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1 Preliminary Results

Lemma 1. For Qk defined in (6),
∏k

j=1Q
L
k,j ≤ Qk ≤

∏k
j=1Q

U
k,j ,

where

QL
k,j = c1(σ2)1/2(nν∗k + 1/τn,p)

−1/2 exp{−τn,p/β̃∗2k,j},

QU
k,j = c2(σ2)1/2(nνk∗ + 1/τn,p)

−1/2 exp{−τn,p/(|β̃k,j|+ ε̃n)2},

and ε̃n � (nνk∗/τn,p)
−1/4, with β̃∗k,j ∈ [β̃k,j− ε̃n, β̃k,j + ε̃n]\ (−ε̃n, ε̃n)c for some positive constants

c1 and c2.

Proof. Recall Σ̃k = (XT
kXk + 1/τn,pIk)−1. From (8), all eigenvalues of (Σ̃k)−1 are bounded

between nνk∗ + 1/τn,p and nν∗k + 1/τn,p, which implies for all x ∈ R|k|, (nνk∗ + 1/τn,p)x
Tx ≤

xT (Σ̃k)−1x ≤ (nν∗k + 1/τn,p)x
Tx. Let T1n = {(nν∗k + 1/τn,p)/σ

2}1/2 and T2n = {(nνk∗ +

1/τn,p)/σ
2}1/2. Substituting the above inequality in the expression for Qk, we have

|k|∏
j=1

g1(β̃k,j) ≤ Qk ≤
|k|∏
j=1

g2(β̃k,j), (S1)

where

gi(β̃k,j) =

∫ ∞
−∞

exp{−T 2
in(βk,j − β̃k,j)2/2− τn,p/β2

k,j}dβk,j, (S2)

for i = 1, 2. We establish the lower bound first by showing that g1(β̃k,j) ≥ QL
k,j for all j =
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1, . . . , |k|. Recall ε̃n � (nνk∗/τn,p)
−1/4 from the statement of the Lemma. We have

g1(β̃k,j) ≥
∫

[β̃k,j−ε̃n,β̃k,j+ε̃n]\(−ε̃n,ε̃n)c
exp{−T 2

1n(βk,j − β̃k,j)2/2− τn,p/β2
k,j}dβk,j

≥ exp{−τn,p/β̃∗2k,j}
∫

[β̃k,j−ε̃n,β̃k,j+ε̃n]\(−ε̃n,ε̃n)c
exp{−T 2

1n(βk,j − β̃k,j)2/2}dβk,j,

for some β̃∗k,j ∈ [β̃k,j − ε̃n, β̃k,j + ε̃n] \ (−ε̃n, ε̃n)c. Then, the integral in the last line of the above

display is equivalent to

∫
[−ε̃n,ε̃n]\(−β̃k,j−ε̃n,−β̃k,j+ε̃n)c

e−T
2
1nt

2/2dt ≥ c1T
−1
1n

∫ T1nε̃n

0

e−z
2/2dz ≥ c2T

−1
1n ,

where c1 and c2 are some positive constants and the last inequality in the above display follows

since T1nε̃n ≥ 1 for large n. Substituting back in the previous display, g1(β̃k,j) ≥ c1T
−1
1n exp{−τn,p/β̃∗2k,j}

for some constant c1 > 0, completing the proof of the lower bound.

We now establish the upper bound by showing that g2(β̃k,j) ≤ QU
k,j for all j = 1, . . . , |k|. It

is straightforward to see that g2 is a symmetric function (i.e, g2(β̃k,j) = g2(|β̃k,j|)), so that it is

enough to establish the bound for β̃k,j > 0; without loss of generality we assume that β̃k,j > 0.

We have

∫ ∞
−∞

exp{−T 2
2n(βk,j − β̃k,j)2/2− τn,pβ2

k,j}dβk,j

=

∫ 0

−∞
exp{−T 2

2n(βk,j − β̃k,j)2/2− τn,p/β2
k,j}dβk,j

+

∫ β̃k,j+ε̃n

0

exp{−T 2
2n(βk,j − β̃k,j)2/2− τn,p/β2

k,j}dβk,j

+

∫ ∞
β̃k,j+ε̃n

exp{−T 2
2n(βk,j − β̃k,j)2/2− τn,p/β2

k,j}dβk,j.

Define the first term of the above as W1, the second as W2, and the third term as W3. First, we

shall show that W1 ≤ cT−1
2n exp{−T2n(2τn,p)

1/2} for some positive constant c. By transforming
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the variable t = βk,j − β̃k,j ,

W1 =

∫ 0

−∞
exp{−T 2

2nt
2/2 + T 2

2ntβ̃k,j − T 2
2nβ̃

2
k,j/2− τn,p/t2}dt

≤
∫ 0

−∞
exp{−T 2

2nt
2/2− τn,p/t2}dt

≤ c3T
−1
2n exp{−T2n(2τn,p)

1/2},

for some constant c3, since
∫

exp{−µ/t2 − ζt2}dt = (π/ζ)−1/2 exp{−2(µζ)1/2} for µ > 0 and

ζ > 0.

Second, by changing the variable z = t− ε̃,

W2 =

∫ β̃k,j

−ε̃n
exp{−T 2

2n(z − β̃k,j + ε̃n)2/2− τn,p/(z + ε̃n)2}dz

≤ exp{−τn,p/(β̃k,j + ε̃n)2}
∫ ∞
−∞

exp{−T 2
2n(z − β̃k,j + ε̃n)2/2}

≤ c4T
−1
2n exp{−τn,p/(β̃k,j + ε̃n)2},

for some positive constant c4.

