\ddot{\boldsymbol{Q}}_n^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0)\}' \text{ and } \boldsymbol{\Omega} = \lim_{n \to \infty} \mathrm{Var}\{\sqrt{n}\dot{\boldsymbol{Q}}_n(\hat{\boldsymbol{\beta}}_n|\mathbf{b}_0) - \sqrt{n}\dot{\boldsymbol{Q}}_n(\boldsymbol{\beta}_0|\mathbf{b}_0)\}. \end{split}$$

# References

Ortega, J. M. and Rheinboldt, W. C. (1970). *Iterative Solution of Nonlinear Equations in Several Variables*. Academic Press, New York.