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Abstract: Gaussian processes models are widely adopted for nonparameteric/semi-

parametric modeling. Identifiability issues occur when the mean model contains

polynomials with unknown coefficients. Though resulting prediction is unaffected,

this leads to poor estimation of the coefficients in the mean model, and thus the

estimated mean model loses interpretability. This paper introduces a new Gaussian

process model whose stochastic part is orthogonal to the mean part to address this

issue. This paper also discusses applications to multi-fidelity simulations using data

examples.
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1. Introduction

Kriging is a method for estimating or approximating unknown functions from

data, with or without noise. For data without noise, it gives an interpolator.

A major advantage of kriging over the other interpolators and nonparametric

modeling methods is that the prediction intervals can be obtained with almost

no additional effort because of its stochastic formulation. Although the method

originated in geostatistics Matheron (1963), kriging has found a prominent place

in such diverse fields as uncertainty quantification Smith (2014), spatial statistics

Cressie and Cassie (1993), computer experiments Santner, Williams and Notz

(2003), and machine learning Rasmussen and Williams (2006), to name a few.

Ordinary kriging, which is arguably the most popular among various kriging

methods, can be stated as follows. Consider a deterministic function f(·) that

maps the input, x in a bounded subset of Rd labeled X, to a scalar valued output,

y(x). An ordinary kriging model considers the family of functions generated by

the stochastic process

y(x) = β + z(x), (1.1)

where β is a mean parameter and z(x) is a zero-mean stochastic process with

covariance function cov{z(x), z(x′)} = c(x, x′). Quite often the stochastic process
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is assumed to be Gaussian and therefore, the foregoing model can also be called

a Gaussian process model. In the Bayesian interpretation, the Gaussian process

can be viewed as a prior on the underlying true function f(·) Currin et al. (1991).

This formulation can be broadened by introducing a global trend function

m(x) as the mean in the Gaussian process model; this is called universal kriging.

The trend function is usually taken as

m(x) = βTg(x),

where g(x) is a vector of known regression functions and β = (β1, . . . , βp)
T is the

unknown parameter.

As an example, Singh, Joseph and Melkote (2011) proposed a physically-

interpretable regression model for predicting the log-cutting force with respect

to depth of cut (x1), cutting speed (x2), laser power (x3), and laser location

(x4) in a computer code used for simulating a laser-assisted machining process:

m(x) = β0 +β1 log x1 +β2x2−β3x3e−λx4 . Here, for example, exp(−β3) could be

interpreted as the fraction reduction in the cutting force with a unit increase in

the laser power (when x4 = 0).

The mean function is often left uninterpretable in universal kriging due to

an identifiability problem. For example, consider a model that is equivalent to

(1.1),

y(x) = β + z̄ + z∗(x), where z̄ = vol(X)−1
∫
X
z(x)dx and z∗(x) = z(x)− z̄.

where vol(X) is the Lebesgue measure of the set X and thus z̄ represents the

mean of z(x) over the region of interest. Since the integrals are linear operators,

we can say that z̄ follows a normal distribution and z∗(·) follows a zero-mean

Gaussian process. In this formulation it is clear that we have two additive terms

in our model that are indistinguishable through the likelihood.

Suppose then we have observed the output at a finite collection of inputs D =

{x1, . . . , xn}, where each xi ∈ X. Let the observations be Y := (y1, . . . , yn)T,

where yi = f(xi). Under the universal kriging model, the best linear unbiased

predictor of y(x) is

ŷ(x) = β̂Tg(x) + c(x,D)C−1(Y −Gβ̂),

where c(x,D) is an 1×n vector with ith element c(x, xi), C is the n×n covariance

matrix with ijth element c(xi, xj), G is an n× p model matrix of the regression

functions and

β̂ = (GTC−1G)−1GTC−1Y. (1.2)
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Figure 1. An example of universal kriging discussed in Section 1. The dots are ob-
servations and the thin solid line is the underlying function x2 sin(5x). The mean is
m(x) = βx. The thick solid line is the kriging predictor and the thick dashed line is

m̂(x) = β̂x.

Here, β̂ is the generalized least squares estimate of β given the assumptions

Kariya and Kurata (2004).

As an example, consider the problem of approximating x2 sin(5x) in [0, 1],

as shown in Figure 1, and let m(x) = βx. The least squares estimate of β is

β̂LS = arg min
β

(Y −Gβ)T (Y −Gβ) .

The value of β̂LS in this example is −0.69. The negative sign seems to agree

with graph of the function, which on the whole decreases over [0, 1]. Now let

c(x, x′) = σ2 exp{−(x− x′)2}, where σ2 can be any positive constant.