Third, by changing the variable z = t− β̃k,j , there exists some positive constant c such that

W3 =

∫ ∞
ε̃n

exp{−T 2
2nz

2/2− τn,p/(z + β̃k,j)
2}dz

≤ exp{−T 2
2nε̃

2
n/4}

∫ ∞
−∞

exp{−T 2
2nz

2/4}dz

≤ c5T
−1
2n exp{−c6T2nτ

1/2
n,p },

for some constants c5and c6, since ε̃n � (nνk∗/τn,p)
−1/4. Then,

g2(β̃k,j) ≤ c3T
−1
2n exp{−T2n(2τn,p)

1/2}+ c4T
−1
2n exp{−τn,p/(β̃k,j + ε̃n)2}

+c5T
−1
2n exp{−c6T2nτ

1/2
n,p }.

Since ε̃n � (nνk∗/τn,p)
−1/4, when β̃k,j < ε̃n, τn,p/(β̃k,j + ε̃n)2 < τn,p/(4ε̃

2
n) � T2nτ

1/2
n,p , and
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when β̃k,j ≥ ε̃n, τn,p/(β̃k,j + ε̃n)2 ≤ τn,p/(4β̃
2
k,j) < T2nτ

1/2
n,p . In overall, the right-hand side

of the above display would be dominated by the second term, which shows that g2(β̃k,j) ≤

cT−1
2n exp{−τn,p/(β̃k,j + ε̃n)2} for some constant c. When β̃k,j < 0, we can show the same re-

sult by following exactly the same steps explained above.

We now present some auxiliary results that are used to prove Theorems 1 and 2. We make use of

the following simple union bound multiple times: for non-negative random variables V1, . . . , Vm

and a > 0,

P (
m∑
l=1

Vl > a) ≤
m∑
l=1

P (Vl > a/m) ≤ m max
1≤l≤m

P (Vl > a/m). (S3)

We define some notations that are used in the subsequent proofs. Let t denote the true data

generating model, and let β0
t denote the true regression coefficient corresponding to t. Let ct =

t \ k, ck = k \ t, and u = k ∪ t. Also, we define the cardinality of a model k as k and in the

same spirit, denote ck = |ck|, ct = |ct|, and t = |t|. {x}j denotes the j-th element of the vector

x, and diag{A}j refers to the j-th diagonal element in the square matrix A. We denote χ2
m(λ) a

non-central chi-square distribution with the degrees of freedom m and non-centrality parameter λ;

a central chi-square distribution is simply denoted by χ2
m.

An important property that is used in the subsequent proofs concerns the distribution of the

marginal ridge estimator. Let β̃k = (XT
kX + 1/τn,pIk)−1XT

ky and β̃k,j = {β̃k}j . Then,

β̃k,j ∼ N(β∗k,j, σ
2∗
k,j), (S4)

where β∗k,j = {(XT
kX + 1/τn,pIk)−1XT

kXtβ
∗
t}j and σ2∗

k,j = σ2diag{(XT
kXk + 1/τn,pIk)−1}j . It is

also evident that (β̃k,j − β∗k,j)2/σ2∗
k,j ∼ χ2

1.
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A set of technical results follow that are used in the proof of the main results. Define

H1n =
∑
k:t(k,
|k|≤qn

mk(y)π(k)

mt(y)π(t)
=
∑
k:t(k,
|k|≤qn

π(k | y)

π(t | y)
, H2n =

∑
k:t*k,
|k|≤qn

mk(y)π(k)

mt(y)π(t)
=
∑
k:t*k,
|k|≤qn

π(k | y)

π(t | y)
. (S5)

Lemma 2. Fix ε > 0. Let Γd = {k : |k| ≤ qn, t ( k, |k| − |t| = d} for d = 1, . . . , qn − |t|.

Suppose there exist constants c, δ > 0 such that maxk∈Γd
P
{
π(k | y)/π(t | y) > εp−d/qn

}
≤

cp−d(1+δ) for d = 1, . . . , qn − |t|. Then, H1n converges to zero in probability as n tends to ∞,

where H1n is as in (S5).

Proof. Clearly, |Γd| =
(
p−|t|
d

)
. Using (S3), we bound

P
{ ∑

k:t(k

π(k | y)

π(t | y)
> ε
}

= P
{ qn−|t|∑

d=1

∑
k∈Γd

π(k | y)

π(t | y)
> ε
}

≤
qn−|t|∑
d=1

P
{∑

k∈Γd

π(k | y)

π(t | y)
> ε/qn

}

≤
qn−|t|∑
d=1

(
p− |t|
d

)
max
k∈Γd

P
{π(k | y)

π(t | y)
> εp−d/qn

}
≤

qn−|t|∑
d=1

cp−dδ.

Finally,
∑qn−|t|

d=1 cp−dδ ≤ cqnp
−δ → 0 as n→∞.

Lemma 3. Fix ε > 0 and let t = |t|. Define Γk,ck,ct = {k : |k| ≤ qn, |k| = k, |k\t| = ck, |t\k| =

ct} for k = 0, . . . , qn; ck = 0, . . . , k; ct = 1, . . . , t. Suppose

max
k∈Γk,ck,ct

P
[π(k | y)

π(t | y)
> εn−3p−kn−ckt−t

]
≤ cp−k(1+δ),

with some postive constants c and δ. Then, H2n converges to zero as n tends to∞, where H2n is

as in (S5).
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Proof. Clearly, |Γk,ck,ct| =
(
p
k

)(
k
ck

)(
t
ct

)
.

