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Abstract: The naive importance sampling estimator, based on samples from a single

importance density, can be numerically unstable. We consider generalized impor-

tance sampling estimators where samples from more than one probability distri-

bution are combined. We study this problem in the Markov chain Monte Carlo

context, where independent samples are replaced with Markov chain samples. If

the chains converge to their respective target distributions at a polynomial rate,

then under two finite moment conditions, we show a central limit theorem holds for

the generalized estimators. We develop an easy-to-implement method to calculate

valid asymptotic standard errors based on batch means. We provide a batch means

estimator for calculating asymptotically valid standard errors of Geyer’s (1994)

reverse logistic estimator. We illustrate the method via three examples. In par-

ticular, the generalized importance sampling estimator is used for Bayesian spatial

modeling of binary data and to perform empirical Bayes variable selection where

the batch means estimator enables standard error calculations in high-dimensional

settings.

Key words and phrases: Bayes factors, Markov chain Monte Carlo, polynomial

ergodicity, ratios of normalizing constants, reverse logistic estimator.

1. Introduction

Let π(x) = ν(x)/m be a probability density function (pdf) on X with respect

to a measure µ(·). Suppose f : X → R is a π integrable function and we want

to estimate Eπf :=
∫
X f(x)π(x)µ(dx). Let π1(x) = ν1(x)/m1 be another pdf on

X such that {x : π1(x) = 0} ⊂ {x : π(x) = 0}. The importance sampling (IS)

estimator of Eπf based on independent and identically distributed (iid) samples

X1, . . . , Xn from the importance density π1 is∑n
i=1 f(Xi)ν(Xi)/ν1(Xi)∑n

i=1 ν(Xi)/ν1(Xi)

a.s.−→
∫
X(f(x)ν(x)/m)/(ν1(x)/m1)π1(x)µ(dx)∫

X(ν(x)/m)/(ν1(x)/m1)π1(x)µ(dx)
= Eπf,

(1.1)
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as n → ∞. This estimator can also be used in the Markov chain Monte Carlo

(MCMC) context when X1, . . . , Xn are realizations from a suitably irreducible

Markov chain with stationary density π1 (Hastings (1970)). Note that (1.1)

requires the functions ν and ν1 to be known. On the other hand, it does not

depend on normalizing constants m and m1, which are generally unknown.

In this article, we consider situations where one wants to estimate Eπf for all

π belonging to a large collection, say Π. This situation arises in both frequentist

and Bayesian statistics. Although (1.1) provides consistent estimators of Eπf

for all π ∈ Π based on a single Markov chain {Xn}n≥0 with stationary density

π1, it does not work well when π differs greatly from π1. In that case the ratios

ν(x)/ν1(x) can be arbitrarily large for some sample values making the estimator

at (1.1) unstable. In general, there is not a single good importance density π1
which is close to all π ∈ Π (see e.g. Geyer (1994)). Hence a natural modification is

to replace π1 in (1.1) with a mixture of densities where each density in Π is close to

a subset of the k reference densities. To this end, let π ≡
∑k

i=1(ai/|a|)πi, where

a = (a1, . . . , ak) are k positive constants, |a| =
∑k

i=1 ai, and πi(x) = νi(x)/mi

for i = 1, . . . , k are k densities known up to their normalizing constants. Suppose

further that n1, . . . , nk are positive integers and di := mi/m1 for i = 2, . . . , k,

with d1 ≡ 1. Then define the (k − 1) dimensional vector

d = (
m2

m1
, . . . ,

mk

m1
). (1.2)

Finally for l = 1, . . . , k, let {X(l)
i }

nl

i=1 be an iid sample from πl or realizations

from a positive Harris Markov chain with invariant density πl (for definitions see

Meyn and Tweedie (1993)). Then as nl →∞, for all l = 1, . . . , k, we have

η̂ ≡

(
k∑
l=1

al
nl

nl∑
i=1

f(X
(l)
i )ν(X

(l)
i )∑k

s=1 asνs(X
(l)
i )/ds

)/(
k∑
l=1

al
nl

nl∑
i=1

ν(X
(l)
i )∑k

s=1 asνs(X
(l)
i )/ds

)

a.s.−→

(
k∑
l=1

al

∫
X
f(x)

ν(x)∑k
s=1 asνs(x)/ds

πl(x)µ(dx)

)/
(

k∑
l=1

al

∫
X

ν(x)∑k
s=1 asνs(x)/ds

πl(x)µ(dx)

)

=

∫
X
f(x)

ν(x)

π̄(x)
π̄(x)µ(dx)

/∫
X

ν(x)

π̄(x)
π̄(x)µ(dx) = Eπf. (1.3)

The generalized IS estimator (1.3) has been discussed widely in the litera-

ture, e.g. applications include Monte Carlo maximum likelihood estimation and

Bayesian sensitivity analysis. Gill, Vardi and Wellner (1988), Kong et al. (2003),
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Meng and Wong (1996), Tan (2004), and Vardi (1985) consider estimation using

(1.3) based on iid samples. The estimator is applicable to a much larger class

of problems if Markov chain samples are allowed, see e.g. Buta and Doss (2011),

Geyer (1994), and Tan, Doss and Hobert (2015), which is the setting of this

paper.

Alternative importance weights have also been proposed. In the case when

the normalizing constants mi’s are known, the estimator (1.3) resembles the

balance heuristic estimator of Veach and Guibas (1995), which is revisited in

Owen and Zhou (2000) as the deterministic mixture. The standard population

Monte Carlo algorithm of Cappé et al. (2004) uses a weighted ratio of the target π

and the proposal πj it was drawn from (evaluated at the sample itself). However,

when iid samples are available from πj , j = 1, 2, . . . , k, Elvira et al. (2017) shows

that the normalized estimator (mi’s known) version of (1.3) always has a smaller

variance than that of the population Monte Carlo algorithm. Further, it may be

difficult in practice to find fully known importance densities that approximate

the target densities. Indeed, applications such as in empirical Bayes analysis

and Bayesian sensitivity analysis routinely select representatives from the large

number of target posterior densities to serve as proposal densities, and they are

known only up to normalizing constants. See Buta and Doss (2011), Doss (2010),

as well as Section 5 for examples. Although there is no known proof for the self

normalized estimator (Elvira et al. (2017), p. 18), it is reasonable to assume the

superiority of (1.3) over estimators corresponding to other weighting schemes.