In Figure 1, although the kriging predictor gives a decent approximation on

[0, 1], the value of β̂ using (1.2) is ≈ 0.22. This appears to imply that as x is

increased, the average value of the output increases. This contradicts the least

squares estimate and most statistical intuition. We see that the identifiability

problem in the standard universal kriging model can propagate to an unreason-

ably estimated mean function.

While prediction is still good even with a poor estimation of the mean func-

tion, the interpretability of the mean function is lost under the typical, uniden-

tifiable model. This is a disadvantage in applications such as model calibration

Kennedy and O’Hagan (2001) where the mean function contains parameters with

physical meaning, and in spatial random effects modeling where the focus is on

the estimation of the mean model and not the stochastic term (Reich, Hodges and

Zadnik (2006)). The identifiability issue has been recognized by many (Hodges

and Reich (2010), Paciorek (2010),Tuo and Wu (2015)). We intend to show that

the identifiability issue can be overcome by orthogonalizing the Gaussian process

term with respect to the mean function.
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The idea of making the random field orthogonal to the mean function to

avoid identifiability problems was proposed in Reich, Hodges and Zadnik (2006)

in the context of spatial random effects modeling. Hodges and Reich (2010) used

m(x) = β0 + β1x, for modeling stomach cancer incidence ratio in Solvenia with

respect to the socioeconomic scores (x). Their approach achieves orthogonality

only at the observed locations, which induces two negatives: (i) the stochastic

model has a dependency on the observation locations and (ii) outside of the ob-

served locations, such as prediction points, there is no orthogonality. Extensions

of this work in the spatial statistics literature include Hughes and Haran (2013)

and Hanks et al. (2015). Hanks et al. (2015) proposed to make the random field

orthogonal to the fixed effects over the entire region X, using “conditioning by

Kriging” (Rue and Held (2005)). Ultimately, they were forced to resort to ap-

proximation methods or requiring the orthogonality condition to be met only at

the observed locations. We show that by carefully choosing a covariance function

we can make the random field orthogonal to the mean function over the entire

region X. The proposed orthogonal Gaussian process is orthogonal to the mean

function. Our approach is computationally tractable and is amenable to both

the frequentist and Bayesian frameworks.

2. Orthogonal Gaussian Process Models

This section discusses the specification of an orthogonal Gaussian process

z∗(·) in general. The procedure is as follows: given a covariance function c(·, ·),
replace it with the covariance conditioned on

∫
X g(x)z(x)dx = 0, termed c∗(·, ·).

A process generated by a zero mean Gaussian process with covariance c∗(·, ·) will

thus be orthogonal to the mean function.

2.1. Orthogonalization of a Gaussian process

Consider the model

y(x) = m(x) + z∗(x),

where z∗(·) is a zero mean Gaussian process with covariance function c∗(·, ·). z∗(·)
is an orthogonal Gaussian process if∫

X
m(ξ)z∗(ξ)dξ = 0, (2.1)

with probability one. Theorem 1 will show how to construct such an orthogonal

Gaussian process when m(x) = βTg(x). Here we assume g(x) to be a known

function. Let c(·, ·) be a valid covariance function on X ×X and let
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h(x) =

∫
X
c(x, ξ)g(ξ)dξ and H =

∫
X

∫
X
c(ξ′, ξ)g(ξ)g(ξ′)Tdξdξ′. (2.2)

Lemma 1. Suppose X is a bounded subset of Rd, g(·) is bounded on X, c(·, ·) is

bounded and continuous on X ×X, and H is positive definite, then c∗(x, x
′) =

c(x, x′)− h(x)TH−1h(x′) is a semi-positive definite function on X ×X.

If the covariance function c∗(·, ·) is used to define a Gaussian process z∗(·),
then it will meet the orthogonality criteria.

Theorem 1. Suppose X is a bounded subset of Rd, g(·) is bounded on X, c(·, ·)
is bounded and continuous on X ×X, H is finite and positive definite, and β is

finite. Then z∗(·) is an orthogonal Gaussian process if

c∗(x, x
′) = c(x, x′)− h(x)TH−1h(x′). (2.3)

The proof is given in the Appendix. The conditions of the Theorem 1 are

sufficient, not necessary. They allow for a straightforward proof, are easy to

verify, and cover the majority of implementations.

With this stochastic process defined, the best linear unbiased predictor is

ŷ(x) = β̂Tg(x) + c∗(x,D)C−1∗

(
Y −Gβ̂

)
,

where

β̂ =
(
GTC−1∗ G

)−1
GTC−1∗ Y, (2.4)

and C∗ is the same as C with the function c∗(·, ·) replacing c(·, ·).

