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S1 Proof of Theorem 1

In the supplement, we denote Doss and Tan (2014) by D&T. The proof of the consistency of

d̂ follows from D&T section A.1 and is omitted. Establishing a CLT for d̂ is analogous to

section A.2 of D&T, but there are significant differences. Below we establish the CLT for d̂

and finally show that V̂ is a consistent estimator of V .

We begin by considering n1/2(ζ̂ − ζ0). As before, let ∇ represents the gradient operator.

We expand ∇`n at ζ̂ around ζ0, and using the appropriate scaling factor, we get

−n−1/2
(
∇`n(ζ̂)−∇`n(ζ0)

)
= −n−1∇2`n(ζ∗)n

1/2(ζ̂ − ζ0), (S1.1)

where ζ∗ is between ζ̂ and ζ0. Consider the left side of (S1.1), which is just n1/2n−1∇`n(ζ0),

since ∇`n(ζ̂) = 0. There are several nontrivial components to the proof, so we first give an

outline.

1. Following D&T we show that each element of the vector n−1∇`n(ζ0) can be represented

as a linear combination of mean 0 averages of functions of the k chains.

2. Based on Step 1, applying CLT for each of the k Markov chain averages, we obtain a

CLT for the scaled score vector. In particular, we show that n1/2n−1∇`n(ζ0)
d→ N (0,Ω),

where Ω defined in (2.8) of the main text involves infinite sums of auto-covariances of

each chain.

3. Following Geyer (1994) it can be shown that−n−1∇2`n(ζ∗)
a.s.−→ B and that

(
−n−1∇2`n(ζ∗)

)† a.s.−→
B†, where B is defined in (2.7).

4. We conclude that n1/2(ζ̂ − ζ0)
d→ N (0, B†ΩB†).



5. Since d = g(ζ0) and d̂ = g(ζ̂), where g is defined in (2.4), by the Delta method it follows

that n1/2(d̂− d)
d→ N (0, V ) where V = D>B†ΩB†D.

We now provide the details.

1. Start by considering n−1∇`n(ζ0). For r = 1, . . . , k, from D&T we have

∂`n(ζ0)

∂ζr
= wr

nr∑
i=1

(
1− pr(X(r)

i , ζ0)
)
−

k∑
l=1
l 6=r

wl

nl∑
i=1

pr(X
(l)
i , ζ0)

(can be shown to) = wr

nr∑
i=1

(
1− pr(X(r)

i , ζ0)−
[
1− Eπr

(
pr(X, ζ0)

)])
−

k∑
l=1
l 6=r

wl

nl∑
i=1

[
pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)]
.

(S1.2)

That is, (S1.2) can be used to view n−1∂`n(ζ0)/∂ζr as a linear combination of mean 0

averages of functions of the k chains.

2. Next, we need a CLT for the vector ∇`n(ζ0) = (∂`n(ζ0)/∂ζ1, · · · , ∂`n(ζ0)/∂ζk)
T , that is,

to show that n−1/2∇`n(ζ0)
d→ N(0,Ω) as n→∞. Note that,

1√
n

∂`n(ζ0)

∂ζr
= − 1√

n

k∑
l=1

wl

nl∑
i=1

[
pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)]
= −

k∑
l=1

√
n

nl
al

1
√
nl

nl∑
i=1

[
pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)]
= −

k∑
l=1

√
nal

¯̄Y (r,l),

where ¯̄Y (r,l) := 1
nl

∑nl
i=1 Y

(r,l)
i and Y

(r,l)
i is as defined in (2.6). Since pr(x, ζ) ∈ (0, 1) for

all x, r and ζ, we have Eπl
(
|pr(X, ζ0) − Eπl(pr(X, ζ0))|2+δ

)
< ∞ for any δ > 0. Then

since Φl is polynomially ergodic of order m > 1, we have asymptotic normality for the

univariate quantities
√
nl

¯̄Y (r,l) (see e.g. Corollary 2 of Jones (2004)). Since nl/n → sl

for l = 1, . . . , k and al’s are known, by independence of the k chains, we conclude that

1√
n

∂`n(ζ0)

∂ζr

d→ N (0,Ωrr) as n→∞,

where Ω is defined in (2.8). Next, we extend the component-wise CLT to a joint CLT.



Consider any t ∈ (t1, · · · , tk) ∈ Rk, we have

t1
1√
n

∂`n(ζ0)

∂ζ1

+ · · ·+ tk
1√
n

∂`n(ζ0)

∂ζk

=−
k∑
l=1

(
t1
√
nal

∑nl
i=1 Y

(1,l)
i

nl
+ · · ·+ tk

√
nal

∑nl
i=1 Y

(k,l)
i

nl

)

=−
k∑
l=1

√
n

nl
al

∑nl
i=1

(
t1Y

(1,l)
i + · · ·+ tkY

(k,l)
i

)
√
nl

d→ N (0, tTΩt) as n→∞.

Hence, the Cramér-Wold device implies the joint CLT,

n−1/2∇`n(ζ0)
d→ N (0,Ω) as n→∞. (S1.3)

Steps 3-5 are omitted since the derivations are basically the same as in D&T.

Next we provide a proof of the consistency of the estimate of the asymptotic covariance

matrix V , that is, we show that V̂ ≡ D̂>B̂†Ω̂B̂†D̂
a.s.−→ V ≡ D>B†ΩB†D as n → ∞. Since

ζ̂
a.s.−→ ζ0 and d̂

a.s.−→ d, it implies that D̂
a.s.−→ D. From D&T, we know that B̂

a.s.−→ B and

using the spectral representation of B̂ and of B, it follows that B̂†
a.s.−→ B†.

To complete the proof, we now show that Ω̂
a.s.−→ Ω where the BM estimator Ω̂ is defined

in (2.13). This will be proved in couple of steps. First, we consider a single chain Φl used

to calculate k quantities and establish a multivariate CLT. We use the results in Vats et al.

(2015) who obtain conditions for the nonoverlapping BM estimator to be strongly consistent

in multivariate settings. Second, we combine results from the k independent chains. Finally,

we show that Ω̂ is a strongly consistent estimator of Ω.

Denote ¯̄Y (l) =
(

¯̄Y (1,l), ¯̄Y (2,l), . . . , ¯̄Y (k,l)
)>

. Similar to deriving (S1.3) via the Cramér-Wold

device, we have the following joint CLT for Wl:,
√
nl

¯̄Y (l) d→ N (0,Σ(l)) as nl →∞, where Σ(l)

is a k × k covariance matrix with

Σ(l)
rs = Eπl{Y

(r,l)
1 Y

(s,l)
1 }+

∞∑
i=1

Eπl{Y
(r,l)

1 Y
(s,l)

1+i }+
∞∑
i=1

Eπl{Y
(r,l)

1+i Y
(s,l)

1 }. (S1.4)

The nonoverlapping BM estimator of Σ(l) is given in (2.10). We now prove the strong

consistency of Σ̂(l). Note that Σ̂(l) is defined using the terms Z̄(r,l)
m ’s which involve the random

quantity ζ̂. We define Σ̂(l)(ζ0) to be Σ̂(l) with ζ0 substituted for ζ̂, that is,

Σ̂(l)(ζ0) =
bl

el − 1

el−1∑
m=0

[
Ȳ (l)
m − ¯̄Y (l)

] [
Ȳ (l)
m − ¯̄Y (l)

]>
for l = 1, . . . , k,

where Ȳ (l)
m =

(
Ȳ (1,l)
m , . . . , Ȳ (k,l)

m

)>
with Ȳ (r,l)

m :=
∑(m+1)bl

j=mbl+1 Y
(r,l)
j /bl. We prove Σ̂(l) a.s.−→ Σ(l)

in two steps: (1) Σ̂(l)(ζ0)
a.s.−→ Σ(l) and (2) Σ̂(l) − Σ̂(l)(ζ0)

a.s.−→ 0. Strong consistency of the



multivariate BM estimator Σ̂(l)(ζ0) requires both el → ∞ and bl → ∞. Since for all r,