P
{ ∑

k:t*k

π(k | y)

π(t | y)
> ε
}
≤ P

{ qn∑
k=1

k∑
ck=0

t∑
ct=1

∑
k∈Γk,ck,ct

π(k | y)

π(t | y)
> ε
}

≤ P
{ qn∑
k=1

k∑
ck=0

t∑
ct=1

∑
k∈Γk,ck,ct

π(k | y)

π(t | y)
> ε
}

≤
qn∑
k=1

k∑
ck=0

t∑
ct=1

P
{ ∑

k∈Γk,ck,ct

π(k | y)

π(t | y)
> εn−3

}

≤
qn∑
k=1

k∑
ck=0

t∑
ct=1

pkncktt max
k∈Γk,ck,ct

P
{π(k | y)

π(t | y)
> εn−3p−kn−ckt−t

}
≤

qn∑
k=1

k∑
ck=0

t∑
ct=1

pknckttp−k(1+δ) → 0,

as n→∞.

Lemma 4. Suppose W follows a non-central chi-square distribution with the degree of freedom

mn that is a positive integer and the non-central parameter λn ≥ 0, i.e, W ∼ χ2
mn

(λn). Also,

consider wn and tn such that wn → 0 and tn → ∞ as n tends to∞. Also, assume that mn ≺ tn.

Then,

P (W ≤ λnwn) ≤ c1λ
−1
n exp{−λn(1− wn)2}, (S6)

And

P (W > λn + tn) ≤ c2

(
tn

2mn

)mn/2

exp {mn/2− tn/2}+ c3λ
1/2
n t−1

n exp

{
− t2n

32λn

}
, (S7)

where c1, c2, and c3 are some positive constants.

Proof. W can be expressed as W =
∑mn

i=1{Zi + (λn/mn)1/2}2, where Zi
i.i.d∼ N(0, 1) for i =

1, . . . ,m. Then, by the fact that P (Z > a) ≤ (2π)−1/2a−1 exp{−a2/2} for any a > 0, we can
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show that there exist some positive constants c1 such that

P (W ≤ λnwn) = P
{ mn∑
i=1

Z2
i + 2(λn/mn)1/2

mn∑
i=1

Zi + λn ≤ λnwn
}

≤ P
{
m−1/2
n

mn∑
i=1

Zi ≤ −λ1/2
n (1− wn)/2

}
= P

{
|Z1| ≥ λ1/2

n (1− wn)/2
}
/2

≤ c1λ
−1
n exp{−λn(1− wn)2/2},

since Z1 follows a standard normal distribution.

Also, by using Chernoffs’s bound and the fact that P (Z > a) ≤ (2π)−1/2a−1 exp{−a2/2} for

any a > 0, one can show that

P (W > λn + tn) = P

{
mn∑
i=1

Z2
i + 2(λn/mn)1/2

mn∑
i=1

Zi > tn

}

≤ P

(
mn∑
i=1

Z2
i > tn/2

)
+ P

{
m−1/2
n

mn∑
i=1

Zi > λ−1/2
n tn/4

}

≤ c2

(
tn

2mn

)mn/2

exp {mn/2− tn/2}+ c3λ
1/2
n t−1

n exp

{
− t2n

32λn

}
,

where c2 and c3 are some positive constants.

Lemma 5. Consider Qk defined in (6) for an arbitrary model k. Fix any δ > 0. For any k with

t ( k,

P
[
Qk/Qt > exp

{
−|k \ t|τ 2/3

n,p (nνk∗)
1/3 + |t|τ 1−δ/8

n,p (nνk∗)
δ/8
}]
≤ p−|k\t|(1+δ), (S8)

and for k such that t * k,

P
[
Qk/Qt > exp

{
‖β0

t‖2
2nνu∗/{2 log(τn,p/ log p)}

}]
≤ p−|k|(1+δ). (S9)
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Proof. By Lemma 1, it is sufficient to show that

P

[∏
j∈t

(QU
k,j/Q

L
t,j) > exp{|t|τ 1−δ/8

n,p (nνk∗)
δ/8}

]
+ P

 ∏
j∈k\t

QU
k,j > exp{−|k \ t|τ 2/3

n,p (nνk∗)
1/3}


≤ p−|k\t|(1+δ). (S10)

We first shall show that the first term in the left-hand side of (S10) is bounded above by

exp{−cnνk∗} for some constant c.

P

[∏
j∈t

QU
k,j

QL
t,j

> exp
{
|t|τ 1−δ/8

n,p (nνk∗)
δ/8
}]
≤
∑
j∈t

P

[
QU

k,j

QL
t,j

> exp
{
τ 1−δ/8
n,p (nνk∗)

δ/8
}]

=
∑
j∈t

P

[
c′
(
nνk∗ + 1/τn,p
nν∗t + 1/τn,p

)−1/2

exp
{
−τn,p

(
1/(|β̃k,j|+ ε̃n)2 − 1/β̃∗2k,j

)}
> exp

{
τ 1−δ/8
n,p (nνk∗)

δ/8
}]

≤
∑
j∈t

P [|β̃k,j − β∗k,j| > ε′] +
∑
j∈t

P [|β̃t,j − β∗t,j| > ε′], (S11)

for some small enough ε′ > 0 and some positive constant c′ and β̃∗k,j ∈ [β̃k,j − ε̃n, β̃k,j + ε̃n] \

(−ε̃n, ε̃n)c as defined in Lemma 1, and β̃k,j and β∗k,j defined in (S4). The last inequality in the

above display asymptotically holds, since

τ 1−δ/8
n,p (nνk∗)

δ/8 � τn,p/(|β∗k,j| − ε′ − ε̃n)2,

for any δ > 0.