As noted in (1.3), the estimator η̂ converges to Eπf as the sample sizes in-

crease to infinity, for iid samples as well as Markov chain samples satisfying the

usual regularity conditions. Now for samples of finite size, it is of fundamental

importance to provide some measure of uncertainty, such as the standard errors

(SEs) associated with this consistent estimator. For estimators that are sample

averages based on iid Monte Carlo samples, for example, it is a basic requirement

to report their SEs. But the very same issue is often overlooked in practice when

the estimators have more complicated structure, and when they are based on

MCMC samples, largely due to the difficulty of doing so. See, for e.g. Flegal, Ha-

ran and Jones (2008) on the issue concerning MCMC experiments and Koehler,

Brown and Haneuse (2009) for more general simulation studies. For calculating

SEs of η̂ based on MCMC samples, Tan, Doss and Hobert (2015) provide a so-

lution using the method of regenerative simulation (RS). However, this method

crucially depends on the construction of a practical minorization condition, i.e.

one where sufficient regenerations are observed in finite simulations (for defini-
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tions and a description of RS see Mykland, Tierney and Yu (1995)). Further,

the usual method of identifying regeneration times by splitting becomes imprac-

tical for high-dimensional problems (Gilks, Roberts and Sahu (1998)). Hence,

successful applications of RS involve significant trial and error and are usually

limited to low-dimensional Gibbs samplers (see e.g. Tan and Hobert (2009); Roy

and Hobert (2007)). In this paper we avoid RS and provide SE estimators of

η̂ using the batch means (BM) method, which is straightforward to implement

and can be routinely applied in practice. In obtaining this estimator, we also

establish a central limit theorem (CLT) for η̂ that generalizes some results in

Buta and Doss (2011).

The estimator η̂ in (1.3) depends on the ratios of normalizing constants, d,

that are unknown in applications. We consider the two-stage scheme studied in

Buta and Doss (2011) where first an estimate d̂ is obtained using Geyer’s (1994)

“reverse logistic regression” method based on samples from πl, and then, inde-

pendently, new samples are used to estimate Eπf for π ∈ Π using the estimator

η̂(d̂) in (1.3). Buta and Doss (2011) showed that the asymptotic variance of

η̂(d̂) depends on the asymptotic variance of d̂. Thus we study the CLT of d̂

and provide a BM estimator of the asymptotic covariance matrix of d̂. Since d̂

involves multiple Markov chain samples, we utilize a multivariate BM estimator.

Although, the form of the asymptotic covariance matrix of d̂ is complicated, our

consistent BM estimator is straightforward to code.

The problem of estimating d, the ratios of normalizing constants of unnor-

malized densities is important in its own right and has many applications in fre-

quentist and Bayesian inference. For example, when the samples are iid sequences

this is the biased sampling problem studied in (Vardi (1985)). In addition, the

problem arises naturally in the calculations of likelihood ratios in missing data

(or latent variable) models, mixture densities for use in IS, and Bayes factors.

We consider the problem of estimating d using Geyer’s (1994) reverse logistic

regression method. Specifically, we study the general quasi-likelihood function

proposed in (Doss and Tan (2014)). Unlike Geyer’s (1994) method, this extended

quasi-likelihood function has the advantage of using user defined weights that are

appropriate to situations where the multiple Markov chains have different mixing

rates. We establish the CLT for the resulting estimators of d and develop the

BM estimators of their asymptotic covariance matrix.

Thus we consider two related problems in this paper: estimating (ratios of)

normalizing constants given samples from k densities; estimating expectations

with respect to a large number of (other) target distributions using these samples.
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In both cases, we establish CLTs for our estimators and provide easy-to-calculate

SEs using BM methods.

Prior results of Buta and Doss (2011), Doss and Tan (2014), Geyer (1994),

and Tan, Doss and Hobert (2015) all assume that the underlying Markov chains

are geometrically ergodic. We weaken this condition in that we only require the

chains to be polynomial ergodic. To this end, let Kl(x, ·) be the Markov transition

function for the Markov chain Φl = {X(l)
t }t≥1, so that for any measurable set A,

and s, t ∈ {1, 2, . . .} we have P
(
X

(l)
s+t ∈ A |X

(l)
s = x

)
= Kt

l (x,A). Let ‖ · ‖ denote

the total variation norm and Πl the probability measure corresponding to the

density πl. The Markov chain Φl is polynomially ergodic of order m where m > 0

if there exists W : X→ R+ with Eπl
W <∞ such that

‖Kt
l (x, ·)−Πl(·)‖ ≤W (x)t−m.

There is substantial MCMC literature establishing that Markov chains are at

least polynomially ergodic (see Vats, Flegal and Jones (2016) and the references

therein).

We illustrate the generalized IS method and importance of obtaining SEs

through three examples. First, we consider a toy example to demonstrate that

BM and RS estimators are consistent and investigate the benefit of allowing

general weights to be used in generalized IS. Second, we consider a Bayesian

spatial model for a root rot disease dataset where we illustrate the importance

of calculating SEs by considering different designs and performing samples size

calculations. Finally, we consider a standard linear regression model with a large

number of variables and use the BM estimator developed here for empirical Bayes

variable selection.

The rest of the paper is organized as follows. Section 2 is devoted to the

problem of estimating the ratios of normalizing constants of unnormalized densi-

ties, that is estimating d. Section 3 contains the construction of a CLT for η̂ and

describes how valid SEs of η̂ can be obtained using BM. Section 4 contains a toy

example illustrating the benefits of different weight functions. Section 5 consid-

ers a Bayesian spatial models for binary responses. The empirical Bayes variable

selection example is contained in the supplement. We conclude with a discussion

in Section 6. Proofs are relegated to the online supplementary material.

2. Estimating Ratios of Normalizing Constants

Consider k densities πl = νl/ml, l = 1, . . . , k with respect to the measure µ,

where the νl’s are known functions and the ml’s are unknown constants. For each
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l we have a positive Harris Markov chain Φl = {X(l)
1 , . . . , X

(l)
nl } with invariant

density πl. Our objective is to estimate all possible ratios mi/mj , i 6= j or,

equivalently, the vector d defined in (1.2).