Eπl
(
|pr(X, ζ0) − Eπl(pr(X, ζ0))|4+δ

)
< ∞ for any δ > 0, Φl is polynomially ergodic of order

m > 1, and bl = bnνl c where 1 > ν > 0, it follows from Vats et al. (2015) that Σ̂(l)(ζ0)
a.s.−→ Σ(l)

as nl → ∞. We show Σ̂(l)
rs − Σ̂(l)

rs (ζ0)
a.s.−→ 0 where Σ̂(l)

rs and Σ̂(l)
rs (ζ0) are the (r, s)th elements

of the k × k matrices Σ̂(l)
rs and Σ̂(l)

rs (ζ0) respectively. By the mean value theorem (in multiple

variables), there exists ζ∗ = tζ̂ + (1− t)ζ0 for some t ∈ (0, 1), such that

Σ̂(l)
rs − Σ̂(l)

rs (ζ0) = ∇Σ̂(l)
rs (ζ∗) · (ζ̂ − ζ0), (S1.5)

where · represents the dot product. Note that

Σ̂(l)
rs (ζ) =

bl
el − 1

el−1∑
m=0

[Z̄(r,l)
m (ζ)− ¯̄Z(r,l)(ζ)][Z̄(s,l)

m (ζ)− ¯̄Z(s,l)(ζ)],

where Z̄(r,l)
m (ζ) :=

∑(m+1)bl
j=mbl+1 pr(X

(l)
j , ζ)/bl and ¯̄Z(r,l)(ζ) :=

∑nl
j=1 pr(X

(l)
j , ζ)/nl. Some calcula-

tions show that for t 6= r

∂Z̄(r,l)
m (ζ)

∂ζt
= − 1

bl

(m+1)bl∑
j=mbl+1

pr(X
(l)
j , ζ)pt(X

(l)
j , ζ)

and

∂Z̄(r,l)
m (ζ)

∂ζr
=

1

bl

(m+1)bl∑
j=mbl+1

pr(X
(l)
j , ζ)(1− pr(X(l)

j , ζ)).

We denote Ū r
m := Z̄(r,l)

m (ζ) − Eπl [pr(X, ζ)], ¯̄U r := ¯̄Z(r,l)(ζ) − Eπl [pr(X, ζ)], and similarly the

centered versions of ∂Z̄(r,l)
m (ζ)/∂ζt and ∂ ¯̄Z(r,l)(ζ)/∂ζt by V̄ (r,t)

m and ¯̄V (r,t) respectively. Since

pr(X, ζ) is uniformly bounded by 1 and Φl is polynomially ergodic of order m > 1, there exist

σ2
r , τ

2
r,t < ∞ such that

√
blŪ

r
m

d→ N(0, σ2
r),
√
nl

¯̄U r d→ N(0, σ2
r),
√
blV̄

(r,t)
m

d→ N(0, τ 2
r,t), and

√
nl

¯̄V (r,t) d→ N(0, τ 2
r,t). We have

∂Σ̂(l)
rs (ζ)

∂ζt
=

1

el − 1

el−1∑
m=0

[
√
bl(Ū

r
m − ¯̄U r)

√
bl(V̄

(s,t)
m − ¯̄V (s,t)) +

√
bl(V̄

(r,t)
m − ¯̄V (r,t))

√
bl(Ū

s
m − ¯̄U s)]

=
1

el − 1

el−1∑
m=0

[√
blŪ

r
m

√
blV̄

(s,t)
m +

√
blV̄

(r,t)
m

√
bl

¯̄U s
m

]
− 1

el − 1

[√
nl

¯̄U r√nl ¯̄V (s,t) +
√
nl

¯̄V (r,t)√nl ¯̄U s
]
.

It is easy to see that the negative term in the above expression goes to zero as el → ∞.

Further, since ∣∣∣√blŪ r
m

√
blV̄

(s,t)
m

∣∣∣ ≤ 1

2

[
bl(Ū

r
m)2
]

+
1

2

[
bl(V̄

(s,t)
m )2

]
,



we have∣∣∣∣∣ 1

el − 1

el−1∑
m=0

√
blŪ

r
m

√
blV̄

(s,t)
m

∣∣∣∣∣ ≤ 1

2

1

el − 1

el−1∑
m=0

[
bl(Ū

r
m)2
]
+

1

2

1

el − 1

el−1∑
m=0

[
bl(V̄

(s,t)
m )2

]
a.s.−→ 1

2
σ2
r+

1

2
τ 2
s,t,

where the last step above is due to strong consistency of the BM estimators for the asymptotic

variances of the sequences {pr(X(l)
j , ζ), j = 1, · · · , nl} and {∂ps(X(l)

j , ζ)/∂ζt, j = 1, · · · , nl}
respectively. Similarly, we have∣∣∣∣∣ 1

el − 1

el−1∑
m=0

√
blV̄

(r,t)
m

√
blŪ

s
m

∣∣∣∣∣ ≤ 1

2

1

el − 1

el−1∑
m=0

[
bl(V̄

(r,t)
m )2 +

1

2

1

el − 1

el−1∑
m=0

[
bl(Ū

s
m)2
]] a.s.−→ 1

2
τ 2
r,t+

1

2
σ2
s .

Note that the terms U r
mV

(r,t)
m , σ2

r , τ
2
r,t, etc, above actually depends on ζ, and we are indeed

concerned with the case where ζ takes on the value ζ∗, lying between ζ̂ and ζ0. Since,

ζ̂
a.s.−→ ζ0, ζ∗

a.s.−→ ζ0 as nl → ∞. Let ‖u‖ denotes the L1 norm of a vector u ∈ Rk. So from

(S1.5), and the fact that ∂Σ̂(l)
rs (ζ)/∂ζt is bounded with probability one, we have

|Σ̂(l)
rs − Σ̂(l)

rs (ζ0)| ≤ max
1≤t≤k

{∣∣∣∣∣∂Σ̂(l)
rs (ζ∗)

∂ζt

∣∣∣∣∣
}
‖ζ̂ − ζ0‖

a.s.−→ 0 as n→∞.

Since Σ̂(l) a.s.−→ Σ(l), for l = 1, . . . , k, it follows that Σ̂
a.s.−→ Σ where Σ̂ is defined in (2.11)

and Σ is the corresponding k2 × k2 covariance matrix, that is, Σ is a block diagonal matrix

as Σ̂ with Σ(l) substituted for Σ̂(l), l = 1, . . . , k. Since nl/n → sl for l = 1, . . . , k, we have

An → As as n→∞ where An is defined in (2.12) and

As =

(
−

√
1

s1

a1Ik −

√
1

s2

a2Ik . . . −

√
1

sk
akIk

)
.

Finally from (2.8) and (S1.4) we see that Ω = AsΣA
T
s . So from (2.13) we have Ω̂ ≡ AnΣ̂ATn

a.s.−→
AsΣA

T
s = Ω as n→∞.

S2 Proof of Theorem 2

As in Buta and Doss (2011) we write

√
n(û(π, π1;a, d̂)−u(π, π1)) =

√
n(û(π, π1;a, d̂)−û(π, π1;a,d))+

√
n(û(π, π1;a,d)−u(π, π1)).

(S2.6)

First, consider the 2nd term, which involves randomness only from the 2nd stage. From (3.3)

note that
∑k

l=1 alEπlu(X;a,d) = u(π, π1). Then from (3.1) we have

√
n(û(π, π1;a,d)− u(π, π1)) =

k∑
l=1

al

√
n

nl

∑nl
i=1(u(X

(l)
i ;a,d)− Eπlu(X;a,d))

√
nl

.



Since Φl is polynomially ergodic of order m and Eπl |u(X;a,d)|2+δ is finite where m > 1+2/δ,

it follows that
∑nl

i=1(u(X
(l)
i ;a,d) − Eπlu(X;a,d))/

√
nl

d→ N(0, τ 2
l (π;a,d)) where τ 2

l (π;a,d)

is defined in (3.4). As nl/n→ sl and the Markov chains Φl’s are independent, it follows that
√
n(û(π, π1;a,d)− u(π, π1))

d→ N(0, τ 2(π;a,d)).