2.2. Some properties

The models used in universal kriging and the orthogonal Gaussian process

have same distribution, with the exception of functionals that have correlation

with g(·). From the proof of Theorem 1, z∗(·) has the same distribution as

z(·)− h(·)TH−1
∫
X g(ξ)z(ξ)dξ. If f(·) is such that∫

X

∫
X
f(ξ)g(ξ′)c(ξ, ξ′)dξdξ′ = 0,

then
∫
X f(ξ)z(ξ)dξ has the same distribution as

∫
X f(ξ)z∗(ξ)dξ. Thus evaluation

functionals that are uncorrelated with g(·) have the same distribution as the

original process z(·) under the new model z∗(·).
Consider the eigenfunctions of the orthogonal Gaussian process. Let f1(·),

. . . , fk(·), . . . be the orthonormal basis of the corresponding to the Karhunen-

Loève theorem, as in Steinberg and Bursztyn (2004), of z∗(·). Then
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Figure 2. Plot of the first three (solid, long dashes, short dashes) eigenfunctions of z∗(·)
when c(x, x′) = exp

{
−(x− x′)2

}
. The basis functions are none (left), g(x) = 1 (middle),

g(x) = (1, x)T (right).

z∗(x) =

∞∑
k=1

akfk(x),

where ak =
∫
X fk(ξ)z∗(ξ)dξ. These are ordered such that the variance of ak

is decreasing in k. The first three eigenfunctions of z(x) with c(x, x′) = exp{
−(x− x′)2

}
are shown in the left panel of Figure 2. They look like constant,

linear, and quadratic (see also Bursztyn and Steinberg (2006)). This could be

the reason behind the non-identifiability in the Gaussian process model when the

mean function contains lower order polynomials. Now consider the orthogonal

Gaussian process model. The first three eigenfunctions of z∗(·) for the ordinary

kriging model are shown in the middle panel of Figure 2. They appear linear,

quadratic, and cubic. Thus, the eigenfunction that was close to a constant is now

removed from the top three, which suggests less of an identifiability issue if we

use a constant in the mean function of the orthogonal Gaussian process model.

The right panel of Figure 2 shows the first three eigenfunctions of z∗(·) in the

universal kriging model with m(x) = β1 + β2x. As expected, now the constant-

and linear-like eigenfunctions are no longer in the top three eigenfunctions and

thus do not contribute as much to the distribution of z∗(·).
For ordinary kriging,

c∗(x, x
′) = c(x, x′)−

∫
X c(x, ξ)dξ

∫
X c(x

′, ξ)dξ∫
X

∫
X c(ξ, ξ

′)dξdξ′
.

The value of c∗(x, x), the variance of z∗(x), is given by

c∗(x, x) = c(x, x)− Constant ·
{∫

X
c(x, ξ)dξ

}2

,

which implies different points in the space have differing variances. Typically
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points in the middle of X, which have significant amounts of integrated covari-

ance, have smaller variance under this model. To illustrate take X = [0, 1] and

let c(x, x′) = exp{−(x− x′)2/ψ2}, where ψ is a lengthscale parameter, then∫
ξ∈X

c(x, ξ)dξ ∝ 1− Φ

(
−
√

2
x

ψ

)
− Φ

(
−
√

2
1− x
ψ

)
,

where Φ is the cumulative probability distribution for a Gaussian random vari-

able. This property carries over to higher dimensional functions. For exam-

ple, if the input space is [0, 1]d and the correlation function is the product of

one-dimensional Gaussian covariance functions, then the point with the smallest

variance of z∗(·) is be the center of the space, (0.5, 0.5, . . . , 0.5).

There are implications, using this orthogonal Gaussian process model, in the

design of computer experiments. The mean squared prediction error over the

space X is

MSPE := vol(X)−1
∫
X

(ŷ(x)− y(x))2 dx.

The idea is to choose a design D such that ŷ(x) that minimizes some aspect of

the MSPE, such as its expected value (Sacks et al. (1989)). Using the orthogonal

Gaussian process model, we have that

ŷ(x) = g(x)Tβ̂ + c∗(x,D)C−1∗ (Y −Gβ̂) = m̂(x) + ẑ∗(x),

where m̂(x) and ẑ∗(x) are the portions of the predictor that correspond to the

mean and random field elements. Under the conditions of Theorem 1,∫
X
{ŷ(x)− y(x)}2 dx =

∫
X
{ẑ∗(x)− z∗(x) + m̂(x)−m(x)}2 dx

=

∫
X
{m̂(x)−m(x)}2 dx+

∫
X
{ẑ∗(x)− z∗(x)}2 dx

+ 2(β̂ − β)T
∫
X

(ẑ∗(x)− z∗(x))g(x)dx

=

∫
X
{m̂(x)−m(x)}2 dx+

∫
X
{ẑ∗(x)− z∗(x)}2 dx.