Geyer’s (1994) reverse logistic regression is described as follows. Let n =∑
nl and set al = nl/n for now. For l = 1, . . . , k define the vector ζ by

ζl = − log(ml) + log(al)

and let

pl(x, ζ) =
νl(x)eζl∑k
s=1 νs(x)eζs

. (2.1)

Given the value x belongs to the pooled sample
{
X

(l)
i , i = 1, . . . , nl, l = 1, . . . , k

}
,

pl(x, ζ) is the probability that x came from the lth distribution. Of course, we

know which distribution the sample x came from, but here we pretend that the

only thing we know about x is its value and estimate ζ by maximizing the log

quasi-likelihood function

ln(ζ) =

k∑
l=1

nl∑
i=1

log
(
pl(X

(l)
i , ζ)

)
(2.2)

with respect to ζ. Since ζ has a one-to-one correspondence with m = (m1, . . . ,

mk), by estimating ζ we can estimate m.

As Geyer (1994) mentioned, there is a non-identifiability issue regarding

ln(ζ): for any constant c ∈ R, ln(ζ) is same as ln(ζ + c1k) where 1k is the vector

of k 1’s. So we can estimate the true ζ only up to an additive constant. Thus,

we can estimate m only up to an overall multiplicative constant, that is, we

can estimate only d. Let ζ0 ∈ Rk be defined by [ζ0]l = [ζ]l −
(∑k

s=1[ζ]s
)
/k,

the true ζ normalized to add to zero. Geyer (1994) proposed to estimate ζ0
by ζ̂, the maximizer of ln subject to the linear constraint ζ>1k = 0, and thus

obtain an estimate of d. The estimator d̂ (written explicitly in Section 2.1),

was introduced by Vardi (1985), and studied further by Gill, Vardi and Wellner

(1988), who proved that in the iid setting, d̂ is consistent and asymptotically

normal, and established its efficiency. Geyer (1994) proved the consistency and

asymptotic normality of d̂ when Φl, . . . ,Φk are k Markov chains satisfying certain

mixing conditions. In the iid setting, Meng and Wong (1996), Kong et al. (2003),

and Tan (2004) rederived the estimate under different computational schemes.

None of these articles discuss how to consistently estimate the covariance

matrix of d̂, even in the iid setting. Recently, Doss and Tan (2014) address this

important issue and obtain a RS estimator of the covariance matrix of d̂ in the
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Markov chain setting. They also mention that the optimality results of Gill,

Vardi and Wellner (1988) do not hold in the Markov chain case. In particular,

when using Markov chain samples, the choice of the weights aj = nj/n to the

probability density νj/mj in the denominator of (2.1) is no more optimal and

should instead incorporate the effective sample size of different chains as they

might have quite different rates of mixing. They introduce the more general log

quasi-likelihood function

`n(ζ) =

k∑
l=1

wl

nl∑
i=1

log
(
pl(X

(l)
i , ζ)

)
, (2.3)

where the vector w ∈ Rk is defined by wl = aln/nl for l = 1, . . . , k for an

arbitrary probability vector a. (Note the change of notation from l to `.) Clearly

if al = nl/n, then wl = 1 and (2.3) becomes (2.2).

When RS can be used, Doss and Tan (2014) proved the consistency (to

the true value ζ0) and asymptotic normality of the constrained maximizer ζ̂

(subject to the constraint ζ>1k = 0) of (2.3) under geometric ergodicity. They

also obtain a RS estimator of the asymptotic covariance matrix and describe an

empirical method for choosing the optimal a based on minimizing the trace of the

estimated covariance matrix of d̂. However, their procedure requires a practical

minorization condition for each of the k Markov chains, which can be extremely

difficult. Without a minorization condition, we show d̂ is a consistent estimator

of d, show d̂ satisfies a CLT under significantly weaker mixing conditions, and

provide a strongly consistent BM estimator of the covariance matrix of d̂.

2.1. Central limit theorem and asymptotic covariance estimator

Within each Markov chain l = 1, . . . , k, assume nl → ∞ in such a way that

nl/n → sl ∈ (0, 1). To obtain the CLT result for d̂, we first establish a CLT for

ζ̂. Note that the function g : Rk → Rk−1 that maps ζ0 into d is given by

g(ζ) =


eζ1−ζ2a2/a1

eζ1−ζ3a3/a1
...

eζ1−ζkak/a1

 , (2.4)

and its gradient at ζ0 (in terms of d) is
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D =


d2 d3 . . . dk
−d2 0 . . . 0

0 −d3 . . . 0
...

...
. . .

...

0 0 . . . −dk

 . (2.5)

Since d = g(ζ0), and by definition d̂ = g(ζ̂), we can use the CLT result of ζ̂ to

get a CLT for d̂.

First, we introduce the following notations. For r = 1, . . . , k, let

Y
(r,l)
i = pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)
, i = 1, . . . , nl. (2.6)

The asymptotic covariance matrix in the CLT of ζ̂, involves two k × k matrices

B and Ω. The matrix B is given by

Brr =

k∑
j=1

ajEπj

(
pr(X, ζ)[1− pr(X, ζ)]

)
and

Brs = −
k∑
j=1

ajEπj

(
pr(X, ζ)ps(X, ζ)

)
for r 6= s.

(2.7)

Let Ω be the k × k matrix defined (for r, s = 1, . . . , k) by

Ωrs =

k∑
l=1

a2l
sl

[
Eπl
{Y (r,l)

1 Y
(s,l)
1 }+

∞∑
i=1

Eπl
{Y (r,l)

1 Y
(s,l)
1+i }+

∞∑
i=1

Eπl
{Y (r,l)

1+i Y
(s,l)
1 }

]
.

(2.8)

Remark 1. The right hand side of (2.8) involves terms of the form Eπl
{Y (r,l)

1

Y
(s,l)
1+i } and Eπl

{Y (r,l)
1+i Y

(s,l)
1 }. For any fixed l, r, s and i, the two expectations are

the same if X
(l)
1 and X

(l)
1+i are exchangeable, e.g. if the chain Φl is reversible. In

general, the two expectations are not equal.

The matrix B will be estimated by its natural estimate B̂ defined by

B̂rr =

k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ̂)

[
1− pr(X(l)

i , ζ̂)
])

and

B̂rs = −
k∑
l=1

al

(
1

nl

nl∑
i=1

pr(X
(l)
i , ζ̂)ps(X

(l)
i , ζ̂)

)
for r 6= s.

(2.9)

To obtain a BM estimate Ω̂, suppose we simulate the Markov chain Φl for

nl = elbl iterations (hence el = enl
and bl = bnl

are functions of nl) and define

for r, l = 1, . . . , k,
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Z̄(r,l)
m :=

1

bl

(m+1)bl∑
j=mbl+1

pr(X
(l)
j , ζ̂) for m = 0, . . . , el − 1 .