Now we consider the 1st term in the right hand side of (S2.6). Letting F (z) = û(π, π1;a, z),

by Taylor series expansion of F about d we have

√
n(F (d̂)− F (d)) =

√
n∇F (d)>(d̂− d) +

√
n

2
(d̂− d)>∇2F (d∗)(d̂− d), (S2.7)

where d∗ is between d and d̂. Simple calculations show that

[∇F (d)]j−1 =
k∑
l=1

al
nl

nl∑
i=1

ajνj(X
(l)
i )ν(X

(l)
i )

(
∑k

s=1 asνs(X
(l)
i )/ds)2d2

j

a.s.−→ [c(π;a,d)]j−1 (S2.8)

where [c(π;a,d)]j−1 is defined in (3.5). We know that n/N → q. Using similar arguments as

in Buta and Doss (2011), it follows that ∇2F (d∗) is bounded in probability. Thus from (S2.7)

we have

√
n(F (d̂)− F (d)) =

√
n

N
∇F (d)>

√
N(d̂− d) +

1

2
√
N

√
n

N
[
√
N(d̂− d)]>∇2F (d∗)[

√
N(d̂− d)]

=
√
qc(π;a,d)>

√
N(d̂− d) + op(1).

Then Theorem 2 (1) follow from (S2.6) and the independence of the two stages of Markov

chain sampling.

Next to prove Theorem 2 (2), note that, we already have a consistent BM estimator V̂

of V . From (S2.8), we have [ĉ(π;a,d)]j−1 = [∇F (d)]j−1
a.s.−→ [c(π;a,d)]j−1. Applying mean

value theorem on [∇F (d)]j−1 and the fact that ∇2F (d∗) is bounded in probability, it follows

that [ĉ(π;a, d̂)]j−1−[ĉ(π;a,d)]j−1
a.s.−→ 0. Writing c(π;a,d)>V c(π;a,d) as

∑k−1
i=1

∑k−1
j=1 ciVijcj,

it then follows that ĉ(π;a, d̂)>V̂ ĉ(π;a, d̂)
a.s.−→ c(π;a,d)>V c(π;a,d).

We now show τ̂ 2
l (π;a, d̂) is a consistent estimator of τ 2

l (π;a,d) where τ 2
l and τ̂ 2

l are

defined in (3.4) and (3.7), respectively. Since the Markov chains {X(l)
i }nli=1 are independent,

it then follows that τ 2(π;a,d) is consistently estimated by τ̂ 2(π;a, d̂) completing the proof of

Theorem 2 (2).

If d is known from the assumptions of Theorem 2 (2) and the results in Vats et al.

(2015), we know that τ 2
l (π;a,d) is consistently estimated by its BM estimator τ̂ 2

l (π;a,d).

Note that, τ̂ 2
l (π;a,d) is defined in terms of the quantities u(X

(l)
i ;a,d)’s. We now show that

τ̂ 2
l (π;a, d̂)− τ̂ 2

l (π;a,d)
a.s.−→ 0.



Denoting τ̂ 2
l (π;a, z) by G(z), by the mean value theorem (in multiple variables), there

exists d∗ = td̂+ (1− t)d for some t ∈ (0, 1), such that G(d̂)−G(d) = ∇G(d∗) · (d̂− d). For

any j ∈ {2, · · · , k}, and z ∈ R+k−1
,

∂G(z)

∂zj
=

bl
el − 1

[
el−1∑
m=0

2(ūm(a, z)− ¯̄u(a, z))

(
∂ūm(a, z)

∂zj
− ∂ ¯̄u(a, z)

∂zj

)]
(S2.9)

Let W̄m := ūm(a, z)− Eπl(u(X;a, z)) and ¯̄W := ¯̄u(a, z)− Eπl(u(X;a, z)). Note that, there

exists, σ2 < ∞ such that
√
blW̄m

d→ N(0, σ2), and
√
nl

¯̄W
d→ N(0, σ2). Simple calculations

show that

∂ūm(a, z)

∂zj
=
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z2
j

1

bl
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 ν(X
(l)
i )νj(X

(l)
i )(∑

s asνs(X
(l)
i )/zs

)2 .


Hence, letting αj = Eπl [ν(X)νj(X)/ (

∑
s asνs(X)/zs)

2
], we write

∂ūm(a, z)

∂zj
− ∂ ¯̄u(a, z)

∂zj
≡ aj
z2
j

{
Z̄m,j

}
− aj
z2
j

{
¯̄Zj
}
,

where Z̄1,j = (1/bl)
∑bl

i=1[ν(X
(l)
i )νj(X

(l)
i )/{

∑
s asνs(X

(l)
i )/zs}2]−αj and ¯̄Zj is similarly defined.

Note that, there exists τ 2
j <∞, such that

√
blZ̄m,j

d→ N(0, τ 2
j ), and

√
nl

¯̄Zj
d→ N(0, τ 2

j ). From

(S2.9) we have

∂G(z)

∂zj
=
aj
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j
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el−1∑
m=0

[√
bl(W̄m − ¯̄W )

√
bl
(
Z̄m,j − ¯̄Zj

)]
=
aj
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j

2

el − 1
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m=0

[√
blW̄m

√
blZ̄m,j

]
−aj
z2
j

2bl

[
¯̄Zj

1

el − 1

el−1∑
m=0

W̄m + ¯̄W
1

el − 1

el−1∑
m=0

Z̄m,j −
el

el − 1
¯̄W ¯̄Zj

]

=
aj
z2
j

2

el − 1

el−1∑
m=0

[√
blW̄m

√
blZ̄m,j

]
− aj
z2
j

2

el − 1

[√
nl

¯̄W
√
nl

¯̄Zj
]
.

Then using similar arguments as in the proof of Theorem 1, it can be shown that ∂G(z)/∂zj

is bounded with probability one. Then it follows that

|G(d̂)−G(d)| ≤ max
1≤j≤k−1

{∣∣∣∣∂G(d∗)

∂zj

∣∣∣∣} ‖d̂− d‖ a.s.−→ 0.

S3 Proof of Theorem 3

As in the proof of Theorem 2 we write

√
n(η̂[f ](π;a, d̂)−Eπf) =

√
n(η̂[f ](π;a, d̂)− η̂[f ](π;a,d)) +

√
n(η̂[f ](π;a,d)−Eπf). (S3.10)



First, consider the 2nd term, which involves randomness only from the 2nd stage. Since

v̂
a.s.−→

k∑
l=1

alEπlv
[f ](X;a,d) =

∫
X

f(x)
∑k

l=1 alνl(x)/ml∑k
s=1 asνs(x)/(ms/m1)

ν(x)µ(dx) =
m

m1

Eπf,

we have
∑k

l=1 alEπlv
[f ](X;a,d) = Eπfu(π, π1). Then from (3.1) we have

√
n

(
v̂[f ](π;a,d)− Eπfu(π, π1)

û(π, π1;a,d)− u(π, π1)

)
=

k∑
l=1

al

√
n

nl

1
√
nl

nl∑
i=1

(
v[f ](X

(l)
i ;a,d)− Eπlv[f ](X;a,d)

u(X
(l)
i ;a,d)− Eπlu(X;a,d)

)
.

(S3.11)

From the conditions of Theorem 3 and the fact that the Markov chains Φl, l = 1, . . . , k are

independent, it follows that the above vector (S3.11) converges in distribution to the bivariate

normal distribution with mean 0 and covariance matrix Γ(π;a,d) defined in (3.9). Then

applying the Delta method to the function g(x, y) = x/y we have a CLT for the ratio estimator

η̂[f ](π;a,d), that is, we have
√
n(η̂[f ](π;a,d) − Eπf)

d→ N(0, ρ(π;a,d)) where ρ(π;a,d)) is

defined in (3.10).

