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Web Supplementary for “Fully efficient robust estimation,
outlier detection and variable selection via penalized regression”

Dehan Kong!, Howard Bondell? and Yichao Wu?
YUniversity of Toronto and ?North Carolina State University

In this Web Supplement, we first include additional simulations results for different settings in Section 1. Then,
we present important lemmas needed for the main theorems and the corollaries in Section 2. The proof of the lemmas

are also in this section. Section 3 presents the proofs of all the theorems. Section 4 proves all of the corollaries.

1 Additional Simulation Results

In this section, we include more simulation results by considering more simulation settings. In particularly, we

consider the following settings:

e Setting I: We consider different structure of correlation structure of the design matrix X. In this setting,
we consider the compound symmetry structure for the correlation matrix. Specifically, the covariate X; is
generated independently and identically from a multivariate normal distribution with zero mean and covariance
matrix 3, where the jkth element of the matrix ¥, = 0.5+ 0.5 % 1(j = k). For the other settings, they are
the same as the simulation settings in the main paper. The results corresponding to Setting I are in Table 1
(n = 100) and Table 2 (n = 200).

e Setting II: In this case, we consider different ~y values, i.e. the 4’s are not constant any more. In particular,
we contaminate the first cn observations by setting X;" = X; + L, and y; = y; + Vi for 1 < i < ecn. We
consider (L, V) = (0,44 0.2¢) and (L,V) = (44 0.2i,4 + 0.27). For the other settings, they are the same as
the simulation settings in the main paper. The results corresponding to Setting II are in Table 3 (n = 100)
and Table 4 (n = 200).

e Setting III: In this case, we consider different combinations of p, ¢ and 8 values. In particular, we set p = 25
and ¢ = 10. The true Bo = (1,...,1,0,...,0)" with ¢ = 10 nonzero components and the remaining 15
elements being zero. For the other settings, they are the same as the simulation settings in the main paper.
The results corresponding to Setting IIT are in Table 5 (n = 100) and Table 6 (n = 200).

From the results, we can see that the findings are similar as those in the main paper.
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2 Lemmas and the Proof of Lemmas

In this section, we state the lemmas that are needed for the theorems and corollaries.

Denote Xj,; the ijth element of the design matrix X. Without loss of generality, we assume the first s, points
as outliers. Recall that G = {sn + 1,8, + 2,...,n}, which denotes the indices corresponding to the good points, and
define G° = {1,..., sn}, which denotes the indices of outliers. Denote §, = min;cge |3;| and Kk, = max;ec |[7:|- When
no outliers exist, we have G = {1,2,...,n}, while G° = (). Thus, only k, is properly defined in this case.

When p and ¢ are fixed, we use least trimmed squares as the initial estimates. Under this scenario, we have the
first two lemmas, which are used for proofs of Theorems 1 and 3. In particular, Lemma 1 gives the rate of k,, when

no outliers exist. Lemma 2 gives the rate of k, and J, when outliers exist.
Lemma 1. Under Condition (A), we have kn = Op(n/®*)).

Proof. As the least trimmed estimator is root-n consistent (Rousseeuw and Leroy, 1987), we have HB — Boll2 =

Op(n~'/?). By Condition (B2), one has maxi<i<n || Xi|[3 < Y7_, X5 X ; < pnM, which indicates maxi<i<n || X2 =

Op(n'/?). Thus,

maxi<i<n [Xi(8 — Bo)] < maxicica ||Xi|lOp(n™/2) = Op(1). Notice that 5; = e — X;( — fo), we obtain
=O0p(n A 2’“)) as €; = Op(nl/(%)) by Condition (A). O

Denote a,, = Op(by,) if an and b, have the same order in probability.
Lemma 2. Under Conditions (A),(C1),(C2), and (C3), one has kn, = Op(n*/ ). we have 8, = Op(m,).

Proof. As the least trimmed estimator is root-n consistent (Rousseeuw and Leroy, 1987) under Condition (C2), we
have ||E, Boll2 = Op(n~'/?). By Condition (B2), one has maxi<;<n \Xi(gf Bo)| < maxi<i<y || Xi]|Op(n"1/?) =
Op(1). For i € G, one has 5; = —Xi(3 — Bo) + €, by Condition (A), one obtains max;cq |[7:| = Op(n'/®*). For
i € G° one has 7; = —Xi(g— Bo) + € + vio. Recall that m, = min;—1,... s, |yiol|, and F o A CLO BN by Condition

.....

(C1), one obtains 0, = min;eae |¥i| = Op(mn). O

The next three lemmas are used when p,, diverges at the exponential rate of n and for proofs of Corollaries 1
and 3. Under this scenario, we use the sparse least trimmed squares as the initial estimates. Lemma 3 states that
the sparse least trimmed squares estimates have order Op(1). With a little abuse of the notation, we still use the
same definitions that §, = min;cge [7:| and kn = max;ecc |7:|, where 7; are the residuals obtained from the sparse
least trimmed squares. Lemma 4 gives the rate of x,, when no outliers exist. Lemma 5 gives the rate of s, and §,,

when outliers exist.
Lemma 3. Under Conditions (C2), (D2) and (D3), one has ||BHOm||2 =O0p(1).