Now set Z̄
(l)
m =

(
Z̄

(1,l)
m , . . . , Z̄

(k,l)
m

)>
for m = 0, . . . , el − 1. For l = 1, . . . , k,

denote ¯̄Z(l) =
(

¯̄Z(1,l), . . . , ¯̄Z(k,l)
)>

where ¯̄Z(r,l) =
∑nl

i=1 pr(X
(l)
i , ζ̂)/nl. Let

Σ̂(l) =
bl

el − 1

el−1∑
m=0

[
Z̄(l)
m − ¯̄Z(l)

] [
Z̄(l)
m − ¯̄Z(l)

]T
for l = 1, . . . , k, (2.10)

Σ̂ =

Σ̂(1)
. . . . . . . . . . .

0

0 Σ̂(k)

 (2.11)

and define the k × k2 matrix

An =

(
−
√

n

n1
a1Ik −

√
n

n2
a2Ik . . . −

√
n

nk
akIk

)
, (2.12)

where Ik denotes the k × k identity matrix. Finally, define

Ω̂ = AnΣ̂A>n . (2.13)

We are now ready to describe conditions that ensure strong consistency and

asymptotic normality of d̂. The following theorem also provides consistent esti-

mate of the asymptotic covariance matrix of d̂ using BM method. Consistency of

d̂ holds under minimal assumptions, i.e. if Φ1, . . . ,Φk are positive Harris chains.

On the other hand, CLTs and consistency of BM estimator of asymptotic covari-

ance require some mixing conditions on the Markov chains. For a square matrix

C, let C† denote the Moore-Penrose inverse of C.

Theorem 1. Suppose that for each l = 1, . . . , k, the Markov chain {X(l)
1 , X

(l)
2 , . . .}

has invariant distribution πl.

1. If the Markov chains Φ1, . . . ,Φk are positive Harris, the log quasi-likelihood

function (2.3) has a unique maximizer subject to the constraint ζ>1k =

0. Let ζ̂ denote this maximizer, and let d̂ = g(ζ̂). Then d̂
a.s.−→ d as

n1, . . . , nk →∞.

2. If the Markov chains Φ1, . . . ,Φk are polynomially ergodic of order m > 1,

as n1, . . . , nk →∞,
√
n(d̂− d)

d→ N (0, V ) where V = D>B†ΩB†D.

3. Assume that the Markov chains Φ1, . . . ,Φk are polynomially ergodic of order

m > 1 and for all l = 1, . . . , k, bl = bnνl c where 1 > ν > 0. Let D̂ be the
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matrix D in (2.5) with d̂ in place of d, and B̂ and Ω̂ are given by (2.9)

and (2.13), respectively. Then, V̂ := D̂>B̂†Ω̂B̂†D̂ is a strongly consistent

estimator of V .

3. IS with Multiple Markov Chains

This section considers a CLT and SEs for the generalized IS estimator η̂.

From (1.3), η̂ ≡ η̂[f ](π;a,d) = v̂[f ](π, π1;a,d)/û(π, π1;a,d), where

v̂ ≡ v̂[f ](π, π1;a,d) :=

k∑
l=1

al
nl

nl∑
i=1

v[f ](X
(l)
i ;a,d) and

û ≡ û(π, π1;a,d) :=

k∑
l=1

al
nl

nl∑
i=1

u(X
(l)
i ;a,d)

(3.1)

with

v[f ](x;a,d) := f(x)u(x;a,d) and u(x;a,d) :=
ν(x)∑k

s=1 asνs(x)/ds
. (3.2)

Here, û converges almost surely to

k∑
l=1

alEπl
u(X;a,d) =

∫
X

∑k
l=1 alνl(x)/ml∑k

s=1 asνs(x)/(ms/m1)
ν(x)µ(dx) =

m

m1
, (3.3)

as n1, . . . , nk →∞. Thus û itself is a useful quantity as it consistently estimates

the ratios of normalizing constants {u(π, π1) ≡ m/m1|π ∈ Π}. Unlike the esti-

mator d̂ in Section 2, û does not require a sample from each density π ∈ Π. Thus

û is well suited for situations where one wants to estimate the ratios u(π, π1)

for a very large number of π’s based on samples from a small number of skele-

ton densities, say k. This method is particularly efficient when obtaining samples

from the target distributions is computationally demanding and the distributions

within Π are similar.

In the context of Bayesian analysis, let π(x) = lik(x)p(x)/m be the posterior

density corresponding to the likelihood function lik(x) and prior p(x) with nor-

malizing constant m. In this case, u(π, π1) is the so-called Bayes factor between

the two models, which is commonly used in model selection.

The estimators û and v̂ in (3.1) depend on d, which is generally unknown

in practice. Here we consider a two-stage procedure for evaluating û. In the 1st

stage, d is estimated by its reverse logistic regression estimator d̂, described in

Section 2, using Markov chains Φ̃l ≡ {X̃ l
i}
Nl

i=1 with stationary densities πl, for

l = 1, . . . , k. Note the change of notation from Section 2 where we used nl’s to

denote the length of the Markov chains. We use Φ̃l’s and Nl’s to denote the stage
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1 chains and their lengths, respectively. Once d̂ is formed, new MCMC samples

Φl ≡ {X l
i}
nl

i=1, l = 1 . . . , k are obtained and u(π, π1)(Eπf) is estimated using

û(π, π1;a, d̂) (η̂[f ](π;a, d̂)) based on these 2nd stage samples. Buta and Doss

(2011) propose this two-stage method and quantify its benefits over the method

where the same MCMC samples are used to estimate both d and u(π, π1).

