Supplemental Materials to ‘““Scalable Bayesian Variable
Selection Using Nonlocal Prior Densities in
Ultrahigh-dimensional Settings”

1 Preliminary Results

Lemma 1. For Qy defined in (6), H§:1 Qﬁ,j <Qk < H§:1 di-,

where

Qky = o) P+ 1/7,) " exp{=m,/ B3},

Qll{,j = 62(02)1/2(nyk* + 1/7—%:0)71/2 eXp{_Tn,p/ﬂEk,j‘ + gn)Q}y

and €, < (N, [T p) V4, with Bf;j € [Bij — & Bicj + n] \ (—€n, €, )° for some positive constants

¢y and cs.

Proof. Recall ¥y = (XI X\ 4+ 1/7,,0)" . From (8), all eigenvalues of (X))~! are bounded
between nvy, + 1/7,, and nyy + 1/7,,, which implies for all z € R¥, (nyy, + 1/7,,)27z <
T(S) e < (nf + 1/1p)aTx. Let Ty, = {(nf + 1/7,,)/02} 2 and Ty, = {(nie +

1/7,,)/0%}/2. Substituting the above inequality in the expression for @), we have

k| k|
Hgl(ﬁk,j) <Qx < ng(ﬁk,g‘), (S1)
=1 j=1
where
gz‘(Ek,j) = / eXp{_Tﬁl(ﬁk,j - Ek,j)2/2 - Tn,p/ﬁﬁ,j}dﬁk,j, (S2)

for i = 1,2. We establish the lower bound first by showing that gl(gk,j) > Qg forall j =



1,...,|k|. Recall €, < (nv./T,,) /4 from the statement of the Lemma. We have

91(Biy) > exp{—T2,(Bic; — Bij)*/2 — Tup/ B dBx

/Ek,j *an ’5k,j +€n]\(*€n gn)c

> exp{—Tu/ B} [ exp{ =T}, (Bies = Bis)*/2} B,

[Bk,j *gn »Ek,j +gn]\(*gn ;gn)c

for some Ef; i € [Ek,j — €n, Bk,j + €] \ (=€, €,)°. Then, the integral in the last line of the above

display is equivalent to

Tlngn
/ ) ) e~ Tt /2gt > clTl_nl/ e F2dy > e Tk
[—€n,€n]\(—Pk,j —€n,—Bxk,j+€n)° 0

where c; and ¢, are some positive constants and the last inequality in the above display follows
since 11,6, > 1 for large n. Substituting back in the previous display, ¢; ( B/k’j) > oy Ty, exp{—7,/ gﬁ%
for some constant ¢; > 0, completing the proof of the lower bound.

We now establish the upper bound by showing that gQ(Ekvj) < QY forallj =1,... [k[. It
is straightforward to see that g, is a symmetric function (i.e, gz(gk,j) = go(] gk,j])), so that it is
enough to establish the bound for ng > 0; without loss of generality we assume that ng > 0.

We have

| T2 By = B2 g Y

—00

0

- / XD T2, (Bus — Bres)*/2 — Tup B i

—00

gk,jJrgn _

b [ b= ThB = B2~ T/ B, Y
0

b T = Bes)/2 T R Y
B

k,j +én

Define the first term of the above as W7, the second as 15, and the third term as W3. First, we

shall show that W; < ¢T, ! exp{—"T5, (27, 1/2Y for some positive constant c¢. By transforming
2n P



the variable t = By j — Ek,j,

0 o~ o~
W, = / exp{—T2,12/2 + T2 tBe; — T2 /2 — T/}t

—00

IA

0
/ exp{—Tfnt2/2 — Tn7p/t2}dt

—00

< 3Ty, exp{—Ton(27,)"*},
for some constant cz, since [ exp{—pu/t? — (t*}dt = (7/() /2 exp{—2(u¢)"/?} for u > 0 and
¢ >0.