Next letting L(z) = η̂[f ](π;a, z), by Taylor series expansion of L about d we have

√
n(L(d̂)− L(d)) =

√
n∇L(d)>(d̂− d) +

√
n

2
(d̂− d)>∇2L(d∗)(d̂− d), (S3.12)

where d∗ is between d and d̂. Simple calculations show that

[∇L(d)]j−1 = [ê(π;a,d)]j−1
a.s.−→ [e(π;a,d)]j−1 (S3.13)

where [e(π;a,d)]j−1 and [ê(π;a,d)]j−1 are defined in (3.11) and (3.12) respectively. It can

be shown that ∇2L(d∗) is bounded in probability. Thus from (S3.12) we have
√
n(L(d̂) −

L(d)) =
√
qe(π;a,d)>

√
N(d̂ − d) + op(1). Then Theorem 3 (1) follow from (S3.10) and the

independence of the two stages of Markov chain sampling.

Next to prove Theorem 3 (2), note that, we already know that V̂ is a consistent BM

estimator of V . From (S3.13), we have [ê(π;a,d)]j−1
a.s.−→ [e(π;a,d)]j−1. Applying mean

value theorem on [∇L(d)]j−1 and the fact that ∇2L(d∗) is bounded in probability, it follows

that [ê(π;a, d̂)]j−1 − [ê(π;a,d)]j−1
a.s.−→ 0.

From (3.8) we know that û(π, π1;a, d̂)
a.s.−→ u(π, π1). From (3.13) we know η̂[f ](π;a, d̂)

a.s.−→
Eπf . Since v̂[f ](π, π1;a,d) = η̂[f ](π;a,d)û(π, π1;a,d), it follows that v̂[f ](π, π1;a, d̂)

a.s.−→
Eπfu(π, π1). Thus ∇h(v̂[f ](π, π1;a, d̂), û(π, π1;a, d̂))

a.s.−→ ∇h(Eπfu(π, π1), u(π, π1)). Thus to

prove Theorem 3 (2), we only need to show that Γ̂l(π;a, d̂)
a.s.−→ Γl(π;a,d).

If d is known from the assumptions of Theorem 3 (2) and the results in Vats et al. (2015),

we know that Γl(π;a,d) is consistently estimated by its BM estimator Γ̂l(π;a,d). We now

show that Γ̂l(π;a, d̂)− Γ̂l(π;a,d)
a.s.−→ 0.



From Theorem 2 (2), we know that γ̂22
l (π;a, d̂) − γ̂22

l (π;a,d)
a.s.−→ 0. We now show

γ̂11
l (π;a, d̂) − γ̂11

l (π;a,d)
a.s.−→ 0. Letting γ̂11

l (π;a, z) by H(z), by the mean value theorem,

there exists d∗ = td̂+ (1− t)d for some t ∈ (0, 1), such that H(d̂)−H(d) = ∇H(d∗) · (d̂−d).

For any j ∈ {2, · · · , k}, and z ∈ R+k−1
,

∂H(z)

∂zj
=

bl
el − 1

[
el−1∑
m=0

2(v̄[f ]
m (a, z)− ¯̄v[f ](a, z))

(
∂v̄[f ]

m (a, z)

∂zj
− ∂ ¯̄v[f ](a, z)

∂zj

)]
.

Let W̄ [f ]
m := v̄[f ]

m (a, z) − Eπl(v[f ](X;a, z)) and ¯̄W [f ] := ¯̄v[f ](a, z) − Eπl(v[f ](X;a, z)). Note

that, there exists, σ2
f < ∞ such that

√
blW̄

[f ]
m

d→ N(0, σ2
f ), and

√
nl

¯̄W [f ] d→ N(0, σ2
f ). Simple

calculations show that

∂v̄[f ]
m (a, z)

∂zj
=
aj
z2
j

1

bl

(m+1)bl∑
i=mbl+1

f(X
(l)
i )ν(X

(l)
i )νj(X

(l)
i )(∑

s asνs(X
(l)
i )/zs

)2 .


Hence, letting α

[f ]
j = Eπl [f(X)ν(X)νj(X)/ (

∑
s asνs(X)/zs)

2
], we write

∂v̄[f ]
m (a, z)

∂zj
− ∂ ¯̄u[f ](a, z)

∂zj
≡ aj
z2
j

{
Z̄

[f ]
m,j

}
− aj
z2
j

{
¯̄Z

[f ]
j

}
,

where Z̄
[f ]
1,j = (1/bl)

∑bl
i=1[f(X

(l)
i )ν(X

(l)
i )νj(X

(l)
i )/{

∑
s asνs(X

(l)
i )/zs}2] − α[f ]

j and ¯̄Z
[f ]
j is sim-

ilarly defined. Note that, there exists τ 2
j,f < ∞, such that

√
blZ̄m,j

d→ N(0, τ 2
j,f ), and

√
nl

¯̄Zj
d→ N(0, τ 2

j,f ). The rest of the proof is analogous to Theorem 2, in that we have

∂H(z)

∂zj
=
aj
z2
j

2

el − 1

el−1∑
m=0

[√
blW̄

[f ]
m

√
blZ̄

[f ]
m,j

]
− aj
z2
j

2

el − 1

[√
nl

¯̄W [f ]√nl ¯̄Z
[f ]
j

]
.

Then it can be shown γ̂11
l (π;a, d̂)− γ̂11

l (π;a,d)
a.s.−→ 0 and finally γ̂12

l (π;a, d̂)− γ̂12
l (π;a,d)

a.s.−→
0.



S4 Regeneration with general weights

Tan et al. (2015) provide a regeneration based central limit theorem (CLT) for the estimators

η̂ and û defined in 1.3 and 3.1 respectively in the main manuscript. In the case when d is

unknown, they allow only a special choice for the weight vector, namely a = (1, d̂) for their

results to hold, where d̂ is the estimator of d based on the Stage 1 chains discussed in Section 2

of the main paper. In this section, we establish a regeneration based CLT for η̂ and û with

any choice of the weight vector a.

We will refer to the following conditions.

A1 For each l = 1, . . . , k, the Markov chain Φl = {X(l)
0 , X

(l)
1 , . . .} is geometrically ergodic

and has πl as its invariant density.

A2 Let kl : X×X→ [0,∞) be the Markov transition density for Φl, so that for any measurable

set A we have P
(
X

(l)
n+1 ∈ A |X(l)

n = x
)

=
∫
A
kl(y|x)µ(dy). Suppose that for each l =

1, . . . , k, kl satisfies the following minorization condition:

kl(y|x) ≥ sl(x) ql(y) for all x, y ∈ X, (S4.14)

where the function sl : X→ [0, 1) with Eπlsl > 0, and ql is a probability density function

on X.

A3 Recall the functions u(X;a,d) and v[f ](X;a,d) defined in (3.2) of our paper. There

exists ε > 0 such that Eπl |v[f ](X;a,d)|2+ε and Eπl |u(X;a,d)|2+ε are finite.

A4 Suppose Φl is simulated for Rl regenerative tours for l = 1, . . . , k. Assume Rl/R1 → bl ∈
(0,∞) as R1 →∞.



Following Tan et al. (2015), let the regeneration times for the lth Markov chain be τ
(l)
0 =

0, τ
(l)
1 , τ

(l)
2 , . . .. Accordingly, the chain Φl is broken up into “tours”

{(
X
τ
(l)
t−1
, . . . , X

τ
(l)
t −1

)
, t =

1, 2, . . .
}

that are independent stochastic replicas of each other. Suppose we simulate Rl tours

of the lth Markov chain for l = 1, . . . , k, so the length of the lth chain is nl = τ
(l)
Rl

. Also as in

Tan et al. (2015), for t = 1, 2, . . . , Rl define

V
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

v[f ](X
(l)
i ;a,d), U

(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

u(X
(l)
i ;a,d), and T

(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

1 = τ
(l)
t − τ

(l)
t−1,

(S4.15)

where the sums range over the values of i that constitute the tth tour.