Proof. Denote {()?L,gjl), 1 < i < n} as the contaminated sample, and we have ()?Z,gjz) = (Xi,y:) forall : € G. As

h <n — sy, one has

mbi[nQ(H,O) manyZ < mln manyZ = mcln manyZ < h(n—sn)” Zyl.

i€H i€H i€H i€G

As E(y?) < oo for all i € G by Condition (D3), one has ming Q(H,0) = Op(h).

Then we will prove that there exists a constant M such that ||BHomH2 < M with probability 1. For any
[18]] > M, one has ming g Q(H, ) > hA||B]l1 > hA||B|l2 > hRAsM. When A\; — oo by Condition (D2), one has
ming Q(H, f) > ming Q(H,0) with probability one. Since Q(Hopt7BHopt) < minyg Q(H,0), one has ||BHoptH2 <M
with probability 1, i.e. ||Br,,.|]2 = Op(1). O

Lemma 4. Under Conditions (C2), (D1)-(D3), we have kn = Op(n).
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Table 1: Simulation Setting I: Simulation results for our methods PM compared with the

SLTS, LL, REWLS, SHE, LASSO, ALASSO, ORACLE and AORACLE methods when
n = 100. The * denotes the values that are not applicable.
(n,p,V,L,c) method M S JD FZR FPR SR | CR MSE
(100,15,4,0,0.1) PM 0(0) 0.01(0) 1 ]0.01(0.002) | 0.21(0.004) | 0.09 | 0.93 | 0.2(0.002)
SLTS 0(0) 0.04(0.001) | 1 | 0.02(0.002) | 0.38(0.005) | 0.01 | 0.91 | 0.29(0.002)
LL * * * 1 0.05(0.003) | 0.38(0.01) | 0.1 |0.75 | 0.23(0.002)
REWLS 0(0) 0.01(0) 1 * * * | % ]0.22(0.001)
SHE 0(0) 0.08(0.002) | 0.999 * * * | % | 0.3(0.002)
LASSO * * * 1 0.08(0.003) | 0.25(0.005) | 0.04 | 0.61 | 0.57(0.003)
ALASSO * * * 1 0.21(0.004) | 0.05(0.003) | 0.09 | 0.18 | 3.47(0.014)
ORACLE * * *10.01(0.001) | 0.27(0.005) | 0.06 | 0.97 | 0.17(0.001)
AORACLE * * *10.06(0.003) | 0.05(0.003) | 0.42 | 0.71 | 0.16(0.001)
(100,15,4,0,0.2) PM 0.01(0.002) | 0.02(0.001) | 0.994 | 0.02(0.002) | 0.23(0.004) | 0.07 | 0.9 | 0.22(0.003)
SLTS 0(0) 0.01(0) | 0.999 | 0.01(0.002) | 0.36(0.005) | 0.02 | 0.93 | 0.23(0.002)
LL * * * 0.03(0 002) 0.71(0 008) | 0.01 | 0.86 | 0.29(0.003)
REWLS 0(0) 0(0) 0.995 * * 0.23(0.001)
SHE | 0.44(0.016) | 0.08(0.003) | 0.552 * * * | %] 0.72(0.01)
LASSO * * *10.12(0.004) | 0.25(0.005) | 0.04 | 0.47 | 0.96(0.003)
ALASSO * * *10.25(0.004) | 0.05(0.003) | 0.06 | 0.1 | 3.65(0.014)
ORACLE * * * 1 0.01(0.001) | 0.27(0.005) | 0.06 | 0.95 | 0.18(0.001)
AORACLE * * * 1 0.07(0.003) | 0.05(0.003) | 0.39 | 0.66 | 0.17(0.002)
(100,15,4,4,0.1) |  PM 0(0) 0(0) 1 ]0.01(0.002) | 0.2(0.004) | 0.1 | 0.93 | 0.2(0.002)
SLTS 0(0) 0.03(0.001) | 1 | 0.02(0.002) | 0.38(0.005) | 0.01 | 0.9 | 0.27(0.002)
LL * * * 0.03(0 003) | 0.86(0.006) | 0 | 0.84 | 1.15(0.021)
REWLS 0(0) 0.01(0) 1 * * *10.22(0.001)
SHE 0.7(0.012) | 0.07(0.004) | 0.141 * * * * 1 3.05(0.028)
LASSO * * * 1 0.61(0.005) | 0.09(0.004) | 0 | 0 | 3.83(0.008)
ALASSO * * * 1 0.66(0.006) | 0.05(0.003) | 0 |0.01| 6.61(0.065)
ORACLE * * * 1 0.01(0.001) | 0.27(0.005) | 0.06 | 0.97 | 0.17(0.001)
AORACLE * * * 1 0.06(0.003) | 0.05(0.003) | 0.42 | 0.71 | 0.16(0.001)
(100,15,4,4,02) | PM 0(0) 0.01(0) 1] 0.02(0.002) | 0.21(0.004) | 0.1 | 0.9 | 0.22(0.002)
SLTS 0(0) 0.01(0) 1] 0.01(0.002) | 0.38(0.006) | 0.02 | 0.94 | 0.23(0.002)
LL * * * 0.01(0 002) 0.98(0 002) | 0 | 0.95 | 4.05(0.009)
REWLS 0(0) 0(0) 1 * | %] 0.23(0.001)
SHE | 0.94(0.004) | 0.03(0.002) | 0 * * * | % | 3.92(0.007)
LASSO * * * 1 0.65(0.005) | 0.12(0.005) | 0 | 0 | 4.32(0.011)
ALASSO * * * 1 0.66(0.006) | 0.07(0.004) | 0 |0.01| 6.9(0.128)
ORACLE * * * 1 0.01(0.001) | 0.27(0.005) | 0.06 | 0.95 | 0.18(0.001)
AORACLE * * *10.07(0.003) | 0.05(0.003) | 0.39 | 0.66 | 0.17(0.002)
(100,15,0,0,0) PM * 0(0) *10.01(0.001) | 0.21(0.004) | 0.11 | 0.95 | 0.18(0.002)
SLTS * 0.07(0.001) | * | 0.02(0.002) | 0.38(0.005) | 0.02 | 0.89 | 0.32(0.003)
LL * * * 0.04(0 003) 0.33(0 009) | 0.14 | 0.78 | 0.21(0.001)
REWLS * 0.02(0.001) * * * 0.22(0.001)
SHE * 0.01(0.001) | * * * * | % | 0.2(0.001)
LASSO * * * 0(0.001) | 0.27(0.005) | 0.05 | 0.98 | 0.16(0.001)
ALASSO * * * 1 0.05(0.003) | 0.05(0.002) | 0.47 | 0.73 | 0.15(0.001)
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Table 2: Simulation Setting I: Simulation results for our methods PM compared with the
SLTS, LL, REWLS, SHE, LASSO, ALASSO, ORACLE and AORACLE methods when
n = 200. The * denotes the values that are not applicable.