Second, by changing the variable z = ¢ — &,

Brc,s -
Wy = / exp{—T;n(Z — Prj + gn)2/2 — Tnp/ (2 +En)2}dz

€n

IN

exp{ T/ (e + 7)) / exp{ T2z — By +2)%/2)

< Tyt exp{—Tup/ (B + &)}

for some positive constant c,.

Third, by changing the variable z = ¢ — Ek’j, there exists some positive constant ¢ such that

W, — / exp{—T2,22/2 — T/ (= + Puy)?d2

IA

exp{-T5E /1) | exp{~T5:2/1)d:

< esTyt exp{—cﬁTgnTéf},

for some constants csand cg, since €, < (Nl / Tn,p)_l/ 4 Then,

92(Buj) < 3Tt exp{—Ton(270) %} + et exp{—Tnp/ (Bicj + &)*}

+c5 Tyt exp{— CGTQnTT%? }.

Since &, = (nlie/Tup) Y4, When Bi; < @ Top/ By + )2 < Tup/(4€2) = Ty,7ly, and



when EkJ > € Tup/ (B/kJ + )% < Tup/ (4§ﬁj) < TgnTﬁ,/pz. In overall, the right-hand side
of the above display would be dominated by the second term, which shows that gg(gk,j) <
Tyt exp{—T7n,/ (B/k,j + €,)?} for some constant c. When Ek,j < 0, we can show the same re-

sult by following exactly the same steps explained above. [

We now present some auxiliary results that are used to prove Theorems 1 and 2. We make use of

the following simple union bound multiple times: for non-negative random variables Vi, ..., V},
and a > 0,
P(lz V,>a) < lZ P(Vi > a/m) < m max P(V; > a/m). (S3)
=1 =1 -

We define some notations that are used in the subsequent proofs. Let t denote the true data
generating model, and let 3{ denote the true regression coefficient corresponding to t. Let ¢y =
t\ k, cx = k\ t,and u = kU t. Also, we define the cardinality of a model k as k and in the
same spirit, denote ¢, = |ck|, ¢, = |cg|, and t = |t|. {z}; denotes the j-th element of the vector
z, and diag{ A}, refers to the j-th diagonal element in the square matrix A. We denote x2 (\) a
non-central chi-square distribution with the degrees of freedom m and non-centrality parameter \;
a central chi-square distribution is simply denoted by x?,.

An important property that is used in the subsequent proofs concerns the distribution of the

marginal ridge estimator. Let B, = (XX + 1/7nph) ' X{y and Bk,j = {gk}j- Then,

By ~ N (B 085), (S4)

where 3y = {(XgX 4+ 1/7, 1) ' Xg X5} and oy = o*diag{(Xg Xy + 1/7np D)~ }5. Ttis

also evident that (3 ; — B i) /o ~ xi.



A set of technical results follow that are used in the proof of the main results. Define

mi(y)m(k m(k my(y)m(k m(k
SR E A e 2
ktck, Y KitCK, Y ek, 8 k:tdk, y
k|<qn [k|<qn k|<gn k|<gn
Lemma 2. Fixe > 0. Let T'y = {k : k| < ¢q,,t Tk, |k|—[t| =d} ford =1,...,q, — |t|.
Suppose there exist constants ¢,§ > 0 such that maxyer, P{m(k | y)/7(t | y) > ep™¥/q,} <

cp~ 0+ ford = 1,...,q, — |t|. Then, H,, converges to zero in probability as n tends to oo,

where Hy, is as in (S3).

Proof. Clearly,

Lyl = (p_d|t|). Using (S3)), we bound

gn—|t|
P{Z%>e} - Py Q%N}
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Finally, 3’;'“ cp~® < cqup® — 0asn — oo. O

Lemma 3. Fixe > 0 and lett = |t|. Define I'y ., ., = {k : |k| < qn, |k| =k, [k\t| = ¢, |t\k| =

ctfork=0,...,q,; ck =0,....k; ¢, =1,...,t. Suppose

max P > enSpFn Tt < epRIFO)

kerk,ck ,Ct

)

[W(k | y)
m(t | y)

with some postive constants ¢ and 0. Then, Hs, converges to zero as n tends to oo, where Hs,, is

as in (S3).