Thus, choosing designed experiments under the orthogonal Gaussian process

models may be more transparent compared to other universal kriging models.

When using orthogonal Gaussian process models, separate criteria can be used

to evaluate the performance of designs for the mean and random field portions

of the response. A thorough investigation of experimental designs under the

orthogonal Gaussian process model is outside the scope of this paper.
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3. Fast Computation of the Covariance Function

After obtaining a predictor, it is evaluated numerous times for optimization

and uncertainty quantification. If the integrals in (2.2) need to be evaluated

for each new prediction, the predictor becomes expensive to evaluate and the

advantages it possess in terms of estimation and interpretability significantly

diminish. It is important to find ways to evaluate the integrals quickly.

For notational simplicity in this section, each vector x ∈ X has d components

labeled x1, . . . , xd and subscripts give dimensional indexing. Assume the input

is located in the Cartesian product of intervals, X = [a1, b1] × [a2, b2] × · · · ×
[ad, bd]. Let the function c(·, ·) be a separable covariance function, c(x, x′) =∏d
j=1 cj(xj , x

′
j), where the cj are positive definite covariance functions on [aj , bj ],

and let g(x) = g1 (x1)� g2 (x2)� · · · � gd (xd) , where the gj(·) are mappings

from [aj , bj ] to a p-dimensional vector and � indicates the Hadamard product.

Here, the high-dimensional integrals can be reduced to single dimensional

integrals, i.e.

h(x) = h1 (x1)� h2 (x2)� · · · � hd (xd) , hj(x) :=

∫ bj

aj

cj(x, ξ)gj(ξ)dξ,

H = H1 �H2 � · · · �Hd, Hj :=

∫ bj

aj

∫ bj

aj

cj(ξ
′, ξ)gj(ξ)gj(ξ

′)Tdξdξ′.

Now consider that each of the basis functions in g(·) are products of one-

dimensional linear functions. Let ith element of g(x) be
∏
j∈Ji

xj , where Ji is

subset of {1, . . . , d}. For example, if Ji is the empty set, then the ith element of

g(x) is 1, the constant function and if Ji = {j}, then the ith element of g(x) is

xj . These basis functions are typically chosen based on effect heredity principle

(Wu and Hamada (2009)), under which Ji is included only if at least one of its

subsets defines another basis function (weak heredity) or only if all of its subsets

define other basis functions (strong heredity).

Suppose the sets Ji, i = 1, . . . , p, define g(·), and consider the functions

Mj(x) :=

∫ bj

aj

cj(x, ξ)dξ, and Lj(x) :=

∫ bj

aj

ξcj(x, ξ)dξ,

the mean and L linear effects, respectively. The ith element of h(x) is
∏
j∈Ji

Lj(xj)
∏
j /∈Ji

Mj(xj). If we take

IMj :=

∫ bj

aj

∫ bj

aj

cj(ξ
′, ξ)dξdξ′, ILj :=

∫ bj

aj

∫ bj

aj

ξcj(ξ
′, ξ)dξdξ′,
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and ILLj :=

∫ bj

aj

∫ bj

aj

ξ′ξcj(ξ
′, ξ)dξdξ′,

IM is the integrated mean effect, IL is the integrated linear effect, and ILL is the

integrated linear-linear effect. The ikth element of the matrix H is then{∏
j∈Ji∪Jk

ILj
∏
j /∈Ji∪Jk

IMj , if i 6= k,∏
j∈Ji

ILLj
∏
j /∈Ji

IMj , otherwise.

Despite the friendly structure, the results still require the evaluation of an

integral to find the covariance. There are a few covariance functions for which

these integrals have closed forms. Thus if

c(x, x′) = σ2 exp

−
d∑
j=1

(xj − x′j)2

ψ2
j

 (3.1)

and X = [−1, 1]d, then

Mj(x) =

√
π σ2ψj

2

{
erf

(
x+ 1

ψj

)
− erf

(
x− 1

ψj

)}
,

Lj(x) =
σ2ψj

2

2

{
exp

(
−(x+ 1)2

ψj
2

)
− exp

(
−(x− 1)2

ψj
2

)}
+ xMj(x),

IMj = 2
√
π σ2ψj erf

(
2

ψj

)
− σ2ψj2

{
1− exp

(
− 4

ψj
2

)}
, ILj = 0, and

ILLj =
σ2ψj

4

6

{
1− exp

(
− 4

ψj
2

)}
− σ2ψj

2

3

{
3− exp

(
− 4

ψj
2

)}
+

2
√
π σ2ψj
3

erf

(
2

ψj

)
. (3.2)