(n,p,V,L,c) method M S JD FZR FPR SR | CR MSE
(200,15,4,0,0.1) | PM 0(0) 0.01(0) 1 000) | 0.21(0.004) | 0.12 | 1 | 0.14(0.001)
SLTS 0(0) 0.02(0) 1| 00.001) |0.36(0.005) | 0.02 | 0.99 | 0.2(0.002)

LL * * * 0.03(0.002) | 0.21(0.007) | 0.28 | 0.86 | 0.17(0.001)

REWLS 0(0) 0(0) 1 * * * *10.15(0.001)

SHE 0(0) 0.06(0.001) 1 * * * *10.22(0.001)

LASSO * * * 0.04(0.003) | 0.24(0.005) | 0.06 | 0.8 | 0.5(0.002)

ALASSO * * * 0.15(0.003) | 0.03(0.002) | 0.21 | 0.31 | 3.34(0.01)

ORACLE * * * 000) | 0.25(0.005) | 0.08 | 1 | 0.12(0.001)

AORACLE * * * 1 0.01(0.001) | 0.03(0.002) | 0.75 | 0.95 | 0.1(0.001)
(200,15,4,0,0.2) PM 0.02(0.005) 0.02(0) 0.975 | 0(0.001) | 0.21(0.004) | 0.12 | 0.98 | 0.19(0.004)
SLTS 0(0) 0(0) 1 0(0) 0.35(0.005) | 0.02 | 1 | 0.16(0.001)

LL * * * 0.01(0.001) | 0.63(0.007) | 0.01 | 0.95 | 0.23(0.002)

REWLS 0(0) 0(0) 0.996 * * * *10.16(0.001)

SHE 0.38(0.015) | 0.07(0.002) | 0.623 * * * * 1 0.57(0.009)

LASSO * * * | 0.07(0.003) | 0.24(0.005) | 0.07 | 0.68 | 0.88(0.002)

ALASSO * * *10.2(0.004) | 0.03(0.002) | 0.11 | 0.16 | 3.54(0.011)

ORACLE * * * 0(0) 0.25(0.005) | 0.08 | 1 | 0.13(0.001)

AORACLE * * * 0.01(0.002) | 0.03(0.002) | 0.69 | 0.93 | 0.11(0.001)
(200,15,4,4,0.1) PM 0(0) 0(0) 1 0(0.001) | 0.19(0.004) | 0.14 | 0.99 | 0.15(0.001)
SLTS 0(0) 0.02(0) 1 0(0.001) | 0.35(0.005) | 0.02 | 0.99 | 0.19(0.002)

LL * * * 0.05(0.003) | 0.71(0.008) | 0 | 0.76 | 0.76(0.008)

REWLS 0(0) 0(0) 1 * * « |+ 1 0.15(0.001)

SHE | 0.78(0.011) | 0.05(0.003) | 0.102 * * * |+ |3.25(0.025)

LASSO * * * 0.55(0.005) | 0.18(0.006) | 0 | 0.01 | 3.77(0.006)

ALASSO * * * 0.55(0.008) | 0.1(0.005) 0 |0.05 | 8.06(0.149)