Proof. Clearly,

Trewel = (1) (5) (0):
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Lemma 4. Suppose W follows a non-central chi-square distribution with the degree of freedom
m,, that is a positive integer and the non-central parameter \,, > 0, i.e, W ~ ann(kn). Also,

consider w,, and t,, such that w,, — 0 and t,, — oo as n tends to co. Also, assume that m,, < t,.

Then,
P(W < )\nwn) < Cl)‘;l exp{—)\n(l - wn)2}7 (S6)
And
t mn/2 1/2,-1 t
< " - n —Zoh
P(W >\, +t,) < e <2mn> exp {m,/2 — tn/2} + c3\,/ 7, eXp{ 32)\n} , (8T)

where cy, co, and c3 are some positive constants.

Proof. W can be expressed as W = Y7 {Z; + (\,/m,)"?}?, where Z; % N(0,1) for i =

1,...,m. Then, by the fact that P(Z > a) < (27)""2a~!exp{—a?/2} for any a > 0, we can



show that there exist some positive constants c¢; such that

P(W < \w,) = P{YZF+200/mn)Y " Zi+ Ay < Ayw, }
=1 =1
< P{m,'"?> "z < N1 —w,)/2}
=1

= P{|Zi] > N/*(1 —w,)/2}/2

IA

ol texp{—A. (1 —w,)?*/2},

since Z; follows a standard normal distribution.
Also, by using Chernoffs’s bound and the fact that P(Z > a) < (27)" /24" exp{—a?/2} for

any a > 0, one can show that
PW >\, +t,) =P {Z Z} 420 /ma)' > 2 > tn}
i=1 i=1

P (Z Z% > tn/2> +P {mn1/2 > Zi> )\nl/Qtn/zl}

i=1 i=1

IN

IN

t mn/2 t2
Co ( ° ) exp{mn/Q—tn/2}+03)\,1/2tnlexp{—32§\ },

2m,,
where ¢, and c3 are some positive constants. [

Lemma 5. Consider Qy defined in (6) for an arbitrary model k. Fix any 6 > 0. For any k with

tCk
P [Qk/Qt > exp {—\k \ thﬁf(nuk*)l/g + \t\Tig,‘s/B(nl/k*)‘s/S}] < prikEa+9) (S8)
and for k such that t ¢ Kk,

P [Qu/Qu > exp { |18 31 /{210g(7p/ log p)} }] < p MU0, (S9)



Proof. By Lemmal(l] it is sufficient to show that

P ] J(Qi;/08)) > expfltlr, S (nne) "} | + P | T] Qi > exp{—Ik\ ]727 (nc) %}

Jet jek\t

< prik\tA+e), (S10)

We first shall show that the first term in the left-hand side of (S10) is bounded above by

exp{—cnu, } for some constant c.

(nVis 5/8}

<ZP

nin)/8
HQ (1) }]

jet jet
s + 1/ 7, 12 > ~ e 5 5
- el (s ) P (Ww +&)! —1/55) | > e (o))
< > Pl = Byl > €1+ > PliBey — Byl > €], (S11)
JEt jet

for some small enough ¢ > 0 and some positive constant ¢ and E;;j € [Brs — &n By + & \
(—€n, €,)¢ as defined in Lemma |1} and Ek,j and [y ; defined in (S4). The last inequality in the

above display asymptotically holds, since
Tap (i) ® = 1 /(1B | — € = @),

for any 6 > 0.

Since (fi; — B ;)2 /0w ~ xi and 032 > (nihe +1/7,,) 7", by using Lemma one can show
that the first term in bounded above by exp{—c;¢*nu., } for some constant c;. Similarly, the
second term in (STI) is bounded above by exp{—cy€”*n} for some constant c,, since Assumption
5 states that X{ X¢/n is asymptically isotropic. Therefore, is asymptotically bounded by

(149)

pin by Assumption 3.