Since (β̃k,j−β∗k,j)2/σ∗2k,j ∼ χ2
1 and σ∗2k,j ≥ (nνk∗+1/τn,p)

−1, by using Lemma 4, one can show

that the first term in (S11) bounded above by exp{−c1ε
′2nνk∗} for some constant c1. Similarly, the

second term in (S11) is bounded above by exp{−c2ε
′2n} for some constant c2, since Assumption

5 states that XT
tXt/n is asymptically isotropic. Therefore, (S11) is asymptotically bounded by

p−qn(1+δ) by Assumption 3.

Next, we shall show that the second term in the left-hand side of (S10) is bounded above by
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exp{−cτ 1/3
n,p (nνk∗)

2/3} for some positive constant c. Since when j ∈ k \ t and t ( k, β∗k,j � n−1,

P

 ∏
j∈k\t

QU
k,j > exp{−|k \ t|τ 2/3

n,p (nνk∗)
1/3}


≤

∑
j∈k\t

P

[
c′(nνk,j + 1/τn,p)

−1/2 exp

{
− τn,p

(|β̃k,j|+ ε̃n)2

}
> exp{−τ 2/3

n,p (nνk∗)
1/3}

]

=
∑
j∈k\t

P

[
β̃2
k,j >

{
τ 1/2
n,p

(
(nνk∗)

1/3τ 2/3
n.p − log(nνk∗ + 1/τn,p)/2 + log c′

)−1/2 − ε̃n
}2
]

≤
∑
j∈k\t

P

[
(β̃k,j − β∗k,j)2/σ∗k,j > c′′

(
τn,p
nνk∗

)1/3

(nνk∗ + 1/τn,p)/σ
2

]
,

for some positive contant c′ and c′′. Since (β̃k,j − β∗k,j)2/σ∗k,j ∼ χ2
1, by Lemma 4 the last quantity

in the above display can be bounded by exp{−cτ 1/3
n,p (nνk∗)

2/3} for some contant c. By Assumption

3, exp{−cτ 1/3
n,p (nνk∗)

2/3} ≺ p−qn(1+δ) ≤ p|k\t|(1+δ)|, which proves the statement (S10).

We now shall show that the equation (S9) holds for any δ > 0. The left-hand side of (S9) can

be bounded above by

P

[∏
j∈k

QU
k,j

(∏
j∈t

QL
t,j

)−1

> exp
{
‖β0

t‖2
2nνu∗/{2 log(τn,p/ log p)}

}]
≤

∑
j∈k

P
[
c(nνk∗ + 1/τn,p)

−1/2 exp
{
−τn,p/(|β̃k,j|+ ε̃n)2

}
> exp

{
‖β0

t‖2
2nνu∗/{4|k| log(τn,p/ log p)}

}]
+
∑
j∈t

P
[
c′(nνt∗ + 1/τn,p)

1/2 exp
{
τn,p/(β̃

∗2
t,j)
}
> exp

{
‖β0

t‖2
2nνu∗/{4|t| log(τn,p/ log p)}

}]
≤

∑
j∈k

P

[
− τn,p

(|β̃k,j|+ ε̃n)2
> ‖β0

t‖2
2nνu∗/{4|k| log(τn,p/ log p)}+ log c

]
(S12)

+
∑
j∈t

P
[
|β̃∗t,j| < c′′‖β0

t‖−1
2 (nνu∗)

−1/2{4|t| log(τn,p/ log p)}1/2τ 1/2
n,p

]
, (S13)

where c, c′, and c′′ are some positive constants.

(S12) is always zero since the left-hand side in the probability is always negative and the right-

hand side in the probability operator is always positive. So, we focus on (S13) as below:

Since β̃t,j − ε̃n ≤ β̃∗t,j ≤ β̃t,j + ε̃n implies |β̃t,j| − ε̃n ≤ |β̃∗t,j| ≤ |β̃t,j| + ε̃n, (S13) can be
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bounded above by

∑
j∈t

P
[
|β̃∗t,j| < c′′‖β0

t‖−1
2 (nνu∗)

−1/2{4|t| log(τn,p/ log p)}1/2τ 1/2
n,p

]
≤

∑
j∈t

P
[
|β̃t,j| < c′′‖β0

t‖−1
2 (nνu∗)

−1/2{4|t| log(τn,p/ log p)}1/2τ 1/2
n,p + ε̃n

]
,

where β∗t,j is defined in (S4). Since β̃2
t,j/σ

2
t,j ∼ χ2

1(β∗2t,j/σ
2
t,j) and σ2

t,j � σ2/n for j ∈ t, by

using Lemma 4 and Assumption 5, one can show that the probability is bounded by exp{−cn} for

some constant c, and it is evident that exp{−cn} ≺ p−|k|(1+δ), which completes the proof of the

Lemma.