ORACLE * * * 0(0) 0.25(0.005) | 0.08 | 1 | 0.12(0.001)

AORACLE * * * 0.01(0.001) | 0.03(0.002) | 0.75 | 0.95 | 0.1(0.001)
(200,15,4,4,0.2) | PM 0(0) 0(0) 1| 0(0.001) |0.18(0.004) | 0.16 | 0.99 | 0.18(0.001)
SLTS 0(0) 0(0) 1 000) | 0.37(0.005) | 0.02| 1 | 0.15(0.001)

LL * * £ 1 0.01(0.002) | 0.98(0.002) | 0 | 0.94 | 4.09(0.006)

REWLS 0(0) 0(0) 1 * * * *10.16(0.001)

SHE 0.96(0.003) | 0.02(0.002) 0 * * * * 1 4.04(0.005)

LASSO * * * 0.59(0.006) | 0.22(0.007) | 0 | 0.01 | 4.27(0.008)

ALASSO * * * 0.55(0.008) | 0.13(0.005) | 0 | 0.04 | 8.29(0.174)

ORACLE * * * 0(0) 0.25(0.005) | 0.08 | 1 | 0.13(0.001)

AORACLE * * * 1 0.01(0.002) | 0.03(0.002) | 0.69 | 0.93 | 0.11(0.001)

(200,15,0,0,0) PM * 0(0) * 0(0) 0.2(0.004) | 0.14 | 1 | 0.13(0.001)
SLTS * 0.04(0.001) * 0(0.001) | 0.35(0.005) | 0.02 | 0.98 | 0.23(0.002)

LL * * * 0.03(0.002) | 0.09(0.005) | 0.51 | 0.83 | 0.15(0.001)

REWLS * 0.01(0) * * * * *10.15(0.001)

SHE * 0(0) * * * * *10.14(0.001)

LASSO * x * 000) | 0.25(0.005) | 0.07 | 1 | 0.11(0.001)

ALASSO * * * 1 0.01(0.001) | 0.02(0.002) | 0.79 | 0.96 | 0.09(0.001)
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Table 3: Simulation Setting II: Simulation results for our methods PM compared with the

SLTS,

LL, REWLS, SHE, LASSO,

n = 100. The * denotes the values that are not applicable.

ALASSO, ORACLE and AORACLE methods when

(n,p,V,L,c)
(100,15,4+0.21,0,0.1)

(100,15,4+0.2i,0,0.2)

(100,15,4+0.2i,4+0.2i,0.1)

(100,15,440.2i,4+0.2i,0.2)

(100,15,0,0,0)

method
PM
SLTS
LL
REWLS
SHE
LASSO
ALASSO
ORACLE
AORACLE
PM
SLTS
LL
REWLS
SHE
LASSO
ALASSO
ORACLE
AORACLE
PM
SLTS
LL
REWLS
SHE
LASSO
ALASSO
ORACLE
AORACLE
PM
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LL
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SHE
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ALASSO
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SHE
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ALASSO
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*
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0.05(0.003)

SR
0.59
0.1
0.14

0.18
0.06
0.36
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0.22(0.002)
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0.3(0.002)
0.72(0.003)
3.7(0.009)
0.17(0.001)
0.16(0.001)
0.21(0.002)
0.22(0.002)
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0.23(0.001)
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Table 4: Simulation Setting II: Simulation results for our methods PM compared with the

SLTS,

LL, REWLS, SHE, LASSO,

n = 200. The * denotes the values that are not applicable.

ALASSO, ORACLE and AORACLE methods when

(n,p,V,L,c)
(200,15,4+0.21,0,0.1)

(200,15,4+0.2i,0,0.2)

(200,15,4+0.2i,4+0.2i,0.1)

(200,15,4-+0.2i,4+0.2i,0.2)

(200,15,0,0,0)

method
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FZR
0(0)
0(0.001)
0.02(0.002)
*

*

0.1(0.003)
0.18(0.003)
0(0)
0(0.001)
0(0.001)
0(0)
0.01(0.001)

*

0.2(0.004)
0.31(0.004)
0(0)
0.01(0.001)
0(0.001)
0(0.001)
0.06(0.004)

*

0.28(0.005)
0.17(0.005)
0(0)
0(0.001)
0.01(0.001)
0(0)
0.06(0.004)

*

0.28(0.005)
0.22(0.005)
0(0)
0.01(0.001)
0(0)
0.01(0.001)
0.02(0.002)

*

0(0)
0(0.001)

FPR
0.03(0.002)
0.26(0.005)
0.2(0.007)
*

*

0.06(0.003)
0.03(0.002)
0.08(0.003)
0.02(0.002)
0.04(0.002)
0.27(0.005)
0. 61(0 007)

*

0.06(0.003)
0.03(0.002)
0.09(0.003)
0.03(0.002)
0.06(0.003)
0.27(0.005)
0.94(0.003)

*

*

0.89(0.003)
0.73(0.004)
0.08(0.003)
0.02(0.002)
0.12(0.004)
0.3(0.006)
0.94(0.003)
*