Next, we shall show that the second term in the left-hand side of (S10) is bounded above by



exp{—craly (nire,)?/3} for some positive constant . Since when j € k \ t and t C k, By =nt,

/3

-1

P | I] @ > exp{—[k\ t|77 (n1ne.) "/}

jek\t
< Z P |d(nne; +1/70,) Y exp {—#} > exp{—Tgf(nyk*)l/?’}]
jekvt L (| Bl + €4)?
_ P _NQ 1/2 1/3.2/3 An-1/2 2
- Z Biej > 1Tl ((nl/k*) Ty — log(nvis + 1/7,)/2 + log ¢ ) — €,
jek\t -
[ . 1/3
= Z P (P — Bltyj)Q/Oltvj > (an ) (Nt + 1/Tn,p)/02] )
jek\t *

for some positive contant ¢ and ¢”’. Since (Bk,j — b5 ;)% o ~ x1. by Lemmathe last quantity

in the above display can be bounded by exp{—cﬁ

/3<

)

nin)?/3} for some contant c. By Assumption

3, exp{—cﬁf’(nuk*)”i*} < p~an(1+9) < plA(+9)] wwhich proves the statement (ST0).

We now shall show that the equation (S9) holds for any 6 > 0. The left-hand side of (S9) can

be bounded above by

IN

IN

P

[T, (TTQ5) > exp {1803 /{2 108(r,/ 1ogp>}}]

jek jet

> P el +1/7,) 2 exp { =/ (gl + @)} > exp {1187 v/ {41k log (7 og )}

jek

+ 30 P+ 1/70p) 2 exp {1/ (Bi2) | > exp {1182 3nvan {41t 10 (7 / 1og p)} }

jet

Th,

»or — = > || 3|3/ {4]K] log (7, / log p)} + log ¢

jek (|5kj| + Gn)

+ 30 P18l < 1B ()24l 10g (7 Tog p) Y270
jet

where ¢, ¢/, and ¢’ are some positive constants.

(S12)) is always zero since the left-hand side in the probability is always negative and the right-

hand side in the probability operator is always positive. So, we focus on (S13)) as below:

Since fy; — ¢, < B:jj < B + €, implies |3y ;| — &, < ]5@‘73-\ < |Bes| + & (ST3) can be

(S12)

(S13)



bounded above by

S P (18] < B (nwae) /{41t Tog (7, Tog p)} /2722

jet
< 3P|l < BT ()24l 10g (7 Tog D) AT + 7 |
jet
where j; ; is defined in (S4). Since Et?’j/af’j ~ X163 /o) and of ; < o*/n for j € t, by
using Lemma and Assumption 5, one can show that the probability is bounded by exp{—cn} for

(149)

some constant c, and it is evident that exp{—cn} < p~ Il , which completes the proof of the

Lemma. O]

2 Proofs of Main Results

Proof of Theorem[Il We have 7(t | y) = me(y)m(t)/{D .k <q. Mr(y)m(k)}, since w(k) = 0
for any k with |k| > ¢,. Recall Hy,, and Hy, from and note that 7(t | y) = (1+ Hy,+ Hoy,) 7t
Hence to show that 7(t | y) converges to one in probability, it is sufficient to establish that H,
and H, both converge in probability to zero as n tends to co. We shall prove the Theorem by
showing:

For any ¢ € (0,8/3) and any model k € T'; (defined in Lemma [2),

k
P |:7T( | y) > 6pdqnl:| S pfd(l+5)’ (Sl4)

m(t|y)

and for any model k € I'; , ., (defined in Lemma 3)),

s r( v) mspkncktt} < ey k), (S15)
y

Then, it is evident that Hy,, and H,, both converge to zero in probability by Lemma 2] and [3|

respectively.