2 Proofs of Main Results

Proof of Theorem 1. We have π(t | y) = mt(y)π(t)/{
∑

k:|k|≤qn
mk(y)π(k)}, since π(k) = 0

for any k with |k| > qn. RecallH1n andH2n from (S5) and note that π(t | y) = (1+H1n+H2n)−1.

Hence to show that π(t | y) converges to one in probability, it is sufficient to establish that H1n

and H2n both converge in probability to zero as n tends to ∞. We shall prove the Theorem by

showing:

For any δ ∈ (0, 8/3) and any model k ∈ Γd (defined in Lemma 2),

P

[
π(k | y)

π(t | y)
> εp−dq−1

n

]
≤ p−d(1+δ), (S14)

and for any model k ∈ Γk,ck,ct (defined in Lemma 3),

P

[
π(k | y)

π(t | y)
> εn−3p−kn−ckt−t

]
≤ cp−k(1+δ). (S15)

Then, it is evident that H1n and H2n both converge to zero in probability by Lemma 2 and 3

respectively.
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First, we shall show that (S14) holds. For any k ∈ Γd, recall that

P
[π(k | y)

π(t | y)
> εp−dq−1

n

]
≤ P

[
C−dn,p

Qk

Qt

exp
{
− 1

2σ2

(
R̃k − R̃t

)}
> εp−d/qn

]
.

Since R̃k > R∗k and R̃t < R∗t + η, where η = d1β̂
T
t β̂t/τn,p for some constant d1 and β̂t is the

ordinary least square estimator of βt in the true model t, by using (S3), the term in the last display

can be bounded above by

P
[
C−dn,p

Qk

Qt

exp
{
−
(
R∗k −R∗t

)
/(2σ2) + η/(2σ2)

}
> εp−d/qn

]
≤ P

[
C−dn,p

Qk

Qt

pd(1+δ)+δ > εp−d/qn

]
(S16)

+P
[
R∗t −R∗k > 2σ2d(1 + δ) log p

]
(S17)

+P
[
exp{η/(2σ2)} > εpδ

]
. (S18)

By using Lemma 5, (S16) is less than p−d(1+δ) when δ < 8/3. Since (R∗t − R∗k)/σ2 ∼ χ2
|k\t|, by

using (S6) in Lemma 4, we can show that (S17) is bounded by cp−d(1+δ) for some positive constant

c. Since τn,pnνt∗η/d1σ
2 ≤ β̂Tt X

T
t Xtβ̂t/σ

2 ∼ χ2
|t|
(
β0T
t XT

t Xtβ
0
t

)
, by using the inequality (S7) in

Lemma 4, (S18) can be expressed as

P
[
exp

{
η/2σ2

}
> εpδ

]
≤ P

[
τn,pnνt∗η/d1σ

2 > 2τn,pnνt∗(log ε+ δ log p)/d1

]
≤ P

[
β̂Tt X

T
t Xtβ̂t/σ

2 > 2τn,pnνt∗(log ε+ δ log p)/d1

]
≤ (nδ log p)|t|/2 exp{−c1δ(n log p)}+ n−1/2(δ log p)−1 exp{−c2(n log p)2/n}

≤ c3p
−|k|(1+δ), (S19)

for some positive constant c1, c2, and c3, which proves that (S14) holds.
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Next, we consider (S15). Recall that u = k ∪ t. By using (S3), it can be shown that

P
[π(k | y)

π(t | y)
> εn−3p−|k|n−|k\t||t|−|t|

]
≤ P

[
C−(|k|−|t|)
n,p

Qk

Qt

exp
{
−(R̃k − R̃t)/(2σ

2)
}
> εn−3p−|k|n−|k\t||t|−|t|

]
≤ P

[
C−|k|−|t|)n,p

Qk

Qt

exp
{
−(R∗k −R∗u)/(2σ2)

}
> n−3−|k\t||t|−|t|p−|k|(2+δ)+δ

]
+P
[

exp
{(
R∗t −R∗u

)
/(2σ2)

}
≥ εp|k|(1+δ)

]
+ P

[
exp

(
η/(2σ2)

)
> pδ

]
≤ P

[
exp

{(
R∗t −R∗u

)
/2σ2

}
> εp|k|(1+δ)

]
(S20)

+P
[

exp
(
η/2σ2

)
> pδ

]
(S21)

+P
[
R∗k −R∗u < 2σ2‖β0

t‖2
2nνu∗/ log(τn,p/ log p)

]
(S22)

+P
[
Qk/Qt > exp

{
‖β0

t‖2
2nνu∗/{2 log(τn,p/ log p)}

}]
. (S23)

Since (R∗t − R∗u)/σ2 follows a χ2
|u\t| distribution, (S20) is also bounded by c1p

−|k|(1+δ) with

some constant c1. By following the same steps regarding (S19), one can show that (S21) is

bounded by c2p
−|k|(1+δ) for some constant c2. We note that (R∗k − R∗u)/σ2 ∼ χ2

|u\k|(λn) with

λn = β0T
t XT

t (Pu − Pk)Xtβ
0
t , where Pk is the projection matrix of Xk. As discussed in Narisetty

and He (2014), λn ≥ nνu∗‖β0
t‖2

2. Hence, by using Lemma 4, one can show that (S22) is bounded

by exp{−c3‖β0
t‖2

2nνu∗/ log(τn,p/ log p)} for some constant c3. Lemma 5 states that (S23) is

bounded by p−|k|(1+δ). In summary, since qn ≺ τn,p/ log p by Assumption 3, there exists some

positive constant c4 such that P [π(k | y)/π(t | y) > εn−3p−|k|n−|k\t||t|−|t|] ≤ c4p
−|k|(1+δ). which

completes the proof of Theorem 1.

