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In this supplementary material, we present the proofs for Lemma 1,

Lemma 2, Lemma 4 and Theorem 2 in the main article.

S1 Technical Proofs

Proof of Lemma 1. We first assume f € Fg. If f = s;, there is nothing to

prove. If f # 57, without loss of generality, we write

n+m
flz) = Z a;®(z, x;),
i=1
for an extra set of distinct points {x,11,...,Zp1m} C Q. Now partition

(A;;) = ®(x;,25),1 <i,7 <n-+minto

(A )”Xﬂ (A )nXm
A 1 2 7

(A3)m><n (A4)m><m
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where A3 = AJ because @ is symmetric.

Lety = (f(x1), ..., flz.) T ar = (a1, .y an)t a0 = (gt - Q) T

Clearly, y = Aja; + Asa. By the definition of sfx, we have

srx(z E u;d(x, z;),

with u = (uy,...,u,)" satisfying y = Aju. Then from (??) we obtain
Sfxa Sfx N3 ()
n-+m
= <ZUCI) T, T;), Z( a; — u)P(z, ;) + Z ai@(x,a:i)>
=1 i=n+1 N@(Q)
Ar A a—u
- (o)
Az Ay a2

= uT(A1a1 + A2a2 — Alu)
= u'(y—y)=0. (S1.1)

For a general f € Ng(Q), we can find a sequence f, € Fp with f, — f

in Ng(Q) as n — oo. The desired result then follows from a limiting form

of (S1.1). O

Proof of Lemma 2. For any g € Lo(R%) N C(RY), its native norm admits

the representation

913, ey = (2m) =" /Rd “(; ))‘ w, (S1.2)
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where § and @ denote the Fourier transforms of ¢ and @ respectively. See

Theorem 10.12 of Wendland [2005]. The (fractional) Sobolev norms have a

similar representation

9]

by = @)% [ 3P+ ol (513

See Adams and Fournier [2003] for details. Tuo and Wu [2016] show that

Ch,

() = 2424wty T

v+d/2)
I'(v)

(4072 + [Jeo]?) =+,

Using the inequality

(1+b)min(l,a) <a+b< (14 b)max(l,a),

for a,b > 0, we obtain

CN’U7’Y<W)

IN

IN

v

v

2240 S e 1 40y (1 oy
222 S e ({40, (4079 (1 )04
Cr(1 + fJwl?) =+, (S1.4)
224072 S i {1, (a0 (1 )
222U S i { (40, (40r) 2} (1 )04
Call + )42, (515)

hold for all w € RZ.
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Now we apply the extension theorem of the native spaces (Theorem
10.46 of Wendland, 2005) to obtain a function f¥ € Mg, (R%) such that
fPlo = f and || fllne, @ = IFZln, e for cach v € [y1,72). We use
(S1.2)-(S1.4) to obtain

rE 2
) _ EN2 _ 27T d/2/ |f ( >| dw
HfHchy(Q) Hf ||NcU’V(Rd) ( ) Rd Cvﬂ(w)

> O m) [ PP+l
= O Byeramsy 2 GO ey (510

where the last inequality follows from the fact that f¥|q = f. On the other
hand, because (2 is convex, f has an extension fr € HUT%2(R9) satisfying

I fellar@may < cl| fllar) for some constant ¢ independent of f. Then we

use (S1.2), (S1.3) and (S1.5) to obtain

1 felime = I flEnq)
= en [ IR0+ el

> 0_202(271-)_d/2/ léE((c)J)?dw
rRe Oy

= C_2C2||fE||J2\fCM(Rd) 2 C_QC2||f||J2\fCW(Q)7
where the last inequality follows from the restriction theorem of the native
space, which states that the restriction f = fg|q is contained in Mg, ()
with a norm that is less than or equal to the norm || fg||n,,  ra)- See The-

orem 10.47 of Wendland [2005]. The desired result is proved by combining
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(S1.6) and (S1.7). O
Proof of Lemma 4. For f € Ng(f2), define

M(f) = L(f(x1)s - fl@n) + [1f R @-

Now consider s; y, i.e., the interpolant of f over X = {z1,...,2,} using
the kernel function ®. Because f(z;) = sjx(xi) fori=1,...,n, we have
L(f(z1),..., f(z,)) = L(stX(xl), o ,sfyx(xn)). (S1.7)

In addition, it is easily seen from Lemma 1, (9) and (10) in the main article

that

s xR < 1R (51.8)

and the equality holds if and only if s; = f . By combining (S1.7) and

(S1.8) we obtain

M(s; ) < M()). (S1.9)

~

Because f minimizes M(f), the reverse of (S1.9) also holds. Hence we
deduce s jx = f , which proves the theorem according to the definition of

the interpolant. O

Proof of Theorem 2. We first rewrite the minimization problem (16) in the
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main article as the following iterated form

n

2
: p s 2, 0 2
min g (i —y° (@i, 0) — f(z))" + ﬁ”f“NcM(Q)
fENCUgy(Q) =1

n 2
— mi : P s ) W2 7 g2
= W mm ;:1 (v =y (23, 0) = f(2:)" + S fllne, , 4p110)

Now we apply Lemma 4 to the inner minimization problem in (S1.10) and

obtain the following representation for A:

n
A= Z aiCU,'y(Iia ')7
i=1
with an undetermined vector of coefficients @ = (av, ..., a,)T. Using the

definition X, = (C, (24, z;))ij, clearly we have the matrix representation
A(x) = X a. (S1.11)

Now using (7) in the main article we have

||A||?\/’CU,7(Q) = <Z Oéicy,'y(«riy ')7 Z OéiCU,'y(xiy )> = OJTE,YO[.
i=1 i=1

NCU,’Y ()
The minimization problem (16) in the main article then reduces to

2
argmin ||y” — y°(x,0) — a%,||* + U—ZCXTEVO./.
0O T
acR™

Applying a change-of-variable argument using (S1.11) we obtain the follow-

ing optimization formula

2
. s o _
argmin |[y” — y*(x, ) — A” + ZAK) ' EAX).
A(x?ER"
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Elementary calculations show its equivalence to the definition of (Axo, 6(x)).
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