*

0.89(0.003)
0.74(0.004)
0.09(0.003)
0.03(0.002)
0.02(0.002)
0.22(0.005)
0. 07(0 004)

*

0.07(0.003)
0.02(0.002)

0.52
0.83

CR
0.99
0.91
0.51
0.18

0.98
0.99

0.97
0.2
0.04
0.96
0.98

0.99
0.76

0.1

0.34

0.98
0.95

0.78

0.09

0.22

0.96

0.97

MSE
0.14(0.001)
0.2(0.002)
0.16(0.001)
0.15(0.001)
0.22(0.001)
0.75(0.002)
3.67(0.006)
0.12(0.001)
0.1(0.001)
0.15(0.001)
0.15(0.001)
0.23(0.002)
0.16(0.001)
0.39(0.006)
1.79(0.003)
4.09(0.007)
0.13(0.001)
0.11(0.001)
0.17(0.001)
0.18(0.002)
2.67(0.004)
0.15(0.001)
2.59(0.004)
2.61(0.004)
25.08(1.941)
0.12(0.001)
0.1(0.001)
0.22(0.002)
0.15(0.001)
2.77(0.005)
0.16(0.001)
2.68(0.004)
2.7(0.004)
18.83(3.148)
0.13(0.001)
0.11(0.001)
0.12(0.001)
0.19(0.002)
0.14(0.001)
0.15(0.001)
0.14(0.001)
0.11(0.001)
0.09(0.001)
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Table 5: Simulation Setting III: Simulation results for our methods PM compared with the

SLTS, LL, REWLS, SHE, LASSO, ALASSO, ORACLE and AORACLE methods when
n = 100. The * denotes the values that are not applicable.
(n,p,V,L,c) method M S JD FZR FPR SR | CR MSE
(100,25,4,0,0.1) PM 0(0) 0.01(0.001) | 0.999 0(0) 0.07(0.002) | 0.41 | 1 | 0.27(0.002)
SLTS 0(0) 0.08(0.001) | 0.999 0(0) 0.38(0.007) | 0.04 | 1 | 0.38(0.003)
LL * * * 0(0) 0.38(0.009) | 0.19 | 1 | 0.25(0.002)
REWLS 0(0) 0.01(0) | 0.996 * * * | f ] 0.29(0.002)
SHE 0(0) 0.09(0.002) | 0.997 * * * | % | 0.39(0.002)
LASSO * * * 0(0) 0.14(0.004) | 0.18 | 1 | 0.68(0.003)
ALASSO * * * 0(0) 0.06(0.002) | 0.52 | 1 | 0.67(0.011)
ORACLE * * * 0(0) 0.15(0.004) | 0.17 | 1 | 0.22(0.001)
AORACLE * * * 0(0) 0.03(0.002) | 0.73 | 1 | 0.18(0.001)
(100,25.4,0,0.2) |  PM | 0.01(0.003) | 0.02(0.001) | 0.985 0(0) 0.1(0.003) [0.28 | 1 | 0.31(0.004)
SLTS 0(0) 0.02(0.001) | 0.999 0(0) 0.33(0.007) | 0.05 | 1 | 0.31(0.002)
LL * * * 0(0) 0.66(0.009) | 0.05 | 1 | 0.34(0.003)
REWLS | 0.06(0.001) 0(0) 0.042 * * * * 0.41(0.003)
SHE | 0.66(0.014) | 0.05(0.003) | 0.257 * * * | 1(0.008)
LASSO * * * 0(0) 0.14(0.004) | 0.19 | 1 | 1.07(0.003)
ALASSO * * *10.01(0.001) | 0.07(0.003) | 0.38 | 0.92 | 1.09(0.01)
ORACLE * * * 0(0) 0.16(0.004) | 0.16 | 1 | 0.24(0.002)
AORACLE * * * 0(0) 0.04(0.003) | 0.68 | 1 | 0.2(0.001)
(100,25,4,4,0.1) |  PM 0(0) 0.01(0) 1 0(0) 0.09(0.003) | 0.32 | 1 | 0.28(0.002)
SLTS 0(0) 0.08(0.001) | 1 0(0) 0.37(0.007) | 0.05 | 1 | 0.37(0.003)
LL * * * 1 0.03(0.002) | 0. 95(0 003) | 0 | 0.8 | 2.75(0.007)
REWLS 0(0) 0.01(0) 1 * * *10.29(0.002)
SHE 0.94(0.004) 0.04(0‘002) 0 * * * * | 2.48(0.006)
LASSO * * 1 0.21(0.005) | 0.54(0.006) | 0 | 0.14 | 2.68(0.012)
ALASSO * * * 1 0.15(0.005) | 0.42(0.005) | 0 | 0.28 | 10.97(0.526)
ORACLE * * * 0(0) 0.15(0.004) | 0.17 | 1 | 0.22(0.001)
AORACLE * * * 0(0) 0.03(0.002) | 0.73 | 1 | 0.18(0.001)
(100,25,4,4,0.2) PM 1(0) 0(0) 0 |0.75(0.005) | 0.03(0.003) | 0 | 0 | 4.3(0.018)
SLTS 0(0) 0.02(0.001) | 1 0(0) 0.32(0.007) | 0.06 | 1 | 0.31(0.002)
LL * * * 1 0.03(0.002) 0.96(0 003) | 0 |0.84| 2.83(0.007)
REWLS | 0.93(0.002) | 0.05(0.001) | 0 * * | f | 2.79(0.009)
SHE | 0.96(0.003) | 0.03(0.002) | 0 * * * | % | 2.55(0.006)
LASSO * * * 1 0.23(0.005) | 0.55(0.006) | 0 |0.12| 2.77(0.012)
ALASSO * * * 0.19(0.006) | 0.43(0.006) 0 ]0.24 | 8.65(0.242)
ORACLE * * * 0(0) 0.16(0.004) | 0.16 | 1 | 0.24(0.002)
AORACLE * * * 0(0) 0.04(0.003) | 0.68 | 1 | 0.2(0.001)
(100,25,0,0,0) PM * 0(0) * 0(0) 0.05(0.002) | 0.49 | 1 | 0.23(0.002)
SLTS * 0.15(0.001) | * 0(0) 0.43(0.006) | 0.02 | 1 | 0.4(0.003)
LL * * * 0(0) 0.4(0.009) | 0.2 | 1 | 0.23(0.002)
REWLS * 0.05(0.001) * * * * * 0.32(0.002)
SHE * 0.01(0.001) | * * * * | 0.25(0.001)
LASSO * * * 0(0) 0.14(0.004) | 0.2 | 1 | 0.21(0.001)
ALASSO * * * 0(0) 0.03(0.002) | 0.76 | 1 | 0.17(0.001)
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Table 6: Simulation Setting III: Simulation results for our methods PM compared with the