3.1. Estimating ratios of normalizing constants

Before we state a CLT for û(π, π1;a, d̂), we need some notation. Let

τ2l (π;a,d)=Varπl
(u(X

(l)
1 ;a,d))+2

∞∑
g=1

Covπl
(u(X

(l)
1 ;a,d), u(X

(l)
1+g;a,d)) (3.4)

and τ2(π;a,d) =
∑k

l=1(a
2
l /sl)τ

2
l (π;a,d). Define c(π;a,d) as a vector of length

k − 1 with (j − 1)th coordinate

[c(π;a,d)]j−1 =
u(π, π1)

d2j

∫
X

ajνj(x)∑k
s=1 asνs(x)/ds

π(x)dx for j = 2, . . . , k, (3.5)

and ĉ(π;a,d) as a vector of length k − 1 with (j − 1)th coordinate

[ĉ(π;a,d)]j−1 =

k∑
l=1

1

nl

nl∑
i=1

ajalν(X
(l)
i )νj(X

(l)
i )

(
∑k

s=1 asνs(X
(l)
i )/ds)2d2j

for j = 2, . . . , k. (3.6)

Assuming nl = elbl, let

τ̂2l (π;a,d) =
bl

el − 1

el−1∑
m=0

[ūm(a,d)− ¯̄u(a,d)]2 , (3.7)

where ūm(a,d) is the average of the (m + 1)st block {u(X
(l)
mbl+1;a,d), · · · ,

u(X
(l)
(m+1)bl

;a,d)}, and ¯̄u(a,d) is the overall average of {u(X
(l)
1 ;a,d), · · · ,

u(X
(l)
nl ;a,d)}. Here, bl and el are the block sizes and the number of blocks,

respectively. Finally let τ̂2(π;a,d) =
∑k

l=1(a
2
l /sl)τ̂

2
l (π;a,d).

Theorem 2. Suppose that for the stage 1 chains, conditions of Theorem 1 holds

such that N1/2(d̂ − d)
d→ N (0, V ) as N ≡

∑k
l=1Nl → ∞. Suppose there exists

q ∈ [0,∞) such that n/N → q where n =
∑k

l=1 nl is the total sample size for

stage 2, and let nl/n→ sl for l = 1, · · · , k.

1. Assume that the stage 2 Markov chains Φ1, . . . ,Φk are polynomially ergodic

of order m, and for some δ > 0 Eπl
|u(X;a,d)|2+δ <∞ for each l = 1, · · · , k

where m > 1 + 2/δ. Then as n1, . . . , nk →∞,
√
n(û(π, π1;a, d̂)− u(π, π1))

d→ N(0, qc(π;a,d)>V c(π;a,d) + τ2(π;a,d)).

(3.8)
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2. Let V̂ be the consistent estimator of V given in Theorem 1 (3). Assume

that the Markov chains Φ1, . . . ,Φk are polynomially ergodic of order m ≥
(1 + ε)(1 + 2/δ) for some ε, δ > 0 such that Eπl

|u(X;a,d)|4+δ <∞, and for

all l = 1, . . . , k, bl = bnνl c where 1 > ν > 0. Then qĉ(π;a, d̂)>V̂ ĉ(π;a, d̂) +

τ̂2(π;a, d̂)) is a strongly consistent estimator of the asymptotic variance in

(3.8).

Note that the asymptotic variance in (3.8) has two components. The second

term is the variance of û when d is known. The first term is the increase in

the variance of û resulting from using d̂ instead of d. Since we are interested in

estimating u(π, π1) for a large number of π’s and for every π, the computational

time needed to calculate û in (3.1) is linear in the total sample size n, this cannot

be very large. If generating MCMC samples is not computationally demanding,

then long chains can be used in the 1st stage to obtain a precise estimate of d,

and thus greatly reduce the first term in the variance expression (3.8).

3.2. Estimation of expectations using generalized IS

This section discusses estimating SEs of the generalized IS estimator η̂ given

in (1.3). We use the following notation

γ11l ≡ γ11l (π;a,d) = Varπl
(v[f ](X

(l)
1 ;a,d))

+ 2

∞∑
g=1

Covπl
(v[f ](X

(l)
1 ;a,d), v[f ](X

(l)
1+g;a,d)),

γ12l ≡ γ12l (π;a,d) = γ21l ≡ γ21l (π;a,d) = Covπl
(v[f ](X

(l)
1 ;a,d), u(X

(l)
1 ;a,d))

+

∞∑
g=1

[Covπl
(v[f ](X

(l)
1 ;a,d), u(X

(l)
1+g;a,d))

+ Covπl
(v[f ](X

(l)
1+g;a,d), u(X

(l)
1 ;a,d))],

γ22l ≡ γ22l (π;a,d) = Varπl
(u(X

(l)
1 ;a,d))

+ 2

∞∑
g=1

Covπl
(u(X

(l)
1 ;a,d), u(X

(l)
1+g;a,d)),

(note γ22l is the same as τ2l (π;a,d) defined in (3.4)) and

Γl(π;a,d) =

(
γ11 γ12

γ21 γ22

)
; Γ(π;a,d) =

k∑
l=1

a2l
sl

Γl(π;a,d). (3.9)

Since η̂ has the form of a ratio, to establish a CLT for it, we apply the Delta

method on the function h(x, y) = x/y, with ∇h(x, y) = (1/y,−x/y2)′. Let
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ρ(π;a,d) = ∇h(Eπfu(π, π1), u(π, π1))
′Γ(π;a,d)∇h(Eπfu(π, π1), u(π, π1)),

(3.10)

e(π;a,d) be a vector of length k − 1 with (j − 1)th coordinate

[e(π;a,d)]j−1 =
aj
d2j

∫
X

[f(x)− Eπf ]νj(x)∑k
s=1 asνs(x)/ds

π(x)dx, j = 2, . . . , k, (3.11)

and ê(π;a,d) be a vector of length k − 1 with (j − 1)th coordinate

[ê(π;a,d)]j−1

≡
∑k

l=1(al)/(nl)
∑nl

i=1(ajf(X
(l)
i )ν(X

(l)
i )νj(X

(l)
i ))/(d2j (

∑k
s=1 asνs(X

(l)
i )/ds)

2)

û(π, π1;a,d)

− [c(π;a,d)]j−1η̂
[f ](π;a,d)

û(π, π1;a,d)
, (3.12)

where [c(π;a,d)]j−1 is defined in (3.6). Assuming nl = elbl, let

Γ̂l(π;a,d) =
bl

el − 1

el−1∑
m=0

[(
v̄
[f ]
m

ūm

)
−

(
¯̄v[f ]

¯̄u

)][(
v̄m
ūm

)
−

(
¯̄v[f ]

¯̄u

)]>

=
bl

el − 1

 ∑el−1
m=0

[
v̄
[f ]
m − ¯̄v[f ]

]2 ∑el−1
m=0

[
v̄
[f ]
m − ¯̄v[f ]

]
[ūm − ¯̄u]∑el−1

m=0

[
v̄
[f ]
m − ¯̄v[f ]