Here ILj is 0 because the variables are scaled in [−1, 1]d, making H a diagonal

matrix, which further simplifies the computation of the covariance function as

c∗(x, x
′) = c(x, x′)− σ2

p∑
i=1

∏
j∈Ji

Lj(xj) Lj(x
′
j)

ILLj

∏
j /∈Ji

Mj(xj) Mj(x
′
j)

IMj
. (3.3)

Similar results can be found for the exponential and the Matèrn covariance func-

tions for certain values of the smoothness parameter. The appendix lists two

forms of the covariance corresponding to these cases.

4. Numerical Illustrations

Here, we compare the proposed method, universal kriging, and another com-

mon method using least squares. In the last method, we set β̂ =
(
GTG

)−1
GTY
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Figure 3. Plot from numerical example in Section 4.1. The thick lines are m̂(x) = β̂1+β̂2x
with orthogonal Gaussian process models (solid line), universal kriging (short dashed
line) and least squares (long dashed line) from the numerical example. The left panel
and right panel correspond to different observation schemes.

and use kriging on the residual, giving

ŷ(x) = β̂Tg(x) + c(x0, D)C−1
(
Y −Gβ̂

)
.

The third method is included because it does not have an obvious identifiability

problem and is thus a reasonable comparison. It produces the same results for

the mean function as restricted spatial regression (Hodges and Reich (2010)).

4.1. One-dimensional input

Let y(x) = sin(2x) and X = [0, 1]. As x is increased, the output in-

creases, thus we try a trend function m(x) = β1 + β2x. We use three co-

variance functions to illustrate the ideas (the Gaussian, exponential and the

Matérn): c(x, x′) = σ2 exp{−4(x − x′)2}, c(x, x′) = σ2 exp{−2|x − x′|}, and

c(x, x′) = σ2(1 + 2|x − x′|) exp(−2|x − x′|). These are covariances for which we

have derived explicit statements for the covariance. The lengthscale parameter

was fixed at a reasonable value for illustrative purposes here. It will be estimated

in the next section.

We chose two observation schemes: D = {0.3725, 0.6225, 0.7475, 0.8100,

0.8725, 0.9350, 0.9975} and D = {0, 1/8, . . . , 7/8, 1}. Figure 3 shows the esti-

mated mean function m̂(·) for all methods under the two observation schemes

when the correlation function is Gaussian. In the first scheme, the orthogonal

Gaussian process method clearly outperforms universal kriging in estimation of

the trend; in the second, more friendly observation scheme, universal kriging still

does a poor job of estimating the trend due to identifiability issues.

Prediction performance is shown in Table 1. The Gaussian has the best

predictive power here, but under all choices of covariance functions, the difference
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Table 1. Table of the results from the numerical example in Section 4.1. The RMSPE
columns are the root mean squared prediction error where the mean squared prediction

error is approximated with 400 equally spaced points. The columns labeled
∣∣∣∆β̂i∣∣∣ is the

absolute value of the difference between β̂is between the two observation schemes.

Observation Scheme #1 Observation Scheme #2

RMSPE β̂1 β̂2 RMSPE β̂1 β̂2 |∆β̂1| |∆β̂2|
LS, Gaussian 0.40(10−1) 0.63 0.38 5.25(10−5) 0.20 0.95 0.43 0.57
OGP, Gaussian 0.20(10−1) 0.25 0.94 5.40(10−5) 0.22 0.98 0.03 0.04
UK, Gaussian 0.43(10−1) 0.45 0.08 3.40(10−5) −0.07 0.70 0.51 0.61
OGP, Matérn 1.30(10−1) 0.43 0.68 222.73(10−5) 0.22 0.97 0.21 0.30
UK, Matérn 1.28(10−1) 0.46 0.29 181.06(10−5) −0.07 0.82 0.53 0.54
OGP, Exponential 1.96(10−1) 0.55 0.51 601.44(10−5) 0.22 0.97 0.33 0.46
UK, Exponential 1.91(10−1) 0.58 0.38 519.94(10−5) 0.12 0.92 0.46 0.54

between the methods is small. The major gains of the proposed approach are

seen in the estimated parameters, where the mean function parameters are most

stably estimated using it when the observation schemes are changed (see the last

column of Table 1).

4.2. Borehole function

Consider the borehole function (Worley (1987)), given by

y(x) = 2πx3(x4 − x6)
{

log

(
x2
x1

)(
1 + 2

x3x7
log(x2/x1)x21x8

+
x3
x5

)}−1
.