Recall from Remark 3 in Section 3 of our paper, when d is unknown, we set a = w∗(1, d̂)

where ∗ denotes component-wise multiplication. That is, (a1, . . . , ak) = (w1, w2, . . . , wk) ∗
(1, d̂2, . . . , d̂k) for any pre-determined weight w. With this choice, the expressions for u and

v[f ] in (3.2) become

u
(
x;w ∗ (1, d̂), d̂

)
=

ν(x)∑k
l=1wlνl(x)

and v[f ]
(
x;w ∗ (1, d̂), d̂

)
=

f(x)ν(x)∑k
l=1wlνl(x)

. (S4.16)

The above quantities do not involve d̂, and consequently for each l, the triples
(
V

(l)
t , U

(l)
t , T

(l)
t

)
, t =

0, 1, 2, . . . defined in (S4.15) are iid, and we have independence across l’s. The estimator for

η reduces to

η̂ = η̂N,n
(
w ∗ (1, d̂), d̂

)
=

k∑
l=1

wld̂l
nl

nl∑
i=1

f(X
(l)
i )ν(X

(l)
i )∑k

s=1wlνs(X
(l)
i )

/ k∑
l=1

wld̂l
nl

nl∑
i=1

ν(X
(l)
i )∑k

s=1wsνs(X
(l)
i )

=
k∑
l=1

wld̂l
nl

Rl∑
t=1

V
(l)
t

/ k∑
l=1

wld̂l
nl

Rl∑
t=1

U
(l)
t

=
k∑
l=1

wld̂l
V̄ (l)

T̄ (l)

/ k∑
l=1

wld̂l
Ū (l)

T̄ (l)
, (S4.17)

where

U
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

ν(X
(l)
i )∑k

s=1wsνs(X
(l)
i )

and V
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

f(X
(l)
i )ν(X

(l)
i )∑k

s=1wsνs(X
(l)
i )

,

T̄ (l) = R−1
l

∑Rl
t=1 T

(l)
t be the average tour length and, analogously, V̄ (l) = R−1

l

∑Rl
t=1 V

(l)
t and



S4.1 Proof of Theorem 4

Ū (l) = R−1
l

∑Rl
t=1 U

(l)
t . Similarly, the estimator for m/m1 reduces to

û = ûN,n
(
w ∗ (1, d̂), d̂

)
=

k∑
l=1

wld̂l
nl

nl∑
i=1

ν(X
(l)
i )∑k

s=1wsνs(X
(l)
i )

=
k∑
l=1

wld̂l
nl

Rl∑
t=1

U
(l)
t =

k∑
l=1

wld̂l
Ū (l)

T̄ (l)
.

(S4.18)

Theorem 4 below gives the asymptotic distributions of η̂ and û. It extends Tan et al.’s

(2015) Theorem 2 to the general choice of weight vector a. To state the theorem, we first need

to define some notation. Let M̃ and L̃ be the vectors of length k − 1 for which the (j − 1)th

coordinates are, for j = 2, . . . , k,

M̃j−1 = wjEπju and

L̃j−1 =
wjEπjv

[f ]∑k
l=1wldlEπlu

−
(∑k

l=1wldlEπlv
[f ]
)(
wjEπju

)(∑k
l=1wldlEπlu

)2 .
(S4.19)

As in Tan et al. (2015), assume that in Stage 1, for l = 1, . . . , k, the lth chain has been run for

ρl regenerations. So the length of the lth chain, Nl = T
(l)
1 + . . .+ T (l)

ρl
, is random. We assume

that ρ1, . . . , ρk →∞ in such a way that ρl/ρ1 → cl ∈ (0,∞), for l = 1, . . . , k.

Theorem 4 Suppose that for the Stage 1 chains, conditions A1 and A2 hold, and that for

the Stage 2 chains, conditions A1–A4 hold. If ρ1 → ∞ and R1 → ∞ in such a way that

R1/ρ1 → q ∈ [0,∞), then

R
1/2
1

(
û−m/m1

) d→ N
(
0, qM̃>WM̃ + κ2

)
and

R
1/2
1

(
η̂ − η

) d→ N
(
0, qL̃>WL̃+ τ 2

)
,

where M̃ , L̃ are given in equations (S4.19), W , κ2 and τ 2 are given in equations (2.15), (2.8),

and (2.10) of Tan et al. (2015), respectively. In their (2.8) and (2.10), a is taken to be a =

w∗(1,d). Furthermore, we can form strongly consistent estimates of the asymptotic variances

if we use Ŵ , κ̂2, and τ̂ 2 defined in (2.16) and (2.11) of Tan et al. (2015), respectively, and

use the standard empirical estimates of M̃ and L̃.

S4.1 Proof of Theorem 4

We first prove the CLT for η̂. Note that

R
1/2
1

[
η̂
(
w∗(1, d̂), d̂

)
−η
]

= R
1/2
1

[
η̂
(
w∗(1, d̂), d̂

)
− η̂
(
w∗(1,d),d

)]
+R

1/2
1

[
η̂
(
w∗(1,d),d

)
−η
]
.

(S4.20)



S4.1 Proof of Theorem 4

The second term on the right side of (S4.20) involves randomness coming only from Stage 2

sampling, and its distribution is given by Theorem 1 of Tan et al. (2015): it is asymptotically

normal with mean 0 and variance τ 2. The first term involves randomness from both Stage 1

and Stage 2 sampling. However, as in the proofs of Theorem 2 and 3, we can show that for

this term, the randomness from Stage 2 is asymptotically negligible, so that only Stage 1

sampling contributes to its asymptotic distribution. Finally, the asymptotic normality of the

left side of (S4.20) follows since the two stages of sampling are independent. We now provide

the details of the proof.

Consider the first term on the right side of (S4.20). Recall that if a = w ∗ (1,d), then

v[f ](x) := v[f ](x;a,d) =
f(x)ν(x)∑k
l=1wlνl(x)

and u(x) := u(x;a,d) =
ν(x)∑k

l=1wlνl(x)
.

With (S4.17) and (S4.18) in mind, define the function

A(z) = η̂
(
w ∗ (1, z), z

)
=

k∑
l=1

wlzl
nl

nl∑
i=1

v[f ](X
(l)
i )

/ k∑
l=1

wlzl
nl

nl∑
i=1

u(X
(l)
i )

for z = (z2, . . . , zk)
>, with zl > 0 for l = 2, . . . , k, and z1 = 1. Note that setting z = d gives

A(d) = η̂(w ∗ (1,d),d), and setting z = d̂ gives A(d̂) = η̂(w ∗ (1, d̂), d̂).

By a Taylor series expansion of A about d we get

R
1/2
1

[
η̂
(
w∗(1, d̂), d̂

)
− η̂
(
w∗(1,d),d

)]
= R

1/2
1 ∇A(d)>(d̂−d)+

R
1/2
1

2
(d̂−d)>∇2A(d∗)(d̂−d)

= R
1/2
1 ∇A(d)>(d̂− d) +

R
1/2
1

2ρ1

(
ρ

1/2
1 (d̂− d)

)>∇2A(d∗)
(
ρ

1/2
1 (d̂− d)

)
,

where d∗ is between d and d̂. As R1 → ∞, nl → ∞ for each l. We first show that the

gradient ∇A(d) converges almost surely to a finite constant vector by proving that each one

of its components, [A(d)]j−1, j = 2, . . . , k, converges almost surely as R1 → ∞. As nl → ∞
for l = 1, . . . , k, for j = 2, . . . , k, we have

[∇A(d)]j−1 =
(wj/nj)

∑nj
i=1 v

[f ](X
(j)
i )∑k

l=1(wldl/nl)
∑nl

i=1 u(X
(l)
i )

−
(∑k

l=1(wldl/nl)
∑nl

i=1 v
[f ](X

(l)
i )
)(

(wj/nj)
∑nj

i=1 u(X
(j)
i )
)(∑k

l=1(wldl/nl)
∑nl

i=1 u(X
(l)
i )
)2

a.s.−→
wjEπjv

[f ]∑k
l=1wldlEπlu

−
(∑k

l=1wldlEπlv
[f ]
)(
wjEπju

)(∑k
l=1wldlEπlu

)2 .