]
[ūm − ¯̄u]

∑el−1
m=0 [ūm − ¯̄u]2


=

(
γ̂11(π;a,d) γ̂12(π;a,d)

γ̂21(π;a,d) γ̂22(π;a,d)

)
,

where v̄
[f ]
m is the average of the (m + 1)st block {v[f ](X(l)

mbl+1;a,d), · · ·,
v[f ](X

(l)
(m+1)bl

;a,d)}, ¯̄v[f ] is the overall average of {v[f ](X(l)
1 ;a,d), · · ·, v[f ](X(l)

nl ;

a,d)}, and ūm ≡ ūm(π,a,d), ¯̄u ≡ ¯̄u(π,a,d) as defined in Section 3.1. Finally let

Γ̂(π;a,d) =
∑k

l=1(a
2
l /sl)Γ̂l(π;a,d), and

ρ̂(π;a, d̂) = ∇h(v̂[f ](d̂), û(d̂))′Γ̂(π;a, d̂)∇h(v̂[f ](d̂), û(d̂)).

Theorem 3. Suppose that for the stage 1 chains, conditions of Theorem 1 hold

such that N1/2(d̂ − d)
d→ N (0, V ) as N ≡

∑k
l=1Nl → ∞. Suppose there exists

q ∈ [0,∞) such that n/N → q where n =
∑k

l=1 nl is the total sample size for

stage 2, and let nl/n→ sl for l = 1, · · ·, k.

1. Assume that the stage 2 Markov chains Φ1, . . . ,Φk are polynomially er-

godic of order m, and for some δ > 0, Eπl
|u(X;a,d)|2+δ < ∞ and Eπl

|v[f ](X;a,d)|2+δ < ∞, for each l = 1, · · ·, k where m > 1 + 2/δ. Then as

n1, . . . , nk →∞,
√
n(η̂[f ](π;a, d̂)−Eπf)

d→ N(0, qe(π;a,d)>V e(π;a,d)+ρ(π;a,d)). (3.13)
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2. Let V̂ be the consistent estimator of V given in Theorem 1 (3). Assume

that the Markov chains Φ1, . . . ,Φk are polynomially ergodic of order m ≥
(1 + ε)(1 + 2/δ) for some ε, δ > 0 such that Eπl

|u(X;a,d)|4+δ < ∞, Eπl

|v[f ](X;a,d)|4+δ <∞, and for each l = 1, · · ·, k, bl = bnνl c where 1 > ν > 0.

Then qê(π;a, d̂)>V̂ ê(π;a, d̂) + ρ̂(π;a, d̂)) is a strongly consistent estimator

of the asymptotic variance in (3.13).

Remark 2. Part (1) of Theorems 2 and 3 extend Buta and Doss’s (2011) The-

orems 1 and 3, respectively. Specifically, they require that al = nl/n, which

is a non-optimal choice for a (Tan, Doss and Hobert (2015)). Our results also

substantially weaken the Markov chain mixing conditions.

Remark 3. Theorems 2 and 3 prove consistency of the BM estimators of the

variances of û and η̂ for a general a. This extends results in Tan, Doss and Hobert

(2015), which provides RS based estimators of the asymptotic variance of û and

η̂ in the special case when a = (1, d̂). With this particular choice, u(x;a, d̂) and

v[f ](x;a, d̂) in (3.2) become free of d̂, leading to independence among certain

quantities. However, one can set a = w ∗ (1, d̂) for any user-specified fixed vector

w, which allows the expression in (2.18) of Tan, Doss and Hobert (2015) to be

free of d̂ and thus the necessary independence. Hence, their RS estimator can

also be applied to an arbitrary vector a (details are given in the supplement).

Remark 4. A sufficient condition for the moment assumptions for u in Theo-

rems 2 and 3 is that, for any π ∈ Π, supx

{
π(x)

/∑k
s=1 asπs(x)

}
< ∞. That is,

in any given direction, the tail of at least one of {πs, s = 1, . . . , k} is heavier than

that of π. This is not hard to achieve in practice by properly choosing {πs} with

regard to Π (see e.g. Roy (2014)). Further, if Eπ|f |4+δ < ∞, then the moment

assumptions for v[f ] are satisfied.

4. Toy Example

Here, we confirm that both the BM and the RS estimators are consistent,

as well as demonstrate the benefit of allowing general weights to be used in

the generalized IS estimator. Let tr,µ denote the t-distribution with degree of

freedom r and central parameter µ. We set π1(·) = ν1(·) and π2(·) = ν2(·),
the density functions for a t5,µ1=1 and t5,µ2=0, respectively. Pretending that

we do not know the value of the ratio between the two normalizing constants,

d = m2/m1 = 1/1, we estimate it by the stage 1 estimator d̂ from Section 2, and

compare the BM and the RS method in estimating the asymptotic variance. As

for the stage 2 estimators from Section 3, the choice of weight and performance
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Figure 1. Plots of BM and RS estimates of the asymptotic variance of d̂ in stage 1 for
100 randomly chosen replications. The left panel is based on the naive weight, a[1] =
(0.5, 0.5) and the right panel is based on a close-to-optimal weight, a[1] = (0.82, 0.18).

Horizontal lines represent the empirical asymptotic variance of d̂ obtained over all repli-
cations.

of the BM and the RS methods in assessing estimators’ uncertainty are studied

in the supplement.

We drew iid samples from π1 and Markov chain samples from π2 using the in-

dependent Metropolis Hastings algorithm with proposal density t5,1. It is simple

to show infx(t5,µ(x))/(t5,0(x)) > 0, which implies the algorithm is uniformly er-

godic (Mengersen and Tweedie (1996), Thm. 2.1) and hence polynomially ergodic

and geometrically ergodic. For RS, our carefully tuned minorization condition

enables the Markov chain for π2 to regenerate about every 3 iterations. In con-

trast, the BM method proposed here requires no such theoretical development.

