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S1 Selecting nc via Cross-Validation

We employ a leave-one-out cross-validation approach for selecting nc. For an ensem-

ble of m simulator outputs, remove the jth output from the ensemble and take the

observation y to be the mean (over the N stochastic simulator samples) of the jth

output. Next, run the calibration model with the remaining m−1 simulator outputs

to predict the mean of the held-out (jth) output and the corresponding calibration

parameters settings of the jth output. Repeat for j = 1, . . . ,m, and then calculate

appropriate criteria of interest. Repeat this entire process for a judicious range of

nc values, and then compare the criteria to select the number of bases to use in the

approximation for calibrating the real data.

Two simple criteria we use to perform this cross-validation is the Mean Squared

Prediction Error (MSPE) for the held-out mean simulator, and the Mean Squared
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Error (MSE) for the held-out calibration parameter setting using the posterior mean

calibration parameter estimates from the cross-validation runs. That is,

MPSE =
m∑
j=1

n∑
i=1

(yi − xi(θj))
2

where xi(θj) is the posterior mean state(s) from running the calibration model

at the jth step of the cross-validation, and

MSE(θ) =
m∑
j=1

q∑
l=1

(θ̄jl − θjl)2

where θ̄jl is the posterior mean of the lth calibration parameter from running the

calibration model at the jth step of the cross-validation (in actuality we re-scale these

so that the squared errors are comparable for the q different calibration parameters).

S2 Specifying the Additional Prior Distributions

Prior on weight-space precision, λvl

We specify independent gamma priors on the inverse variance of the GP model for

each latent weight space,

λvl ∼ Gamma(αvl , βvl),

by choosing a shape, αvl , and rate, βvl . Usually a shape αvl ≥ 1 is chosen and then
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the rate is selected so that the mean of the prior,
αvl
βvl
, is on the order of the empirical

state variability.

Prior on weight-space correlations, ρl,t

The correlations are specified independent beta prior distributions,

ρl,t ∼ Beta(αρl,t , βρl,t),

where αρl,t and βρl,t are usually chosen to favour a smooth response, which places

more weight towards a correlation of 1. Our default choice for this prior, which

generally works well, is αρl,t = 5, βρl,t = 1.

Prior on observation precision, λf

The prior for λf is

λf ∼ Gamma(αf , βf ),

where the shape parameter is again usually selected as αf ≥ 1. If prior information

on the obervational error is known, this can be used to calibrate the prior. Other-

wise, selecting βf so that the inverse of the mean,
(
αf
βf

)−1
, is on the order of the

expected observational error variance is reasonable. In some cases, we have observed

that calibration can be senstive to this parameter, so a careful consideration of the
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interplay between additive discrepancy, multiplicative discrepancy and observational

error variance may be warranted.

Prior on discrepancy correlations, ψk,t

The correlations are specified independent beta prior distributions,

ψk,t ∼ Beta(αψk,t , βψk,t),

where αψk,t and βψk,t are usually chosen to favour a smooth response, but also recog-

nizing that the discrepancy is often modeling smaller-scale variability in the unob-

served state unaccounted for by the emulated simulator. Our default choice for this

prior is αψk,t = 2, βψk,t = 10.

S3 MCMC Algorithm

The MCMC algorithm for sampling the posterior distribution (3.3) proceeds accord-

ing to the following steps:

1. Draw ρl,t|· for l = 1, . . . , nc and t = 1, . . . , q (MH step)

2. Draw λvl |· for l = 1, . . . , nc (Gibbs step)

3. Draw θt, v1(θt), . . . , vnc(θt) by proposing a new θ′t and

(a) Draw v′l(θ
′
t,θ−t) from vl(θ

′
t,θ−t)|Vl, θ

′
t,θ−t for l = 1, . . . , nc (Gibbs step)
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(b) Calculate the acceptance probability

α =
π(y|Uu,v

′(θ′t,θ−t),µδ,λf ,λδ,ψ,µκ,λκ)π(θ′t)

π(y|Uu,v(θt,θ−t),µδ,λf ,λδ,ψ,µκ,λκ)π(θt)

where π(y|Uu,v(θt,θ−t),µδ,λf ,λδ,ψ,µκ,λκ) =
∫
κ

∫
δ
π(y|Uu,v(θ), δ,κ)dπ(δ)dπ(κ)

(c) Accept θ′t, v1(θ
′
t,θ−t), . . . , vnc(θ

′
t,θ−t) with probability α.