S4.1 Proof of Theorem 4

The expression above corresponds to L̃j−1, which is defined in (S4.19), and it is finite by

assumption A3. Next, we show that the random Hessian matrix ∇2A(d∗) is bounded in

probability, i.e., each element of this matrix is Op(1). As nl → ∞ for l = 1, . . . , k, for any

j, t ∈ {2, . . . , k}, j 6= t, we have

[∇2A(d∗)]t−1,j−1 = −
(wj
nj

∑nj
i=1 v

[f ](X
(j)
i )
)(

wt
nt

∑nt
i=1 u(X

(t)
i )
)

(∑k
l=1

wld∗l
nl

∑nl
i=1 u(X

(l)
i )
)2

−
(
wj
nj

nj∑
i=1

u(X
(j)
i )

)[ wt
nt

∑nt
i=1 v

[f ](X
(t)
i )(∑k

l=1

wld∗l
nl

∑nl
i=1 u(X

(l)
i )
)2 − 2

(∑k
l=1

wld
∗
l

nl

∑nl
i=1 v

[f ](X
(l)
i )
)(

wt
nt

∑nt
i=1 u(X

(t)
i )
)(∑k

l=1

wld∗l
nl

∑nl
i=1 u(X

(l)
i )
)3

]

a.s.−→ −
(wjEπjv

[f ])(wtEπtu)(∑k
l=1wldlEπlu

)2 − (wjEπju)

[
wtEπtv

[f ](∑k
l=1wldlEπlu

)2 − 2

(∑k
l=1wldlEπlv

[f ]
)
(wtEπtu)(∑k

l=1wldlEπlu
)3

]
,

where the limits are also finite.

Now, we can rewrite (S4.20) as

R
1/2
1

[
η̂
(
w ∗ (1, d̂), d̂

)
− η

]
= (R1/ρ1)1/2∇A(d)>ρ

1/2
1 (d̂− d) +R

1/2
1

[
η̂
(
w ∗ (1,d),d

)
− η

]
+

1

2ρ
1/2
1

(R1/ρ1)1/2
[
ρ

1/2
1 (d̂− d)

]>∇2A(d∗)
[
ρ

1/2
1 (d̂− d)

]
= q1/2[∇A(d)]>ρ

1/2
1 (d̂− d) +R

1/2
1

[
η̂
(
w ∗ (1,d),d

)
− η

]
+ op(1).

Since from Tan et al. (2015) we have ρ
1/2
1 (d̂−d)

d→ N (0,W ) and the two sampling stages are

assumed to be independent, we conclude that

R
1/2
1

[
η̂
(
w ∗ (1, d̂), d̂

)
− η

] d→ N
(
0, qL̃>WL̃+ τ 2

)
.

The proof of the CLT for û is similar. As in (S4.20), we have

R
1/2
1

[
û
(
w ∗ (1, d̂), d̂

)
−m/m1

]
= R

1/2
1

[
û
(
w ∗ (1, d̂), d̂

)
− û

(
w ∗ (1,d),d

)]
+R

1/2
1

[
û
(
w ∗ (1,d),d

)
−m/m1

]
.

(S4.21)

The asymptotic distribution of the second term in (S4.21) is given in Tan et al.’s (2015)

Theorem 1. The first term is linear in d̂− d:

û
(
w ∗ (1, d̂), d̂

)
− û

(
w ∗ (1,d),d

)
=

k∑
j=2

wj

(
1

nj

nj∑
i=1

u(X
(j)
i )

)
(d̂j − dj). (S4.22)

For j = 2, . . . , k, the coefficient of (d̂j − dj) in (S4.22) converges almost surely to wjEπju,

which is the term M̃j−1 defined in (S4.19).

Finally, from the independence of the two terms in (S4.21) we conclude that

R
1/2
1

[
û
(
(1, d̂), d̂

)
−m/m1

] d→ N
(
0, qM̃>WM̃ + κ2

)
.



S5 Toy example

In this section, we follow up on the simulation studies that involve t distributions from Sec-

tion 4 of the main paper to verify Theorems 1-3. We also discuss different weights in forming

generalized IS estimators and their effects on estimates of expectations and ratios of normal-

izing constants.

Let tr,µ denote the t-distribution with degree of freedom r and central parameter µ. We

consider π1(·) and π2(·) as the density functions for a t5,µ1=1 and t5,µ2=0, respectively. For

simplicity, let νi(·) = πi(·) for i = 1, 2. Our plan is to first estimate the ratio between

the two normalizing constants, d = m2/m1. Then we will study a sea of t-distributions

Π = {t5,µ : µ ∈ M} where M is a fine grid over [0, 1], say M = {0, .01, · · · , .99, 1}. For

each µ ∈M , we assume that νµ(·) = πµ(·) and we estimate the ratio between its normalizing

constant and m1, denoted by dµ := mµ
m1

. We also estimate the expectation of each distribution

in Π, denoted Et5,µX or EµX for short. Clearly, the exact answers are d = dµ = 1 and

EµX = µ for any µ ∈M . Nevertheless, we follow the two-stage procedure from Sections 2 and

3 to generate Markov chains from π1 and π2 and build MCMC estimators from Theorems 1-3.

The primary goal is to compare the performance of BM and RS estimators.

We draw iid samples from π1 and Markov chain samples from π2 using the so called

independent Metropolis Hastings algorithm with proposal density t5,1. For RS, we follow the

idea of Mykland et al. (1995, Section 4.1) on constructing minorization conditions to identify

regeneration times. Based on a carefully tuned minoration condition, the Markov chain for

π2 regenerates about every 3 iterations on average. In contrast, for users of the BM method

proposed in this paper, no such theoretical development is needed. For i = 1, 2 we draw Ni

observations from πi in stage 1 and ni observations from πi in stage 2. We set N1 = N2

and n1 = n2 = N1/10 = N2/10. Recall the reason for smaller stage 2 sample sizes is due to

computing cost. For completeness, note generating Markov chain samples using RS results in

a random chain length so these chains were run in such a way that N1 ∼ N2 and n1 ∼ n2.

For estimators based on stage 1 samples, Theorem 1 allows any choice of weight, a[1].

For estimators based on stage 2 samples, Theorem 2 and 3 allow any choice of weight, a[2],

in constructing consistent BM estimators of the asymptotic variances. RS based estimators

in stage 2 are calculated using Theorems stated in D&T and Tan et al. (2015) with a general

weight choice noted in Remark 4. This is an important generalization in that now any non-

negative numerical weight vector can be used. We discuss the choice of weights and their

impact on the estimators later in this section.

The following details the simulation study presented in the main article. We consider



S5.1 Choice of stage 1 weights

increasing sample sizes from N1 = 103 to 105 in order to examine trace plots for BM and

RS estimates. The two stage procedure is repeated 1000 times independently. The unknown

true value of the asymptotic variance of d̂ is estimated by its empirical asymptotic variance

over the 1000 replications at N1 = 105. We consider the naive weight, a[1] = (0.5, 0.5), that

is proportional to the sample sizes, and an alternative a[1] = (0.82, 0.18) that weighs the iid

sample more than the Markov chain sample. As illustrated in Figure 1 of the main article,

both the BM and the RS estimates approach the empirical asymptotic variance as the sample

size increases suggesting consistency. Similarly for stage 2, Figure 1 shows convergence of

the BM and the RS estimates to the corresponding empirical asymptotic variances of d̂µ and

Êµ(X). Plots for other µ ∈M show similar results, but are not included here.

Overall, the simulation study suggests BM and RS methods provide consistent estimators

for the true asymptotic variance. RS estimators enjoy smaller mean squared error in most

cases. Nevertheless, when the number of regenerations is not great, BM estimators could be

the more stable estimator. For example, in the top left panel of Figure 1, at stage 2 sample

size n2 ≈ n1 = 100, or about 35 regenerations for chain 2, the RS method substantially over-

estimated the target in about 5% of the replications. Further, in the cases where regeneration

is unavailable or the number of regenerations is extremely small, then BM would be the more

viable estimator.