Proof of Corollary 2. Recall the penalty term of a model k, Q∗k, based on the piMoM priors is

Q∗k =

∫
exp

{
− (βk − β̂k)TΣ∗−1

k (βk − β̂k)/(2σ2)−
|k|∑
j=1

τn,p/β
2
k,j − r

|k|∑
j=1

log(β2
k,j)
}
dβk,

in (7). Since, for any ε > 0, exp
[
−
∑|k|

j=1{ετn,p/β2
k,j+r log(β2

k,j)}
]

is bounded above with respect

to βk,j , Q∗k ≤ C
∫

exp{−(βk − β̂k)TΣ∗−1
k (βk − β̂k)/(2σ2)−

∑|k|
j=1(1− ε)τn,p/β2

k,j}dβk for some

12



constant C. Following the exactly same steps in Lemma 1, Q∗k ≤ C ′(nν∗k)−1/2
∏|k|

j=1 exp{−(1 −

ε)τn,p/(|β̂k,j|+ ε̃n)2} for some constant C ′ > 0.

We shall show that the model selection procedure based on piMoM priors as in (4) assures

consistency by proving that Q∗k and Qk are asymptotically equivalent.

Next, we shall show that Q∗k is bounded below by C(nν∗k)−1/2
∏|k|

j=1 exp{−(1 − ε)τn,p/β̂∗2k,j}

for some constant C > 0 and β̂∗k,j ∈ [β̂k,j − ε̃n, β̂k,j + ε̃n]. Since exp
{
− ετn,p/β2

k,j + r log(β2
k,j)
}

can be minimized in [β̂k,j − ε̃n, β̂k,j + ε̃n], by following the proof of Lemma 1,

∫ ∞
−∞

exp{−nν∗k(β − β̂k,j)2/(2σ2)− τn,p/β2 − r log(β2)}dβ

≥
∫ β̂k,j+ε̃n

β̂k,j−ε̃n
exp{−nν∗k(β − β̂k,j)2/(2σ2)− (1− ε)τn,p/β2} exp{−ετn,p/β2 − r log(β2)}dβ

≥ C(nν∗k)−1/2 exp
{
−(1− ε)τn,p/β̂∗2k,j

}
,

where C is some constant and β̂∗k,j ∈ [β̂k,j − ε̃n, β̂k,j + ε̃n] \ (−ε̃n, ε̃n)c.

Therefore, due to the asymptotic similarity between the ridge estimator and the least square

estimator, the lower and upper bounds of Q∗k are asymptotically equivalent to those of Qk with the

penalty parameter (1 − ε)τn,p, which assures the strong consistency of the model selection based

on the piMoM priors.

Proof of Theorem 3. Under a situation where σ2 is unknown, it is clear that

mk(y) = τ
− |k|

2
n,p

∫
(2πσ2)−

n+|k|
2

∫
exp

|k|
(

2

σ2

)1/2

− (βk − β̃k)T Σ̃−1
k (βk − β̃k)

2σ2
−
|k|∑
j=1

τn,p
β2
k,j

 π(σ2)dβkdσ
2,

where π(σ2) is the prior for σ2 (Inverse-gamma density with hyperparameters a0 and b0).

First, we shall show that the ratio between marginal likelihoods of a model k and the true model

13



t can be bounded as

mk(y)

mt(y)
≤ c

|k|−|t|
2

(
R̃k + 2b0

R̃t + 2b0

)−n/2−a0
exp

−
|k|∑
j=1

τn,p

(|β̃k,j|+ ε̃n)2
+

|t|∑
j=1

τn,p

β̃∗2t,j

 (nνk∗τn,p + 1)−|k|/2

(nν∗t τn,p + 1)−|t|/2
,

(S24)

where β̃∗t,j ∈ [β̃t,j − ε̃n, β̃t,j + ε̃n] \ (−ε̃n, ε̃n)c for j ∈ 1, . . . , |t| and c is some constant. Next, we

shall show that {(R̃k + 2b0)/(R̃t + 2b0)}−n/2−a0 ≤ exp{−(R̃k − R̃t)/(2σ
2
0(1 + un))}, where σ2

0

is the true regression variance that involves in the data-generating process, and un is some random

variable that is concentrated around a finite value with at least probability 1− exp{−cn} for some

constant c. Then, by following the same steps in the proof of Theorem 1, the proof of Corollary 2

is completed.

By Lemma 1, the marginal likelihood of a model k can be bounded by

mk(y) ≤ {c1(nνk∗τn,p + 1)}−
|k|
2

∫
(σ2)−

n+2a0
2
−1 exp

|k|
(

2

σ2

)1/2

−
|k|∑
j=1

τn,p

(|β̃k,j|+ ε̃n)2
− R̃k + 2b0

2σ2

 dσ2

≤ {c1(nνk∗τn,p + 1)}−
|k|
2 exp

−
|k|∑
j=1

τn,p

(|β̃k,j|+ ε̃n)2

 (1 + exp{2|k|})
(
R̃k + 2b0

)−n+2a0
2

,

for some constant c1.