Repeat 3(a)-3(c) for t = 1, . . . , q (MH steps).

4. Draw δk|Uu,k,v(θ),yk, λf,k, λδk ,ψk for k = 1, . . . , ns (Gibbs step)

5. Draw ψk,t|· for t = 1, . . . , p and k = 1, . . . , ns (MH step)

6. Draw λδk |· for k = 1, . . . , ns (Gibbs step)

7. Draw κk|· for k = 1, . . . , ns (Gibbs step)

8. Draw λf,k|· for k = 1, . . . , ns (Gibbs step).

The MCMC algorithm’s steps can be implemented as follows.

In step 1,

• Draw a proposed ρ′l,t from q(ρ′l,t|ρl,t)

• Calculate α =
π(Vl|ρ′l,t,·)π(ρ

′
l,t)q(ρl,t|ρ

′
l,t)

π(Vl|ρl,t,·)π(ρl,t)q(ρ′l,t|ρl,t)

• Accept ρ′l,t with probability α.

In step 2, draw λvl from Gamma(αvl + m
2
, βvl + 1

2
VTR−1vl V).
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In step 3,

y|Uu,k,v(θt,θ−t), µδk , λf,k, λδk , ψk, µκk , λκk ∼ N (µδk + µκkUu,kv(θt,θ−t),Σ) ,

where Σ = 1
λf,k

In+ 1
λδk

Rδk(ψk)+
1
λκk

(Uu,kv(θt,θ−t)) (Uu,kv(θt,θ−t))
T for k = 1, . . . , ns.

In step 4,

δk|Uu,k,v(θ),yk, λf,k, λδk ,ψk ∼ N
(
Σδk(λf,kIn(yk − κkUu,kv(θ)) + λδkInRδk(ψk)

−1µδk),Σδk

)
where Σ−1δk = λf,kIn + λδkRδk(ψk)

−1 for k = 1, . . . , ns.

In step 5,

• Draw a proposed ψ′k,t from q(ψ′k,t|ψk,t)

• Calculate α =
π(δk|ψ′

k,t,·)π(ψ
′
k,t)q(ψk,t|ψ

′
k,t)

π(δk|ψk,t,·)π(ψk,t)q(ψ′
k,t|ψk,t)

• Accept ψ′k,t with probability α.

In step 6, draw λδk from

Gamma

(
αδk +

n

2
, βδk +

1

2
(δk − µδk)

TR−1δk (δk − µδk)
)

for k = 1, . . . , ns.

In step 7, draw κk from

N
(
σκk(λf,k(yk − δk)T (Uu,kv(θ)) + λκkµκk), σκk

)
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where σ−1κk = λf,k(Uu,kv(θ))T (Uu,kv(θ)) + λκk for k = 1, . . . , ns.

In step 8, draw λf,k from

Gamma

(
αf,k +

n

2
, βf,k +

1

2
(yk − κkUu,kv(θ)− δk)T (yk − κkUu,kv(θ)− δk)

)
for k = 1, . . . , ns.

S4 Additional Figures for the JAK-STAT Example
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Figure 5: Kernel density estimates of the marginal calibrated posterior (gray) with m = 50 model

runs, and exact posterior (black, Chkrebtii et al. (2016)) for the JAK-STAT system. Marginal prior

densities are shown as dotted lines.
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Figure 6: 200 samples from the marginal calibrated model posterior with m = 50 model runs

(top row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison (bottom row,

Chkrebtii et al. (2016)) over the first two observation processes of the JAK-STAT system, for which

experimental data is available. Experimental data locations are shown as red circles with error bars

representing twice the experimental error standard deviation.
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Figure 7: Kernel density estimates of the marginal stochastically calibrated posterior (gray) with

m = 20 model runs, and exact posterior (black, Chkrebtii et al. (2016)) for the JAK-STAT system.

Marginal prior densities are shown as dotted lines.
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Figure 8: 200 samples from the marginal calibrated model posterior with m = 20 model runs

(top row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison (bottom row,

Chkrebtii et al. (2016)) over the first two observation processes of the JAK-STAT system, for which

experimental data is available. Experimental data locations are shown as red circles with error bars

representing twice the experimental error standard deviation.
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