SLTS, LL, REWLS, SHE, LASSO, ALASSO, ORACLE and AORACLE methods when
n = 200. The * denotes the values that are not applicable.
(n,p,V,L,c) method M S JD FZR FPR SR | CR MSE
(200,25,4,0,0.1) PM 0(0) 0.01(0) 1 0(0) 0.05(0.002) | 0.49 | 1 | 0.2(0.001)
SLTS 0(0) 0.03(0) 1 0(0) 0.35(0.006) | 0.04 | 1 | 0.26(0.002)
LL * * * 0(0) 0.16(0.006) | 0.42 | 1 | 0.17(0.001)
REWLS 0(0) 0(0) 1 * * * | %] 0.19(0.001)
SHE 0(0) 0.07(0.002) | 0.999 * * * | % | 0.27(0.001)
LASSO * * * 0(0) 0.11(0.003) | 027 | 1 | 0.56(0.002)
ALASSO * * * 0(0) 0.02(0.002) | 0.76 | 1 | 0.51(0.007)
ORACLE * * * 0(0) 0.1(0.003) | 0.29 | 1 | 0.16(0.001)
AORACLE * * * 0(0) 0.01(0.001) | 0.85 | 1 | 0.13(0.001)
(200,25,4,0,0.2) PM | 0.02(0.005) | 0.02(0) |0.979 0(0) 0.06(0.002) | 0.43 | 1 | 0.23(0.004)
SLTS 0(0) 0.01(0) 1 0(0) 0.33(0.006) | 0.05 | 1 | 0.21(0.001)
LL * * * 0(0) 0.58(0 007) | 0.03 | 1 | 0.24(0.002)
REWLS 0(0) 0(0) 0.994 * * * 0.2(0.001)
SHE | 0.49(0.016) | 0.06(0.002) | 0.505 * * * | % | 0.71(0.009)
LASSO * * * 0(0) 0.1(0.003) | 0.29 | 1 | 0.95(0.002)
ALASSO * * * 0(0) 0.03(0.002) | 0.68 | 1 | 0.9(0.006)
ORACLE * * * 0(0) 0.11(0.003) | 0.28 | 1 | 0.17(0.001)
AORACLE * * * 0(0) 0.02(0.001) | 0.84 | 1 | 0.13(0.001)
(200,25,4,4,0.1) PM 0(0) 0(0) 1 0(0) 0.08(0.002) | 0.36 | 1 | 0.22(0.001)
SLTS 0(0) 0.03(0) 1 0(0) 0.34(0.006) | 0.06 | 1 | 0.24(0.002)
LL * * * 1 0.02(0.002) | 0. 93(0 004) | 0 |0.82| 2.8(0.004)
REWLS 0(0) 0(0) 1 * * * | 0.19(0.001)
SHE 0.97(0.003) | 0.01(0.001) | 0 * * * * | 2.64(0.004)
LASSO * * * 1 0.05(0.002) | 0.76(0.004) | 0 | 0.6 | 2.68(0.005)
ALASSO * * * 1 0.03(0.002) | 0.63(0.005) | 0 | 0.75 | 27.65(1.278)
ORACLE * * * 0(0) 0.1(0.003) [0.29 | 1 | 0.16(0.001)
AORACLE * * * 0(0) 0.01(0.001) | 0.85 | 1 | 0.13(0.001)
(200,25,4,4,0.2) PM 0.44(0.016) | 0.01(0) | 0.555 | 0.18(0.009) | 0.21(0.007) | 0.12 | 0.6 | 1.73(0.054)
SLTS 0(0) 0.01(0) 1 0(0) 0.32(0.006) | 0.05 | 1 | 0.2(0.001)
LL * * *10.02(0.002) 0.94(0 003) | 0 |0.85| 2.89(0.005)
REWLS | 0.43(0.015) | 0.01(0) | 0.555 * * | k| 1.33(0.04)
SHE | 0.98(0.002) | 0.02(0.002) | 0 * * * | k| 2.73(0.004)
LASSO * * * 1 0.06(0.003) | 0.76(0.004) | 0 |0.53 | 2.76(0.005)
ALASSO * * * 0.04(0.002) | 0.63(0.005) 0 ]0.69 | 26.97(6.71)
ORACLE * * * 0(0) 0.11(0.003) | 0.28 | 1 | 0.17(0.001)
AORACLE * * * 0(0) 0.02(0.001) | 0.84 | 1 | 0.13(0.001)
(200,25,0,0,0) PM * 0(0) * 0(0) 0.03(0.002) | 0.61 | 1 | 0.17(0.001)
SLTS * 0.07(0.001) | * 0(0) 0.35(0.005) | 0.02 | 1 | 0.28(0.002)
LL * * * 0(0) 0.1(0.005) | 0.55 | 1 | 0.15(0.001)
REWLS * 0.02(0) * * * * * 0.19(0.001)
SHE * 0(0) * * * * | % ] 0.18(0.001)
LASSO * * * 0(0) 0.1(0.003) | 0.29 | 1 | 0.15(0.001)
ALASSO * * * 0(0) 0.01(0.001) | 0.84 | 1 | 0.12(0.001)
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Proof. Since B H,,: can have at most n nonzero components by standard lasso literature, see Zou and Hastie (2005)