Also, by using Lemma 1, one can show that

mk(y) ≥ {c2(nνk∗τn,p + 1)}−
|k|
2

∫
(σ2)−

n+2a0
2
−1 exp

|k|
(

2

σ2

)1/2

−
|k|∑
j=1

τn,p

β̃∗2k,j
− R̃k + 2b0

2σ2

 dσ2

≥ {c2(nνk∗τn,p + 1)}−
|k|
2 exp

−
|k|∑
j=1

τn,p

β̃∗2k,j

(R̃k + 2b0

)−n+2a0
2

,

where c2 is some constant and β̃∗k,j ∈ [β̃k,j − ε̃n, β̃k,j + ε̃n] \ (−ε̃n, ε̃n)c for j ∈ 1, . . . , |k|. These

results shows that (S24) holds.

Next, we consider the asymptotic behavior of {(R̃k+2b0)/(R̃t+2b0)}−n/2−a0 in (S24). Define
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ρn as the follows:

ρn = (R̃t + 2b0)/(nσ2
0)− 1.

Since − log(1− u) < u/(1− u) for u ∈ R,

− log{(R̃k + 2b0)/(R̃t + 2b0)} = − log[1 + (R̃k − R̃t)/{n(1 + ρn)σ2
0}]

≤ (R̃t − R̃k)/{nσ2
0(1 + un)},

where un = ρn + (R̃k − R̃t)/(nσ
2
0).

Since (R∗k − R∗u)/σ2
0 ∼ χ|u\k|(λn) with λn = β0T

t XT
t (Pu − Pk)Xtβ

0
t/σ

2
0 , by using Lemma 4

one can show that

P (|un − λn/n| > ε) ≤ P (|ρn| > ε/4) + P
{

(R∗t −R∗u)/(nσ2
0) > ε/4

}
+P

{∣∣(R∗k −R∗u)/(nσ2
0)− λn/n

∣∣ > ε/4
}

+ P
(
η/2nσ2

0 > ε/4
)

≤ exp{−c′n}+ P
{∣∣(R∗k −R∗u)/(nσ2

0)− λn/n
∣∣ > ε/4

}
≤ exp{−c′′n},

for some constant c′ and c′′, and η is defined in the proof of Theorem 1. Also, by Assumption 5,

λn/n will be bounded below and above.

Proof of Corollary 4. Since we showed that the asymptotic equivalence between Qk and Q∗k in

the proof of Corollary 2, by following exactly same steps in the proof of Theorem 3 we can prove

the model selection consistency under piMoM prior densities.

Proof of Proposition 5. We shall show that for any αk = β̂k + εn with εn = {εn,j}j=1,...,|k| and

|εn,j| � ε∗n for at least one j ∈ {1, . . . , |k|}, P{g(αk;k) < g(β̃∗k;k)} → 0 as n tends to∞, where

β̃∗k ∈ B(β̂k; ε∗n) with ε∗n � (τn,p/n)1/3. More specifically, we set β̃∗k,j = β̂k,j + ε∗n for j ∈ t and

β̃∗k,j = β̂k,j for j ∈ tc. Without loss of generality, we assume that XT
j Xj = n for j = 1, . . . , p.
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Note that

g(αk;k) = ||Xkαk −Xkβ̂k||22 +

|k|∑
j=1

τn,p/|αk,j|+Dn

=

|k|∑
j=1

{cjnε2n,j + τn,p/|β̂k,j + εn,j|}+Dn,

for some constants cj such that CL < cj < CU for j = 1, . . . , |k|, and some randome variable Dn

that are not relevant to αk. Then,

P{g(αk;k) < g(β̃∗k;k)}

≤ P

 |k|∑
j=1

{
cjnε

2
n,j +

τn,p

|β̂k,j + εn,j|

}
<

|k|∑
j=1

{
cjnε

∗2
n +

τn,p

|β̃∗k,j|

}
≤ P

 ∑
j∈S∗∩Sk,n

{
cjnε

2
n,j +

τn,p

|β̂k,j|+ |εn,j|
− tn,j

}
<

∑
j∈S∗∩Sk,n

{
cjnε

∗2
n +

τn,p

|β̃∗k,j|

} (S25)

+P

 ∑
j∈S∗∩Sc

k,n

{
cjnε

2
n,j +

τn,p

|β̂k,j|+ |εn,j|
− tn,j

}
<

∑
j∈S∗∩Sc

k,n

{
cjnε

∗2
n +

τn,p

|β̃∗k,j|

}(S26)

+P

[∑
j∈S∗c

{
cjnε

2
n,j +

τn,p

|β̂k,j|+ |εn,j|
+
∑
j∈S∗

tn,j
|S∗c|

}
<
∑
j∈S∗c

{
cjnε

∗2
n +

τn,p

|β̃∗k,j|

}]
, (S27)

where tn is an arbitrary sequence such that tn,j = n2/3τ
1/3
n,p εn,j , and S∗ = {j ∈ {1, . . . , p} : |εn,j| �

ε∗n}, and Sk,n = {j ∈ k : |β̂k,j| < ε∗n}. Then, to complete the proof, it is sufficient to show that

each of (S25), (S26), and (S27) converges to zero.