S5.1 Choice of stage 1 weights

For stage 1, we recommend obtaining a close-to-optimal weight â[1,opt] using a pilot study

described in D&T. In short, one can generate samples of small size from π1 and π2, estimate

d̂ and its asymptotic variance based on Theorem 1 for a grid of weights, and then identify

the weight that minimizes the estimated variance. With a small pilot study based on samples

of size 1000 from both distributions, we obtained â[1,opt] = (0.82, 0.18). As depicted by the

horizontal lines accross the pictures in Figure 1 of the main article, the asymptotic variance

of the estimator d̂ based on â[1,opt] is approximately 0.07, which is more than 30% smaller

than of the estimator based on the naive choice a[1] = (.5, .5). Note that the naive weight

is proportional to the sample sizes from π1 and π2, which is asymptotically optimal if both

samples were independent. However, since sample 2 is from a Markov chain sample, using

a weight that appropriately favors the independent sample has lead to smaller error in the

estimator. The gain in efficiency using a close-to-optimal weight will be more pronounced if

the difference in the mixing rates of the two samples is larger.
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Figure 1: Estimates of the asymptotic variance of d̂µ (upper panels) and Êµ(X) (lower panels) in

stage 2, with naive weight a[2] = (.5, .5).

S5.2 Choice of stage 2 weights

In stage 2, for each µ ∈ M , the asymptotic variance of d̂µ and Êµ(X) are minimized at

different weights. Instead of searching for each of the 2|M | optimal weights in a pilot study,

it is more practical to set sub-optimal weights using less costly strategies. Below, we perform

a simulation study to examine three simple weighting strategies:

1. naive: a[2] ∝ (n1, n2),

2. inverse distance (inv-dist): a[2](µ) ∝
(

n1

|µ−µ1| ,
n2

|µ−µ2|

)
,

3. effective sample size (ess) by inverse distance (inv-dist): a[2](µ) ∝
(

ess1
|µ−µ1| ,

ess2
|µ−µ2|

)
.

Using each of the three strategies, we construct generalized IS estimators for dµ and Eµ(X)

for a grid of µ values between −1.5 and 4. Note that samples are drawn from two reference

distributions indexed by µ = 1 and µ = 0 respectively. Hence our simulation study concerns
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Figure 2: Comparisons of three weight strategies in terms of the asymptotic variance of the correspond-

ing estimators d̂µ and Êµ(X). The solid dots show which strategy achieves the smallest asymptotic

variance among the three at any given µ (ties awarded to the more basic strategy).

both interpolation and extrapolation. A summary of their performance is provided in Figure 2,

and detailed results for selected simulation setups are shown in Figures 1, 3, and 4 for

strategies 1, 2, and 3, respectively. Figure 2 suggests that none of the three strategies is

uniformly better than the others. In particular, we observe the following.

1. For estimating dµ

(a) For µ ∈ (0, 1), strategy 2 works the best.

(b) For µ = 0, strategies 2 and 3 work better than strategy 1. Indeed, both of them

simply set their stage 2 estimates d̂0 to be the stage 1 estimate, d̂. This would
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Figure 3: Estimates of the asymptotic variance of d̂µ (upper panels) and Êµ(X) (lower panels) in

stage 2, with weight a[2](µ) chosen by strategy 2.

be a better choice than strategy 1 because in a two-step procedure, stage 1 chains

are often much longer than stage 2 chains, and hence d̂ is already a very accurate

estimate for d0 = d.

(c) For µ /∈ [0, 1], strategies 2 and 3 generally lead to more stable estimates of dµ.

However, all strategies lead to very large asymptotic variances for µ < 0. Hence,

one needs to be mindful when doing extrapolation with IS estimators — always

obtain an estimate of the standard error, or reconsider the placement of the reference

points.

2. For estimating Eµ(X)

(a) For µ ∈ (0, 1), strategy 2 works the best in general, while strategy 3 is very unstable.

(b) For either µ = 0 or 1, strategy 2 and 3 are the same, and they only utilize the

reference chain from µ. This was a wise choice for estimating dµ as explained
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Figure 4: Estimates of the asymptotic variance of d̂µ (upper panels) and Êµ(X) (lower panels) in

stage 2, with naive weight a[2](µ) chosen by strategy 3.

before, but not so for other quantities of interest.

(c) For µ /∈ [0, 1], all strategies lead to fairly large asymptotic variances, especially for

µ < 0.

Overall in stage 2, strategy 2 has an advantage when the estimands are ratios between

normalizing constants. However, when estimating Eµ(X), the situation is more complicated.

Our impression is that assigning any extreme weight will lead to high variability in the esti-

mator. So it is reasonable to simply use the naive weight, or other strategies that bound the

weights away from 0 and 1.

S6 Bayesian variable selection models

Here, we consider a class of Bayesian variable selection (BVS) models for linear regression with

independent normal priors on the regression coefficients. This model involves a 2-dimensional



prior hyperparameter that influences inference, yet no default choice guarantees good per-

formance in practice. Hence, displaying the effect of different hyperparameter values on the

posterior distribution would greatly benefit users of the model. When the number of predic-

tors, q, is large, the computing is challenging. Our solution is to obtain MCMC samples for

a small number of models with different hyperparameter values, based on which generalized

IS estimates can be obtained for BFs and other posterior expectations for a large number of

models. Again, an important problem in practice is how long the Markov chains need to be

run? In this context, the only affordable method that we are aware of is to estimate the SE

of these IS estimators using the proposed BM method.

As introduced by Mitchell and Beauchamp (1988), let Y = (Y1, . . . , Ym)> denote the

vector of responses and X1, . . . , Xq denote q potential predictors, each a vector of length m.

The predictors are standardized, so that for j = 1, . . . , q, 1TmXj = 0 and XT
j Xj = m, where

1m is the vector of m 1’s. The BVS model is given by:

given γ, σ2, β0, βγ , Y ∼ Nm(1mβ0 +Xγβγ , σ
2I), (S6.1a)

given γ, σ2, β0, βj
ind∼ N

(
0,
γj
λ
σ2
)

for j = 1, . . . , q, (S6.1b)

given γ, (σ2, β0) ∼ p(β0, σ
2) ∝ 1/σ2, (S6.1c)

γ ∼ p(γ) = wqγ (1− w)q−qγ . (S6.1d)

The binary vector γ = (γ1, . . . , γq)
> ∈ {0, 1}q identifies a subset of predictors, such that Xj is

included in the model if and only if γj = 1, and |γ| =
∑q

j=1 γj denotes the number of predictors

included. So (S6.1a) says that each γ corresponds to a model given by Y = 1mβ0 +Xγβγ + ε ,

where Xγ is an n × |γ| sub-matrix of X that consists of predictors included by γ, βγ is the

vector that contains corresponding coefficients, and ε ∼ Nm(0, σ2I). It is sometimes more

convenient to use the notation, Y = X0γβ0γ + ε, where X0γ has one more column of 1’s

than Xγ and βT0γ = (β0, β
T
γ ). Unknown parameters are θ = (γ, σ, β0, βγ) for which we set a

hierarchical prior in (S6.1b) to (S6.1d). In (S6.1d), an independent Bernoulli prior is set for

γ, where w ∈ (0, 1) is a hyperparameter that reflects the prior inclusion probability of each

predictor. In (S6.1c), a non-informative prior is set for (σ2, β0). In (S6.1b), an independent

normal prior is assigned to βγ , where λ > 0 is a second hyperparameter, that controls the

precision of the prior. Overall, θ is given an improper prior due to (S6.1c) but the posterior

of θ is indeed proper.

One can actually integrate out (βγ , β0, σ
2) and arrive at the following model with param-



eter γ only:

Y |γ ∼ `h(γ;Y ) =

∫
R+

∫
R

∫
R|γ|

f(Y |γ, σ2, β0, βγ)f(βγ |γ, σ2, β0)f(σ2, β0)dβγdβ0dσ
2

= cm λ
|γ|
2

∣∣A0γ

∣∣− 1
2
[
(Y − Y )T (Y − Y )− β̃Tγ A0γ β̃γ

]−(m−1)/2
,

γ ∼ ph(γ) = wqγ (1− w)q−qγ .

(S6.2)

Here, cm is a constant depending only on the sample size m. Further, A0γ = XT
0γX0γ + Λ0γ ,

where Λ0γ is a diagonal matrix, the main diagonal of which is the (1 + |γ|)-dimensional vector

(0, λ, · · · , λ). Finally, β̃γ = A−1
0γX

T
0γY .