for example, B Hope — Po has at most n + ¢n, nonzero components. Assume the index set of these nonzero components
is S, and we have S C {1,2,...,pn} and |S| < n + ¢n. Thus

max [ X (Biope — Bo)| = max |2Xu Bt opri — Bo.g)| < max O XN Y2 11Btap — Bolla-

1<i<
-7 jes =" es
By Lemma 3 and ||5o]|2 < 00, one has ||BAHomf,80H2 = Op(1). Meanwhile, by Condition (B2), one has maxi<i<n(}_;c 5 X212 <
Yies X5X; < (IS|Min)*/? < 2/2Myn. Thus, one has maxi<i<n | Xi(Bu,,, — Bo)| = Op(n). Notice that 7; =
— X4(B8 — fo), we obtain k, = Op(n) as &; = Op((logn)'/?) = op(n) by Condition (D1). O

Lemma 5. Under Conditions (C2), (C5), (D1)-(D3), one has kn = Op(n). we have 0, = Op(my).

Proof. By Lemma 4, one has maxi<i<n |Xi(BHopt — Bo)| = Op(n). For i € G, one has 7; = —Xi(g— Bo) + €, by
Condition (D1), one obtains max;eq [7i| = Op(n). For i € G°, one has 7; = in(B! Bo) + € + vio. As Tan ' = 00
by Condition (C5), one obtains min;cge |7:| = Op(mn). O

3 Proof of Theorems

3.1 Proof of Theorem 1

The proof of Theorem 1 can be divided into two parts.
Part 1:
For any k dimensional vectors a and b, define ab = (a1b1,...,arby)” and a/b = (a1/b1,-..,ar/br)".
Let u = 0—0p = (0(1)T—00(1)",0(2),0(3)™) = (u(1)™, u(2)™, u(3)")T and & = 6—0y = ((1)"—0(1)",H(2)",0(3)T) =
(8(1)", 4(2)", 4(3)")". Also define Vo () = S0, [(e— Aw)* 2] An (1) +00 (1)1 n () 14722 ([1(3) 12/ 1),
and one has 4 = argmin, V, (u).
The first summation in V,, (u) can be simplified as —2W (n/2u)+(n/2uw)TC(n'/?u), where W = (W(1)", W (2)%, W(3)™)T =
(7171/2)({(167 n71/2X;F+1,pe, €). Then by definition,

sign(f;) = sign(,0),for all j = 1,...,¢ implies that sign(fo(1))a(1) > —|0o(1)].