10



First, we shall show that (S14)) holds. For any k € I'y, recall that

(k| y) —d —1 —aQx L= 5 —d
P " > ep qn]SP[Cn’p—texp{—T‘z(Rk—Rt)}>ep /qn]

Since Ek > Ry and ét < R{ +n, where ) = dlgtT B\t /T, for some constant d; and B\t is the
ordinary least square estimator of [3; in the true model t, by using (S3)), the term in the last display

can be bounded above by

P[Cmg% exp{ — (Rf; — R;‘)/(202) + 77/(202)} > ep’d/qn}
< P [Cn;l%pd(yr(;)ﬂs > Epfd/qni| (816)
o
+P [R{ — Ry, > 20°d(1 + 6) log p] (S17)
+P [exp{n/(20°)} > &p’] . (518)

By using Lemma is less than p~¥1%%) when § < 8/3. Since (R} — R})/0? ~ Xfievep» DY
using (S6) in Lemmaf4} we can show that is bounded by cp~?1+9) for some positive constant
c. Since 7, pniesn/dyo? < BEXT X By /0? ~ Xiy (BT X{ X487), by using the inequality in
Lemma ], (ST8)) can be expressed as

P [exp {7]/202} > 6p5]

IN

P [7’ndvnut>,<77/d1U2 > 27, iy (log € 4 0 log p)/dl}

IN

P[é\':TXZtht/O'2 > QTn,ant*(loge + 510gp)/d1}

It]/2

IN

(ndlogp)

eypKI0L48)

IN

for some positive constant ¢y, o, and c3, which proves that (S14)) holds.

11

exp{—ci6(nlogp)} +n~/*(0logp) ' exp{—ca(nlogp)?/n}

(S19)



Next, we consider (SI3). Recall that u = k U t. By using (S3)), it can be shown that

(k| y) —3, —|k|, —|k\t||4|—[t|
P-7r(t|y)>€n pn |t }
< PlogIM % ey { (B~ R)/(20%)} > entpr g1
L Qs
< p _C,;Lk"'t')% exp {~(Ri, — Ry)/(20%)} > n=-l] 1kl
+P[exp {(R; — Ry)/(20%)} > ep™ ] + Pexp (n/(20%)) > p°]
< Plexp{(R; — R})/20"} > ep/¥I+9] (S20)
—i—P[eXp (77/202) > p‘s] (S21)
+P [Rl*( - R < 202Hﬁ5|\§nyu*/log(Tn,p/logp)} (S22)
+P [Qk/Qt > exp {Hﬁgﬂgnyu*/{mog(m,p/ logp)}}] ) (S23)

Since (R; — Ry)/o” follows a X7, distribution, (S20) is also bounded by ¢;p~ (49 with
some constant ¢;. By following the same steps regarding (S19), one can show that (S21) is

bounded by cyp~kI(1+9)

for some constant c,. We note that (R — Ry)/0® ~ X, (M) with
A = BT XT(P, — Pe) X3y, where Py is the projection matrix of Xj. As discussed in [Narisetty
and He|(2014), A\, > niy.||80||3. Hence, by using Lemma 4] one can show that is bounded
by exp{—c3||3||3nu«/ log(7,,,/ log p)} for some constant c3. Lemma [3] states that (S23) is
bounded by p~*(1+%)  In summary, since ¢, < Tnp/ log p by Assumption 3, there exists some

positive constant ¢, such that P[r(k | y)/7(t | y) > en=3p~Kin=I\t || =1¢] < ¢,;p~KI+9) which

completes the proof of Theorem 1] [

Proof of Corollary 2] Recall the penalty term of a model k, (), based on the piMoM priors is

k| k|

Qx = /GXP {— (B — B TS B — Bi) [ (207) — Z Tp/BE; — T Z log(B2;) }dB,
J=1 Jj=1

in (7). Since, for any € > 0, exp [ — Z‘jkil{ﬂn’p /Bi ;+1log(BE;)}] is bounded above with respect
10 fieg, Q. < C f exp{= (B — )57 (B — o)/ (20%) = T (1= )73/ B ;i for some

12



constant C. Following the exactly same steps in Lemma|l| Qi < C’(ny;)~1/2 H‘]kz‘l exp{—(1 —
)7 p/ (|Bicj| + )2} for some constant C’ > 0.