The space X is the rectangular region [0.05, 0.15] × [100, 5,000] × [63,070,

115,600] × [990, 1,110] × [63.1, 116] × [700, 820] × [1,120, 1,680] × [9,855,

12,045]. We scaled it [−1, 1]8 to use (3.3).

We took the mean function m(x) = β1 + β2x1 + . . . β9x8. We generated

a random Latin hypercube design 50 times for sample sizes of 20, 40, 80 and

160. Because of the function’s smoothness, we adopted the Gaussian covariance

function (3.1). We did not a priori chose ψ = (ψ1, . . . , ψ8); we selected it as the

maximum likelihood estimate,

argminψ log

[
1

n

{
Y −Gβ̂(ψ)

}T
C(ψ)−1

{
Y −Gβ̂(ψ)

}]
+

1

n
log {detC(ψ)} ,

with C∗ replacing C for the orthogonal Gaussian process method and the least

squares estimate instead of β̂(ψ) for the final method. The above optimization

problem was restricted to [0.1, 5]8.

The results of the simulations are summarized in the supplementary material.
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Figure 4. Boxplots from the numerical example in Section 4.2 of β̂1 and β̂2 from the 50
replications using the orthogonal Gaussian process (left), universal kriging (middle) and
least squares (right).

The mean square prediction error is essentially the same under each approach.

Figure 4 shows boxplots across 50 replicates for the first two β̂i’s. Using universal

kriging, β̂2 has only a small reduction in standard deviation as the sample size is

increased to 160, indicating a lack of convergence. When n = 160, the standard

deviation of the estimate of β̂2 using orthogonal Gaussian processes is ten times

smaller than the estimate using universal kriging. The results using universal

kriging are significantly worse for β̂1, which appears to be centered at different

values depending on the sample size. While the least squares estimates appear to

be converging to reasonable values, convergence is slow relative to the orthogonal

Gaussian process model. From a modeling standpoint, this may be because the

least squares estimates do not incorporate the smoothness of the response (Tuo

and Wu (2015)).

Figure 5 contains an illustration when n = 40. To show the high-dimensional

functions, we plot the functions while integrating all but the ith variable, i =

1, . . . , 8. Here, a user using m̂(x) to understand the borehole function may reach

incorrect conclusions by choosing universal kriging or least squares over the or-

thogonal Gaussian process method. This can have important implications in

identifying the causes of discrepancy in model calibration problems (Joseph and

Yan (2015)).
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Figure 5. A plot from the numerical example in Section 4.2 when n = 40. Each plot is of
functions with all but the ith variable integrated out, where on the top row i = 1, 2, 3, 4
and on the bottom row i = 5, 6, 7, 8. The true function is in the thin dark line. The thick
lines are m̂(x) using orthogonal Gaussian process models (solid line), universal kriging
(short dashed line) and least squares (long dashed line). All inputs are scaled to the
domain [−1, 1]8 for comparison.

5. Application in Multi-fidelity Simulations

A frequently encountered problem in computer experiment analysis is the

fusion of multi-fidelity simulations (Kennedy and O’Hagan (2000),Tuo, Wu and

Yu (2014)). For example, consider simulations with only two levels of accuracy

(Qian et al. (2006),Qian and Wu (2008)). The low-accuracy simulations are

cheaper, whereas the high-accuracy simulations are expensive and the aim is

to predict the output using fewer expensive simulations. Following Kennedy

and O’Hagan (2000), let g(x) be (1, y0(x))T, where y0(x) is the low-accuracy

response and y(x) is the high-accuracy response. The model is thus y(x) =

β1 +β2y0(x) + z(x), where z(x) is a Gaussian process. For simplicity, we assume

y0(x) to be available in analytical form. Since β1 and β2 have particular meaning

in this context, it becomes imperative that they be estimated well, and the

universal kriging approach (which is implied by Kennedy and O’Hagan (2000))

can give misleading results.

To illustrate these ideas, consider two examples presented in Ba et al. (2013)

and Qian et al. (2006). In the first, two responses exist and are analyzed sepa-

rately. Since the low-accuracy response used by Qian et al. (2006) was unavailable

to us, the linear low-accuracy response y0(x) = −7.97 + (2920,−0.257, 0.0119,

0.266)x was used instead, with x a vector of the design variables as ordered in

Table 2 of Qian et al. (2006). The R2 between their data and this linear model

was over 95%. The covariance was a Matèrn covariance covariance function with
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Table 2. Table of the results from the examples in Section 5.