We evaluated the variance estimators at various sample sizes with different

choices of weight. Figure 1 displays traces of the BM and the RS estimates of

the asymptotic variance of d̂, in dashed and solid lines, respectively. Overall,

the BM and the RS estimates approach the empirical asymptotic variance as

the sample size increases, suggesting their consistency. Due to the frequency of

regenerations, BM estimates are generally more variable than RS estimates. The

left panel of Figure 1 is for estimators based on the naive weight, a = (0.5, 0.5),

that is proportional to the sample sizes; the right panel is for estimators based

on a = (0.82, 0.18), that emphasizes the iid sample more than the Markov chain

sample. Indeed, the latter weight is a close-to-optimal weight obtained with a

small pilot study (see the supplement for details). Using such a method to choose

weights can lead to big improvement in the efficiency of d̂ when the mixing rate

of the multiple samples differ a lot.
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5. Bayesian Spatial Models for Binary Responses

In this section, we analyze a root rot disease dataset collected from a 90-acre

farm in the state of Washington (Zhang (2002)). All computations were done

in R, using the package geoBayes (Evangelou and Roy (2015)). Recorded at

M = 100 chosen sites are the longitude and the latitude si, the root counts `(si),

and the number of infected roots y(si), i = 1, . . . ,M . Of interest is a map of

the disease rate over the entire area for precision farming. We consider a spatial

generalized linear mixed model (SGLMM), similar to that used by Zhang (2002)

and Roy, Evangelou and Zhu (2016). Taking `(si) and si as fixed, let

y(si)|z(si)
ind∼ Binomial (`(si),Φ (z(si))) , i = 1, . . . ,M.

Here z = (z(s1), . . . , z(sM )) is a vector of latent variables, assumed to be a

subvector of a Gaussian random field (GRF) {zs, s ∈ S}, that has a constant

mean µ, and a covariance function

Cov
(
z(s), z(s′)

)
= σ2ρφ(‖s− s′‖) + ω σ2Is(s

′) .

Here, σ2 is the partial sill, ‖ · ‖ denotes the Euclidean distance, and ρφ is a

correlation function from the spherical family with range parameter φ. That is,

ρφ(u) = 1−3/2(u/φ)+1/2 (u/φ)3 for u ∈ (0, φ). Next, Is(s
′) is an indicator that

is 1 if s = s′, and 0 otherwise. Finally, ωσ2 is the nugget effect, accounting for

any remaining variability at site s such as measurement error, while ω ∈ R+ is

the relative size of the nugget to the partial sill. Following Roy, Evangelou and

Zhu (2016) we assign a non-informative Normal-inverse-Gamma prior to (µ, σ2)

which is (conditionally) conjugate for the model,

µ|σ2 ∼ N(0, 100σ2), and f(σ2) ∝
(
σ2
)−(1/2)−1

exp

(
− 1

2σ2

)
.

Assigning priors for h = (φ, ω) in the correlation function of the Gaussian random

field is usually difficult, and the choice of prior influences the inference (Chris-

tensen (2004)). Hence we perform a sensitivity analysis focused on obtaining the

Bayes factor (BF) of the model at h relative to a baseline h0 for a range of values

h ∈ H. For a fixed h = (φ, ω), this Bayesian model has parameters ψ = (µ, σ2).

Conditioning on the observed data y = (y(s1), . . . , y(sM )), inference is based on

the posterior density

πh(ψ|y) =
Lh(ψ|y)π(ψ)

mh(y)
, (5.1)

where Lh(ψ|y) =
∫
RM f(y|z)fh(z|ψ)dz is the likelihood, π(ψ) is the prior on

ψ, and mh(y) =
∫
R×R+

Lh(ψ|y)π(ψ)dψ is the normalizing constant, also called
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the marginal likelihood. The BF between any two models indexed by h and

h0 is mh(y)/mh0
(y), and the empirical Bayes choice of h is arg max

h∈H
mh(y) =

arg max
h∈H

[mh(y)/mh0
(y)]. Our plan is to get MCMC samples for a small reference

set of h, to estimate the BF among them using the reverse logistic estimator, and

then get new samples to estimate {mh(y)/mh′(y), h ∈ H} using the generalized

IS method. Below, we describe the MCMC algorithms and the practical concern

of how long to run them, which illustrates the importance of calculating a SE.

While the two high-dimensional integrals leave the posterior density in (5.1)

intractable, there are MCMC algorithms to sample from the augmented posterior

distribution,

πh(ψ,z|y) =
f(y|z)fh(z|ψ)π(ψ)

mh(y)
. (5.2)

Note that
∫
R πh(ψ,z|y)dz = πh(ψ|y). Hence, a two-component Gibbs sampler

that updates ψ and z in turn from their respective conditional distributions

based on (5.2) yields a Markov chain {ψ(i), z(i)}i≥1 with stationary distribution

πh(ψ,z|y). As a result, the marginal {ψ(i)}i≥1 is also a Markov chain with

stationary distribution πh(ψ|y) (Tanner and Wong (1987)).

As a starting point, we used a small pilot study to identify a range for

h = (φ, ω) that corresponds to reasonably large BF values. This step was carried

out by obtaining the reverse logistic estimator of BF at a coarse grid of h values

over a wide area, based on short runs of Markov chains. Specifically, (φ, ω) ∈
[80, 200]× [0.2, 2] and, within this range, the minimum BF was about 1% the size

of the maximum. To more carefully estimate BF over this range, we examined

a fine grid H that consisted of 130 different h values, with increments of size 10

for the φ component, and that of 0.2 for the w component.

A natural choice for the set of skeleton points was S = {80, 140, 200} ×
{0.5, 1, 2}, with an arbitrarily chosen baseline at (200, 2). We first experimented

with samples of sizes n1 = · · · = n9 = 500 at the skeleton points (after a burn-in

period of 500 iterations and a thinning procedure that kept one sample every

10 iterations), of which the first 80% were used in stage 1, and the remaining in

stage 2 of the generalized IS procedure. BF estimates at all h ∈ H were obtained,

though not shown. Given the current Monte Carlo sample sizes, it was natural

to consider how trustworthy these BF estimates were. The point-wise SEs at all

h ∈ H were obtained via the BM method (not shown). In this setting for some

h, the magnitude of the SE was about 6.6% of the corresponding BF estimate.

This pilot stage took less than 8 seconds to compute on a 3.4GHz Intel Core i7
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Figure 2. The left and middle panels display surface and contour plots for BF estimates
in log scale (based on nine Markov chains with 22, 000 iterations each). The right panel
shows the ratio of the SE to the BF estimates in log scale, where SEs were evaluated
using the BM method.

running linux.