We shall show that the model selection procedure based on piMoM priors as in (@) assures
consistency by proving that ;. and )y are asymptotically equivalent.

Next, we shall show that Q5. is bounded below by C(nv;)~1/2 H‘]kz‘l exp{—(1 — €)Tn,/ 31*;2]}
for some constant C' > 0 and B\ﬁj € [Bij — & Bicj + €. Since exp { — e/ Br; +rlog(BE;)}

can be minimized in [B\k’j — €n, Bk,j + €,], by following the proof of Lemma

/_ " exp{onvii(B — Bey)2/(20%) — /B — rlog(5%)}d8

o0

v

Bx,j+en N
/E exp{—ni(B — Bicj)?/(20%) — (1 — €7/ B} exp{—e,/ 8* — rlog(8*)}dB

k.j~€n

> C(ny) Y exp {—(1 - €)Tn,p/3§,2j} )

where C is some constant and Bfi] € [Bk,j — &, B\kﬂ‘ + €] \ (—6n, &)

Therefore, due to the asymptotic similarity between the ridge estimator and the least square
estimator, the lower and upper bounds of ()} are asymptotically equivalent to those of ()i with the
penalty parameter (1 — €)7,, ,, which assures the strong consistency of the model selection based

on the piMoM priors. O

Proof of Theorem 3. Under a situation where ¢ is unknown, it is clear that

N

K K 1/2 — 5 _
mk(y) _ Tn; : (27”72)—%" /exp |k| (%) i (6k 6k)Tz 5k ﬁk Z Tn,p 7T(0'2)dﬁkd0'2,

202 512{]

where 7(0?) is the prior for o2 (Inverse-gamma density with hyperparameters ag and by).

First, we shall show that the ratio between marginal likelihoods of a model k and the true model

13



t can be bounded as

~ —n/2—a
mi(y) < Ry + 2by ’ l Tn,p N i Top | (MeeTy,p, + 1)71K/2
— -—_ eXp - # — " — ,
Ry + 2by (Bl +E)?2 F B2 (T + 1)
(S524)

where E;j € [B},j — €n, Et,j + €]\ (—€n, 6,)¢ for j € 1,...,|t| and ¢ is some constant. Next, we
shall show that {(Ry + 2by) /(B¢ + 2bo)} />% < exp{—(Ryx — Ry)/(202(1 + u,))}, where o2
is the true regression variance that involves in the data-generating process, and w,, is some random
variable that is concentrated around a finite value with at least probability 1 — exp{—cn} for some
constant c. Then, by following the same steps in the proof of Theorem I} the proof of Corollary 2]
is completed.

By Lemmal I} the marginal likelihood of a model k can be bounded by

k|

1/2 =
_M 2 _ n+2ag 1 2 Tn,p Rk + 2b0
mi(y) < {ei(naTn, +1 /a) 2 exp < |kK| (—) - — — —
{e(mamap +1)}77 [ ( k(= ;(WMHW 5o3

o n+2ag
2

k|
< {a(natn, + 1)} 5 exp Z 0 T_i E (14 exp{2]k|}) <§k + Qbo> ,
j=1 k,j €n

for some constant c;.