Ba et al. (2013) Qian et al. (2006)

response # 1 response # 2

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2
LS 1.43 1.06 0.33 0.99 −0.35 1.03
OGP 0.43 1.08 1.43 0.99 0.16 1.00
UK −34.12 1.29 88.03 −1.67 −0.66 1.00

the lengthscale parameters equal to the twice the ranges of each input. For the

computation of h(·) and H, numerical quadrature was used to solve to sufficient

accuracy. The integration results from Section 3 can be used to simplify the

expression for h(·) and H in the second example because the model is linear.

There is no ability to compute RMSPE because the high-accuracy response can

only be evaluated a finite number of times due to time and resource constraints,

as detailed in the respective papers.

Table 2 shows the different conclusions one arrives at when using the esti-

mation methods. In the Ba et al. (2013) example, universal kriging produced

significantly different parameters from the other methods. The universal krig-

ing estimates of the location parameters are very large in both examples. For

the second response, the universal kriging estimate of β̂2 is negative, indicating

that the low-accuracy model does not correspond to the high-accuracy response.

If universal kriging’s estimated parameters were directly used to draw conclu-

sions, a user might wish go back and adjust the low-accuracy responses. The

orthogonal approach tells a different story, with β̂1 close to 0 and β̂2 close to 1

for both responses. Thus the parameters from the orthogonal approach indicate

that the low-accuracy responses are good representations of the high-accuracy

responses. For the Qian et al. (2006) example, all approaches similarly estimate

the scale parameter, but the sign of the estimated location parameter is flipped

with the orthogonal Gaussian process method. Moreover, both the orthogonal

approach and the universal kriging approach place the scale parameter very close

to 1 compared to the least squares approach. Thus in both datasets, informa-

tion gleaned from the estimated parameters varies based the chosen estimation

method. Based on the simulations in Sections 4.1 and 4.2, it would appear that

the orthogonal Gaussian process estimates have some advantages over the other

two approaches.
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6. Conclusions and Discussion

The accurate estimation of the mean function is important in many appli-

cations involving computer model calibration, global sensitivity analysis, and

spatial random effects modeling. The identifiability problem can be avoided by

making the mean function orthogonal to the random field, and in this article, we

have proposed a Gaussian process model that has this property. This is achieved

by modifying a given covariance function to incorporate the orthogonality con-

dition. While these covariances are defined by integrals, some versions of the

covariance functions can be quickly evaluated. This paper has focused on the

modeling aspect of the problem and numerical examples show quite promising

results for estimation.

Supplementary Materials

The online Supplementary Materials contains additional information for sec-

tion 4.2 in the paper.
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Appendix: Proof of Lemma 1

Since c(·, ·) is continuous, we can choose a measurable version of the process

z(·) such that

E

{∫
ξ∈X

z(ξ)2dξ

}
=

∫
ξ∈X

E(z(ξ)2)dξ =

∫
ξ∈X

r(ξ, ξ)dξ <∞

(Marcus and Shepp (1972)). Then

E

{∫
ξ∈X
|z(ξ)gi(ξ)|dξ

}
<∞, E

{∫
ξ∈X

∫
ξ′∈X

|z(ξ)z(ξ′)gi(ξ)gi(ξ′)|dξ′dξ
}
<∞,

by the assumption of g(·) being bounded. Thus we can appropriately switch

integral and expectation signs and note that the covariance matrix of {z(x1),
. . . , z(xn),

∫
ξ∈X z(ξ)g(ξ)dξ}T is(

C W

WT H

)
=

(
I WH−1

0 I

)(
C −WH−1WT 0

0 H

)(
I WH−1

0 I

)T

,
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where W is the n× p matrix {h(x1), . . . , h(xn)} . Since c(·, ·) is positive definite,

this matrix is positive semidefinite and C −WH−1WT is positive semidefinite.

As C∗ = C −WH−1WT, C∗ is positive semidefinite for all D.

Appendix: Proof of Theorem 1

We have that m(x) = βTg(x) and then∫
ξ∈X

m(ξ)z∗(ξ)dξ =

∫
ξ∈X

{
βTg(ξ)

}
z∗(ξ)dξ = βT

{∫
ξ∈X

z∗(ξ)g(ξ)dξ

}
.

Consider the ith element of
∫
ξ∈X z∗(ξ)g(ξ)dξ,

∫
ξ∈X z∗(ξ)gi(ξ)dξ, where gi(x) is

the ith value of g(x). We show this has mean 0 and variance 0, thus is 0 with

probability one.