Suppose it is desirable to reduce the relative SE to 1% or less for all h ∈ H,

we increased the sample sizes to n1 = · · · = n9 = 22, 000, approximately

(6.64%/1%)2 times the common pilot sample size. This new process took 8

minutes to run. The resulting BF estimates are shown in Figure 2, with max-

imum relative SE reduced to 0.96%. For the sake of comparison, we tried a

few other designs that used different sets of skeleton points, including S4 =

{80, 200} × {0.5, 2}, S6a = {80, 200} × {0.5, 1, 2}, S6b = {80, 140, 200} × {0.5, 2},
and S12 = {80, 140, 200}×{0.5, 1, 1.5, 2}, all while keeping the baseline unchanged

at (200, 0.2). To achieve SEs at all h ∈ H below 1% of the corresponding BF

estimates, it took sample sizes 55, 000, 35, 000, 32, 000, and 18, 000, for each sim-

ulated chain in these designs, respectively. The computing time for each turned

out to be similar to that of design S and ranged from 8 to 10 minutes. In short,

easily obtainable SE estimates allow us to experiment with different designs and

perform samples size calculations in the pilot step, as well as providing reliable

SE calculations for the final estimates.

The simplicity of the method matters when it comes to estimating SEs in

practice. Using the BM method to obtain SE requires no extra input beyond

what is needed for obtaining the generalized IS estimates. Indeed, as long as

one can run existing software to obtain the Markov chain samples, there is no

need to know the Markov transition kernels utilized in the background. Un-

like the BM method, the RS method depends on identifying regeneration times,

typically through constructing minorization conditions for the Markov transition

kernels (see Mykland, Tierney and Yu (1995) for details). Despite the fact that



IMPORTANCE SAMPLING WITH MULTIPLE MARKOV CHAINS 1097

minorization conditions can be established for any Markov transition kernel, we

demonstrate that for the current example the amount of effort needed to obtain

a regeneration can be prohibitively high. Recall the MCMC scheme involves

sampling from πh(ψ|z,y) and πh(z|ψ,y) in turn. The former is a standard dis-

tribution hence easy to sample from. The latter is not, and we followed Diggle,

Tawn and Moyeed (1998) that updates zj , j = 1, · · ·,M in turn, each using a

one-dimensional Metropolis-Hastings step that keeps invariant the conditional

posterior distribution of zj given all other components. Denote the transition

density of these MH steps as f1, · · ·, fM , and suppressing the notations of their

dependence on y, the transition kernel of the Markov chain can be represented

as

p(z′, ψ′|z, ψ) = f1(z
′
1|z2, · · ·, zM , ψ)f2(z

′
2|z′1, z3, · · ·, zM , ψ)

· · · fn(z′M |z′1, · · ·, z′M−1, ψ)πh(ψ′|z′) .

According to a method described in Jones and Hobert (2004), one can build a

minorization condition by finding D ⊂ RM × R× R+, ε > 0, and k(·) such that,

p(z′, ψ′|z, ψ) ≥ εID(z, ψ) k(z′, ψ′) for all (z′, ψ′) ∈ RM × R× R+ .

Further, this condition can be established if

f1(z
′
1|z2, · · ·, zM , ψ)f2(z

′
2|z′1, z3, · · ·, zM , ψ) · · · fM (z′M |z′1, · · ·, z′M−1, ψ)πh(ψ′|z′)

≥ ID(z, ψ) ε1k1(z
′
1) ε2k2(z

′
1, z
′
2) · · · εMkM (z′1, · · ·, z′M )πh(ψ′|z′)

for all (z′, ψ′) ∈RM × R× R+,

where the common term πh on both sides of the inequality cancel, and hence the

work is in finding ε1, · · ·, εM , and k1(·), · · ·, kM (·). It’s easy to see that the smaller

the set D, the larger ε = ΠM
i=1εj can possibly be, where ε can be interpreted as the

conditional regeneration rate given D is visited. If we take D to be small enough

such that εj takes on a very large value of 0.8 for each j, then the probability

of getting a regeneration given a visit to D is ε = (0.8)100 ≈ 2 × 10−10. Being

overoptimistic that the Markov chain visits D with probability close to 1, it

would still take 100 billon iterations for the chain to regenerate about twenty

times, barely enough for the RS method to be effective.

Using the EB estimate ĥ of h, estimation of the remaining parameters ψ

and prediction of the spatial random field can be done in the standard method

using MCMC samples from πĥ(ψ|y) (see e.g. Roy, Evangelou and Zhu (2016),

Sec. 3.2).

Thus we can produce the root rot disease prediction map similar to that in
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Roy, Evangelou and Zhu (2016, Web Fig. 10).

6. Discussion

In this paper we consider two separate but related problems. The first prob-

lem is estimating the ratios of unknown normalizing constants given Markov

chain samples from each of the k > 1 probability densities. The second problem

is estimating expectations of a function with respect to a large number of prob-

ability distributions. These problems are related in the sense that generalized

IS estimators used for the latter utilize estimates derived when solving the first

problem. The first situation also arises in a variety of contexts other than the

generalized IS estimators.

For both problems, we derive estimators with flexible weights and thus these

estimators are appropriate for Markov chains with different mixing behaviors.

We establish CLTs for these estimators and develop BM methods for consistently

estimating their SEs. These easy-to-calculate SEs are important for at least three

reasons. First, SEs are needed to assess the quality of the estimates. Second,

our ability to calculate SEs allows us to search for optimal weights a for both

stage 1 and 2. And last but not least, SEs form the basis for comparison of

generalized IS with other available methods for estimating large number of (ratios

of) normalizing constants.

Although we compare BM and RS in this paper, spectral estimators can

also be derived for variance estimation using the results in (Vats, Flegal and

Jones (2016)). However, estimation by spectral methods is generally more com-

putationally expensive. Flegal and Jones (2010) compare the performance of

confidence intervals produced by BM, RS, and spectral methods for the time

average estimator, and they conclude that if tuning parameters are chosen ap-

propriately, all three perform equally well. Control variates can be used to further

improve the accuracy of our generalized IS estimators (Owen and Zhou (2000);

Doss (2010)). A direction of future research would be to establish a BM estimator

of the SEs for control variate based methods.

Supplementary Materials

The supplement to this paper contains proofs of Theorems 1 to 3, as well as

a proof of the extension of the CLT based on regenerative simulation mentioned

in Remark 3. Also included is a simulation study that demonstrates consistency

of the BM and the RS estimators in stage 2 of the generalized IS estimators,
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as well as a comparison among three different weighting strategies. Finally, we

study a linear regression model and use the BM estimator to aid the process of

empirical Bayes variable selection.
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