Also, by using Lemmal I} one can show that

1/2 k| =
|k| _n+t2ag 2 Tn R + 2[)
mk(y) Z {CQ(nd*Tnp + 1)} /(0-2) 5 0_1 exp |k| (;) . ! P k 0 d0‘2

+2 202
J=1 /Bkvj

‘k‘ n+2aq
-2

Z {62 (nd*Tn,p + 1)}_% CXp § — 7;7:;0 <§k + 2b0> )
= P

where ¢, is some constant and E;;J € [Bij — € By + ) \ (=€, €n) for j € 1,..., |K|. These
results shows that (S24) holds.
Next, we consider the asymptotic behavior of { (Ric+2bo) / (Ry + 2bo) } /2790 in (S24)). Define

14



pr as the follows:

pn = (Ry + 2by)/(no?) — 1.
Since —log(1 —u) < u/(1 —u) foru € R,

—log{(Ri + 2b9) /(R + 2b0)} = —log[1 + (R — Ry)/{n(1 + pa)og}]

< (R — Ra) /{nog (1 + un)},

where u,, = p, + (R — Ry)/(no?).
Since (Ry, — R}) /03 ~ Xjuki(An) With A, = B0 X (P, — Pi) X, 8{/0?, by using Lemma 4]

one can show that

P(lun = Au/nl > €) < P(lpal > €¢/4) + P{(R; — Ry)/(nog) > ¢/4}

+P{|(R. — Ry)/(nog) — Au/n| > €/4} + P (n/2n0g > €/4)

IA

exp{—c'n} + P {|(R; — R})/(nog) — An/n| > €/4}

IA

exp{—c'n},

for some constant ¢’ and ¢”, and 7 is defined in the proof of Theorem (Il Also, by Assumption 5,

An/n will be bounded below and above. N

Proof of Corollary[d. Since we showed that the asymptotic equivalence between ()i and @)}, in
the proof of Corollary |2, by following exactly same steps in the proof of Theorem (3| we can prove

the model selection consistency under piMoM prior densities. [

Proof of Proposition[5] We shall show that for any a; = Ek + €, with €, = {€,;};=1

.....

lenj| > € foratleastone j € {1,...,|k|}, P{g(ax; k) < 9(B;k)} — 0 as n tends to oo, where

B: € B(By;er) with €8 < (7,,,/n)/3. More specifically, we set Bféd = By + ¢ for j € t and

Brj = Bk,j for j € t°. Without loss of generality, we assume that X7 X; =nforj=1,...,p.
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Note that

k|
glak) = || X — XuBull3 + > 7up/lonei| + Dn
=1
k|
= Z{C]ne + Tn,p/’ﬁkj + €|} + D,
=1

for some constants c; such that C;, < ¢; < Cy for j = 1,.. ., k|, and some randome variable D,

that are not relevant to «ri. Then,

Plg(awsk) < g(Fis )}

k| k|
T Tn
P Z{qne%—i—#} <Z{cjne*2 P }

| j=1 |Br,j + €njl j=1 Wk,;

IA

<rl ¥ {cjneiﬁj SR B tn,j}< 3 {cjne;%%} (S25)

| J€S*NSk,n |ﬁku | + [€n] FES* NSk n k,j |

Tn o o
+P Z {cjnefw + " tn,j} < Z {cjnenQ |g*p|} (S26)
k,j

| jestnsg, [Bicsl + lens] jes nsg.,
+P Z {cjnefw #jL Z } < Z {cjne*z—i- ~’p }] ,(S27)
| jes*e |Bic.5| + |€n,s] jesx jes*e |Gy k,j |
where t,, is an arbitrary sequence such that t,, ; = n2/37,/%¢, ;,and 5* = {j € {1,...,p} : |en,| >

ert,and Sy, = {j € k : | Bk,j] < €'}. Then, to complete the proof, it is sufficient to show that

each of (S23), (S26), and converges to zero.
Since n(fy; — Bei)? o ~xiforj=1,..., [k

P(|Bey — 8L > G) < (70 /2) 7 exp{—n(/(207)},

for any ¢,, > 0. This implies that Sy ,, = t at least probability 1—|t¢|(7ne’2/2) /2 exp{—ne:2/(202)}.
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Therefore, the equation (S235) can be asymptotically bounded by