Using the model at (S6.2) requires specification of the hyperparameter h = (w, λ). Smaller

w values assign high prior probabilities to models with fewer predictors, and priors with smaller

λ values allow selected predictors to have large coefficients. It is common to set w = 0.5 (a

uniform prior on the model space) and λ = 1 (a unit information prior for uncorrelated

predictors, see e.g. Kass and Raftery (1995)). One can also choose h adaptively, say according

to the marginal likelihood mh =
∑

γ `h(γ;Y )ph(γ). A small value of mh indicates that the

prior ph is not compatible with the observed data, while hEB = arg maxmh is defined to be

the empirical Bayesian choice of h. The empirical Bayes idea has been successfully applied to

various models with variable selection components (see e.g. George and Foster (2000); Yuan

and Lin (2005)). However, we have not seen this idea being carried out for the model in

(S6.1), except where n = p and the design matrices are orthogonal (Johnstone and Silverman

(2005); Clyde and George (2000)). Due to the improper prior in (S6.1d), mh is not uniquely

defined. Nevertheless, the Bayes factor among any two models, say mh/mh′ , is well-defined

because the same improper prior is assigned to the shared parameters of the two models (see

e.g. Kass and Raftery (1995, sec.5) and Liang et al. (2008, sec.2)).

Here, we concentrate on two goals. The first is to evaluate {mh/mh1
, h ∈ H}, the marginal

likelihood of model h relative to a reference model h1, which allows us to identify the empirical

Bayesian choice of h. The second is to evaluate the posterior mean of the vector of coefficients

β for each h ∈ H, which we denote by bh. Predictions can then be made for new observations

using Y (new) = (x(new))Tbh.

For model (S6.2) with a fixed h, a Metropolis Hastings random-swap algorithm (Clyde

et al. (2011)) can be used to generate Markov chains of γ from its posterior distribution. In

each iteration, with probability ρ(γ), we propose flipping a random pair of 0 and 1 in γ, and

with probability 1 − ρ(γ), we propose changing γj to 1 − γj for a random j while leaving

other coordinates untouched. We set ρ(γ) = 0 when γ corresponds to the null model or the

full model, and ρ(γ) = .5 otherwise. Finally, the proposal is accepted with an appropriate



S6.1 Cookie dough data

probability. Since this Markov chain lies on a finite state space, it is uniformly ergodic and

hence polynomially ergodic as well. Further, moment conditions in Theorems 2 and 3 are

satisfied because they reduce to summations of 2q terms, a large but finite number. To

achieve the goal, we generate Markov chains of γ with respect to model (S6.2) at several h

values that scatters in H, from which we build generalized IS estimators, and estimate their

standard errors.

S6.1 Cookie dough data

We demonstrate the aforementioned sensitivity analysis using the biscuit dough dataset (Os-

borne et al. (1984); Brown et al. (2001)). The dataset, available in the R package ppls

(Kraemer and Boulesteix (2012)), contains a training set of 39 observations and a test set

of 31 observations. These data were obtained from a near-infrared spectroscopy experiment

that study the composition of biscuit dough pieces. For each biscuit, the reflectance spectrum

is measured at 700 evenly spaced wavelengths. We use these measurements as covariates to

predict the response variable, the percentage of water in each dough. We follow previous

studies (Hans (2011)) and thin the spectral to q = 50 evenly spaced wavelengths.

Figure 5 provides a general picture of the sensitivity analysis. The left plots provide two

ways to visualize estimates of the BFs. To form the plot, we took the 12 reference values of

h = (w, λ) to be such that (w,− log(λ)) ∈ {0.1, 0.2, 0.3, 0.4}×{1, 3, 5}. In stage 1 we ran each

of the 12 Markov chains at the above values of h for 105 iterations to obtain d̂. In stage 2,

we ran the same 12 Markov chains for 50, 000 iterations each, to form the estimates ûn over

a fine grid that consists of 475 different h values, with the w component ranging from 0.05 to

0.5 in increments of 0.025 and the − log(λ) component ranging from 0 to 6 in increments of

0.25.

How trustworthy are these BF estimates? Their estimated standard errors are obtained

using the BM method, based on Theorem 2. We choose to display the relative SE with

respect to the BF estimates, as shown in the upper right panel of Figure 5. The relative

SEs are smaller than or equal to 5%, and we believe the BF estimates are accurate enough.

Finally, the lower-right panel of Figure 5 shows the prediction mean squared error (pmse)

over the test set for all h.

Based on our estimation, the BF attains the maximum value 9.75 at hEB = (0.075, e−5).

Recall when comparing any two models indexed by h and h′ respectively, the BF between

them is given by BFh,h′ =
mh/mh1
mh′/mh1

. Also, according to Jeffreys (1998) and Kass and Raftery

(1995), the evidence for h over h′ is considered to be strong only if BFh,h′ is greater than 10
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Figure 5: Left panels provide a surface plot and a contour plot for BF estimates. The upper-right

panel displays standard errors with respect to the BF estimates. The lower-right panel shows pmse

over the test set.

or 20. Hence, all h with BF over 1/10 or 1/20 times the maximum BF can be considered as

reasonably well supported by the data as that of the empirical Bayesian choice. Comparing

the lower two plots of Figure 5, we see that the set Ac := {h ∈ H : BF > c} for c = 1 and

0.5 do overlap with an area that corresponds to relatively small pmse. Outside A0.5, a region

that consists of larger w and smaller − log(λ) also enjoys small pmse values, at around 0.3 to

0.4. This region includes the common choice of h0 = (0.5, e0). These suggest that hEB and its

vicinity might not be the only area of h that has good prediction performances.

To better compare the effect of hEB = (0.075, e−5) and the commonly used h = (0.5, e0),
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Figure 6: Estimated posterior mean of regression coefficients (with 95% point-wise confidence intervals)

for the empirical Bayesian and the standard choice of h, respectively.

Figure 6 displays the estimated posterior mean of regression coefficients at both choices of h,

together with the point-wise 95% confidence intervals for the posterior means. Due to the small

size of wEB and λEB, the empirical Bayesian method yields a model with a few covariates that

have big coefficients. In comparison, the common choice has larger w and λ values, leading

to a regression model that combines more covariates each having smaller effects. It turns out

these two opposite strategy of modeling both predict the test dataset well, with pmse being

0.411 and 0.431 respectively. For comparison, pmses were calculated for several frequentist

penalized linear regression methods with their respective penalty parameters chosen by 10-

fold cross validation. The resulting pmses for the ridge, the lasso and the elastic net method

are 4.675, 0.633 and 0.536, respectively.

The BM method for estimating SE is carried out above without the need of further user

input. Theoretically, its competitor RS can be developed too, if enough regeneration times can

be identified for each Markov chain. Recall that with the random-swap algorithm, each Markov

chain lives on the discrete state space Γ of size 2q. A naive way to introduce regeneration is

to specify a single point γ1, then each visit of the Markov chain to γ1 marks a regeneration

time. Note that the chance of visiting γ1 converges to π(γ1), the posterior probability of

γ1. In our BVS model with 250 ≈ 1.1 × 1015 states of γ, even maxγ∈Γ π(γ) could be very

small. Take for example the Markov chain for the BVS model with h = (w, log(g)) = (.4, 1),

the point with the highest frequency appeared only 8 out of a run of 104 iterations. And
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that the waiting times between consecutive regenerations are highly variable, which ranges

from less than ten iterations to a few thousand iterations. To obtain alternative schemes of

identifying regeneration times, one can take the general minorization condition approach. It

could potentially increase the chance of regeneration and reduce variability of the waiting

times. Specifically, for any α ∈ {1, 2, · · · , 2q}, one could define Dα to contain the α points

with the highest posterior probabilities, and find εα ∈ (0, 1] and a probability mass function

kα(·) such that p(γ′|γ) ≥ εαIDα(γ)kα(γ′) for all γ′ ∈ Γ. Note that as α increases, the chance of

visiting Dα improves, but εα, the conditional rate of regeneration given the current state γ is in

Dα, would decrease sharply. Finding a good α to maximize the overall chance of regeneration

requires tuning that is specific for both the model specification h and the dataset. Even if we

can find the optimal α for each Markov chain used in the example, it is unlikely that all of

them would regenerate often enough for the RS estimator to be stable.
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