Since c∗(·, ·) is continuous, we can choose a measurable version of the process

z∗(·) and then

E

{∫
ξ∈X

z(ξ)2dξ

}
=

∫
ξ∈X

r(ξ, ξ)dξ −
∫
ξ∈X

h(ξ)TH−1h(ξ)dξ

≤
∫
ξ∈X

r(ξ, ξ)dξ <∞.

As in Lemma 1, we can switch the expectation and integral to get

E

{∫
ξ∈X

z∗(ξ)gi(ξ)dξ

}
=

∫
ξ∈X

E {z∗(ξ)} gi(ξ)dξ = 0,

var

{∫
ξ∈X

z∗(ξ)gi(ξ)dξ

}
=

∫
q′∈X

∫
q∈X

c∗(q, q
′)gi(q)gi(q

′)dqdq′.

Expanding the variance term yields∫
q′∈X

∫
q∈X

c∗(q, q
′)gi(q)gi(q

′)dqdq′ =

∫
q′∈X

∫
q∈X

c(q, q′)gi(q)gi(q
′)dqdq′

−
(∫

q∈X

∫
ξ∈X

c(q, ξ)gi(q)g(ξ)Tdξdq

)(∫
ξ∈X

∫
ξ′∈X

c(ξ, ξ′)g(ξ)g(ξ′)Tdξ′dξ

)−1
·
(∫

q′∈X

∫
ξ∈X

c(ξ, q′)gi(q
′)g(ξ)dξdq′

)
=

∫
q∈X

∫
q′∈X

c(q, q′)gi(q)gi(q
′)dqdq′ −

∫
q′∈X

∫
ξ∈X

c(ξ, q′)gi(ξ)gi(q
′)dξdq′ = 0.

Appendix: Other versions of the orthogonal covariance

This section details other explicit forms of the covariance that mirror the

statement of (3.3). Let each vector x ∈ X have d components labeled x1, . . . , xd.
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We use subscripts for all dimensional indexing in this section. Assume the input

is located in the Cartesian product of standard intervals, X = [−1, 1]d. Let the

ith element of g(x) be
∏
j∈Ji

xj , where Ji is subset of {1, . . . , d}. Consider the

exponential covariance

c(x, x′) = σ2
d∏
j=1

exp

(
−
|xj − x′j |

ψj

)
.

When it is used, the values of the function and constants in (3.3) are

Mj(x) =− ψj
(

exp

(
x− 1

ψj

)
+ exp

(
−x+ 1

ψj

)
− 2

)
,

Lj(x) = ψj (ψj + x)− ψj (ψj − x)− ψj exp

(
x− 1

ψj

)
(ψj + 1)

+ ψj exp

(
−x+ 1

ψj

)
(ψj + 1) ,

IMj(x) = 4ψj + 2ψj
2

(
exp

(
− 2

ψj

)
− 1

)
,

ILLj(x) =
4ψj
3

+ 2ψj

(
ψj (ψj − 1)− ψj exp

(
− 2

ψj

)
(ψj + 1)

)
+ 2ψj

2

(
ψj (ψj − 1)− ψj exp

(
− 2

ψj

)
(ψj + 1)

)
.

The Matèrn covariance, when the smoothness parameter is given by 3/2, is

c(x, x′) = σ2
d∏
j=1

(
1 +
|xj − x′j |

ψj

)
exp

(
−
|xj − x′j |

ψj

)
.

When it is used, the values of the function and constants in (3.3) are

Mj(x) = 2ψj − ψj
(

exp

(
x− 1

ψj

)
+ exp

(
−x+ 1

ψj

)
− 2

)
(5.1)

− exp

(
−x+ 1

ψj

)
(ψj + x+ 1)

− exp

(
x− 1

ψj

)
(ψj − x+ 1) ,

Lj(x) = ψj (ψj + x) + 2ψjx− exp

(
x− 1

ψj

)(
2ψj − x− ψjx+ 2ψj

2 + 1
)

− ψj (ψj − x) + exp

(
−x+ 1

ψj

)(
2ψj + x+ ψjx+ 2ψj

2 + 1
)

− ψj exp

(
x− 1

ψj

)
(ψj + 1) + ψj exp

(
−x+ 1

ψj

)
(ψj + 1) ,
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IMj(x) = 2ψj

(
2 exp

(
− 2

ψj

)
− 3ψj + 3ψj exp

(
− 2

ψj

)
+ 4

)
,

ILLj(x) =
8ψj
3
− 4ψj exp

(
− 2

ψj

)
− 14ψj

2 exp

(
− 2

ψj

)
− 20ψj

3 exp

(
− 2

ψj

)
− 10ψj

4 exp

(
− 2

ψj

)
− 6ψj

2 + 10ψj
4.
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