Z P c]ne2 + —tn; < cjne? + _ne
jestnt 2|E”J| |Biej + €5
) * 2 -1

jes* Nt

for some positive constant c. Consider Lemma with A, = ne;?/o* and w, = *72 /{2 (ne}, ; —
tnj + Tnp/l€ny])?} for j € S* Nt. Since ne;, ; > n'/372% for j € S* implies w,, — 0, Lemma@
guarantees that the last display is bounded by /| S* Nt|A, ! exp{—\,, (1 —w,,)?} for some constant
¢/, which means that (S25) converges to zero as n tends to 0. By following the same steps, one can
show that converges to zero.

Also, can be asymptotically bounded by

-
Z P |¢ne j + == 5 +cmint, ; < cne? + ——F—
jes*ent |€W| jes |Biej + €5
Tn T,
+ Z P |emes  + ——2— +cm}9r}tnj < ¢jne? + ——L—
jES*ente wkj + €| 7€ |Bk7j +

< 2 P[|ﬁk,j+62|<c'm,pmei,j—ne:;2+0§ggetn,j+Tn,p/|en,j|>-1]

JES* Nt

+ Z P [|Bk7j + | < "Taplne, ; —nel + C?elisg tnj + Tn,p/|en,j|)_1/2} ,

jes*ente

where ¢, ¢, and ¢’ are some positive constants. For the first term in the last line of the above display,
by setting A, = ne*?/o* and w,, = 7, /{€}?(n€l, ; —ne), +cminjeg tyj + Tnp/len;])?}, We can
apply Lemma @ Since w,, < T,f’p(ej; mineg- t, ;)2 implies w,, — 0, the first term in the above

display converges to zero by Lemmafd] Similarly, the second term also converges to zero. [
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3 Laplace Approximations of Marginal Likelihoods

In this section, we provide the Laplace approximation of the marginal likelihoods based on the
nonlocal priors. Because closed form expressions for posterior model probabilities based on mod-
ified peMoM priors and modified piMoM priors are not available, we estimate the posterior model
probabilities using Laplace approximations. For posterior probabilities based on the peMoM pri-
ors, an inverse-Gamma density with parameters (ag, by) on o the Laplace approximation to the

marginal density of the data for model k can be expressed as

(k| y) o (2572 [V (85, 02| exp{ £ (55, 0*) Yp(K), (S28)
where
(By,0™) = a{gm%Xf(ﬂk,UQ)
F(Bo®) = —(n/2+ [k|/2+ao+1)logo® — (y — Xaf) (y — Xach)/(20%) — BL i/ (2077,)
k|
= /B + [KI(2/0%) 2 = by /0? + [K|(log T, ) /2.
Jj=1

and V (B, 0?) is a (|k| + 1) x (|k| + 1) matrix with the following blocks:

Viin = XEXk/O'2 + Ik/U2Tn,p + diag {6Tnﬁp/ﬁl§,j }jzl ..... k|
Vie = XL (y— XuB)/o* = Bi/{o" T p}
Voo = —(n/2+ [k|/2+ a0+ 1)/0" + (y — XacBh) " (y — XaBi) [0° = Bic Bic/ T

—3|k[2Y267° /4 4 2b, /0.
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For the piMoM priors on fy, the Laplace approximation of the posterior model probability can be

expressed as in (S28)), but with

(B, 0?) = —(n/24 a0+ 1)logo? — (y — XaB)" (y — XuBh)/ (207)
k|
- Z {rlog(BL,) + Tap/Bi;t + KI{(r — 1/2)log 7, — logT'(r — 1/2)} — by /02,

and V (B, 0?) a (|k| + 1) x (Jk| + 1) matrix with the following blocks:

Vii = X{Xy/o?+diag {GTn,p/ﬁlij —2r/B3;
Vie = X (y— Xab)/o*

Var = —(n/2+ag+1)/0" + (y — XaB) " (y — XaeB)/0° + 2bo/0°.
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