Since n(β̂k,j − β0
t,j)

2/σ2 ∼ χ2
1 for j = 1, . . . , |k|,

P (|β̂t,j − β0
t,j| > ζn) ≤ (πnζ2

n/2)−1/2 exp{−nζ2
n/(2σ

2)},

for any ζn > 0. This implies that Sk,n = t at least probability 1−|tc|(πnε∗2n /2)−1/2 exp{−nε∗2n /(2σ2)}.
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Therefore, the equation (S25) can be asymptotically bounded by

∑
j∈S∗∩t

P

[
cjnε

2
n,j +

τn,p
2|εn,j|

− tn,j < cjnε
∗2
n +

τn,p

|β̂k,j + ε∗n|

]
≤

∑
j∈S∗∩t

P
[
|β̂k,j + ε∗n| < cτn,p(nε

2
n,j − tn,j + τn,p/|εn,j|)−1

]
,

for some positive constant c. Consider Lemma 4 with λn = nε∗2n /σ
2 and wn = c2τ 2

n,p/{ε∗2n (nε2n,j−

tn,j + τn,p/|εn,j|)2} for j ∈ S∗ ∩ t. Since nε2n,j � n1/3τ
2/3
n,p for j ∈ S∗ implies wn → 0, Lemma 4

guarantees that the last display is bounded by c′|S∗∩ t|λ−1
n exp{−λn(1−wn)2} for some constant

c′, which means that (S25) converges to zero as n tends to 0. By following the same steps, one can

show that (S26) converges to zero.

Also, (S27) can be asymptotically bounded by

∑
j∈S∗c∩t

P

[
cjnε

2
n,j +

τn,p
2|εn,j|

+ cmin
j∈S∗

tn,j < cjnε
∗2 +

τn,p

|β̂k,j + ε∗n|

]

+
∑

j∈S∗c∩tc
P

[
cjnε

2
n,j +

τn,p

2|β̂k,j + ε∗n|
+ cmin

j∈S∗
tn,j < cjnε

∗2 +
τn,p

|β̂k,j + ε∗n|

]

≤
∑

j∈S∗c∩t

P

[
|β̂k,j + ε∗n| < c′τn,p(nε

2
n,j − nε∗2n + cmin

j∈S∗
tn,j + τn,p/|εn,j|)−1

]
+

∑
j∈S∗c∩tc

P

[
|β̂k,j + ε∗n| < c′′τn,p(nε

2
n,j − nε∗2n + cmin

j∈S∗
tn,j + τn,p/|εn,j|)−1/2

]
,

where c, c′, and c′′ are some positive constants. For the first term in the last line of the above display,

by setting λn = nε∗2/σ2 and wn = c2τ 2
n,p/{ε∗2n (nε2n,j−nε∗n+cminj∈S∗ tn,j +τn,p/|εn,j|)2}, we can

apply Lemma 4. Since wn ≺ τ 2
n,p(ε

∗
n minj∈S∗ tn,j)

−2 implies wn → 0, the first term in the above

display converges to zero by Lemma 4. Similarly, the second term also converges to zero.
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3 Laplace Approximations of Marginal Likelihoods

In this section, we provide the Laplace approximation of the marginal likelihoods based on the

nonlocal priors. Because closed form expressions for posterior model probabilities based on mod-

ified peMoM priors and modified piMoM priors are not available, we estimate the posterior model

probabilities using Laplace approximations. For posterior probabilities based on the peMoM pri-

ors, an inverse-Gamma density with parameters (a0, b0) on σ2 the Laplace approximation to the

marginal density of the data for model k can be expressed as

π(k | y) ∝ (2π)|k|/2
∣∣V (β∗k, σ

2∗)
∣∣−1/2

exp{f(β∗k, σ
2∗)}p(k), (S28)

where

(β∗k, σ
2∗) = argmax

(βk,σ2)

f(βk, σ
2)

f(βk, σ
2) = − (n/2 + |k|/2 + a0 + 1) log σ2 − (y −Xkβk)T (y −Xkβk)/(2σ2)− βTk βk/(2σ2τn,p)

−
|k|∑
j=1

τn,p/β
2
k,j + |k|(2/σ2)1/2 − b0/σ

2 + |k|(log τn,p)/2,

and V (βk, σ
2) is a (|k|+ 1)× (|k|+ 1) matrix with the following blocks:

V11 = XT
kXk/σ

2 + Ik/σ
2τn,p + diag

{
6τn,p/β

4
k,j

}
j=1,...,|k|

V12 = XT
k (y −Xkβk)/σ4 − βk/{σ4τn,p}

V22 = −(n/2 + |k|/2 + a0 + 1)/σ4 + (y −Xkβk)T (y −Xkβk)/σ6 − βTk βk/τn,p

−3|k|21/2σ−5/4 + 2b0/σ
6.
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For the piMoM priors on βk, the Laplace approximation of the posterior model probability can be

expressed as in (S28), but with

f(βk, σ
2) = − (n/2 + a0 + 1) log σ2 − (y −Xkβk)T (y −Xkβk)/(2σ2)

−
|k|∑
j=1

{
r log(β2

k,j) + τn,p/β
2
k,j

}
+ |k|

{
(r − 1/2) log τn,p − log Γ(r − 1/2)

}
− b0/σ

2,

and V (βk, σ
2) a (|k|+ 1)× (|k|+ 1) matrix with the following blocks:

V11 = XT
kXk/σ

2 + diag
{

6τn,p/β
4
k,j − 2r/β2

k,j

}
j=1,...,|k|

V12 = XT
k (y −Xkβk)/σ4

V22 = −(n/2 + a0 + 1)/σ4 + (y −Xkβk)T (y −Xkβk)/σ6 + 2b0/σ
6.
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