By the Karush-Kuhn-Tucker conditions and the uniqueness of LASSO solutions, if there exists a @ the following

equation and equalities hold,

C1a(n'20(1)) = W(1) = —(4n) "/ A,sign(60(1)),

la(1)] < 160(1)],

—(4n)"V2A1 < Cor(n*2a(1)) — W(2) < (4n) 21,
—(pn/2)(1/F]) < Ca1(n'?a(1)) = W(3) < (a/2)(1/IA1),

then sign(A(1)) = sign(6o(1)), sign(A(2)) = sign(fo(2)) = 0, sign(6(3)) = sign(6o(3)) = 0. Substitute @(1) and bound

the absolute values, the existence of such 4 is implied by

An 1O WD) < n'2{]00(1)] = (2n) " Al Cry'sign(00(1)) [}
B i |CnCr'W(1) = W(2)| < (4n) /2 X0 (1 — |Co1 Oy 'sign(60(1))])
Cu + [CnCR'W (1) = W(3)| < (1 /2)(1/1F]) = (4n) A\ |C31 Oy sign(6o(1))].
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As a result, pr(0 =, 0o) > pr(An N B, N Ch).
After we obtain the lower bound of pr(6 = 6y), we will show that pr(A, N B, N Cy,) — 1 when n — co. Notice
that

1—pr(A,NB,NCL)

< (sl = A {101 - @n)  Awag)) + 3 pr(G] = (4n) " V2A00))

j=1 Jj=1

+ > or(l6] > pa /21751 — (4n) 72 N0,

j=1

where Z = (21,...,2¢)T = C'W (1), ¢ = (C1y -+ Cpq)” = Cu O W(1) =W (2), & = (&1, ..., &n)T = Cs1CF'W (1) —
W(3), a = (a1,...,aq)" = |Cy'sign(0o(1))], b= (b1,...,bp—g)" =1 —|C1Cy;'sign(6o(1))| and ¢ = (¢1,...,¢n)" =
|Con 5 sign(Bo (1) .

Now if we write Z = Hie where H} = (h{,...,hd)T = C;'(n""/2XT,), then HiH4 = Cp;'. Under the
Condition (B3), one has z; = (h$)"e with ||h}||*> < My " for any j = 1,...,q. Similarly if we write { = Hje where
HE = hS,... b )" = Coaa O (n /2 XT,) —n~Y2X T, then

H};HB = n_IX«;F+1,p{In - Xl,q(XEqXI,q)_le,q}Xq-'—l,p-

Since I, — X1,4(X1 4 X1,4) ' X1, has eigenvalues between 0 and 1, under Condition (B2), one obtains ¢; = (h})"e with
||R5]|? < M for any 1 < j < p—q. Similarly, we can write ¢ = H&e where HE = (hS,...,he)" = C5105' (n ™2 XT ) —
In, then HHe = Iy — X1,4(X1 4 X1,4) ' X1, which indicates & = (h§)"e with |[h§[|> < 1 for any 1 < j < n.

Part 2:
Thus, under Condition (A), one obtains E(z3*) < oo, E((}*) < 0o and E(£7*) < oo because for any given constant
n-dimensional vector a, E(aTe?*) < (2k — D)!![|a||?E(e2*). For random variables Z with bounded 2k’th moments,
the tail probability is bounded by pr(Z > t) = O(t~2).

Also notice that

" Ana; < 7N ||Cntsign (00 (D)2 < My tn T A g2,

under Condition (B4), for A, = o(n{?*1/2)  we obtain

ZPT(\ZJ'I >n'2{]00(1)] = (2n) ' Anas}) = O(n™"™) = o(1),

Further, under Condition (B1), one has

S oG] > (n)2Aby) = (p— )O(m*As) = O 3s?) = o(1).

Jj=1

Under Conditions (B2) and (C3), one has |(4n)~Y?\ue;| < ¢"/2M}/> M5 (4n) " /2N, q" /2 = (2My) ™ M, *n= /2 A,,.

1/(2k)—d/2

Thus when A,n~ /2 = o(tn/kn), which is indicated by pnn~ — 00, by Lemma 1, we have

Yo pr(l6] = ma/(21F51) = (4n) "2 Xd;) = O(nis 1, **) = o(1).

Jj=1
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This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

Suppose we contaminate m < min{n — h, | (n — p)/2| — 1} observations, and assume 7 and X are the contaminated
data. Define B as the solution using least trimmed squares when subset size is set as h and 7; = y; — ng Since
the least trimmed squares with truncation number h have a breakdown point min{(n — h + 1)/n, |[(n — p)/2|/n}
(Alfons et al., 2013), we have ||3]|2 < M for some M > 0. As L; norm and the Euclidean norm are topologically
equivalent, for any p dimensional vector 3, we have c1]|8]|2 < ||8]]1 < c2l|B||2. Consequently, we obtain Q. (3,7) =
AnllBl1 + npin < coXn M + npin = M.

Recall that we solve the following minimization problem

p n
min Qn(8,7) = min |ly = X8 =yl +An D 18] + pn 3 10l /1Fil,
’ ’ =1

j=1 i=

and suppose the minimizer of Q. (8,7) is B and 7.
For any ||8]l2 > (M* +1)/(Anc1), we have Qu(8,7) = AullBllr > crdalBll2 > M*+1 > Qu(B,7) = Qu(B,9). As
aresult, ||B|]2 < (M* +1)/(Anc1), which indicates the breakdown point is at least min{(n —h+1)/n, | (n—p)/2]/n}.

This completes the proof of Theorem 2.

3.3 Proof of Theorem 3

The proof of Theorem 3 can be divided into two parts.

Part 1:
Let v = n—mno = (n(1)" = no(1)",n(2)" = no(2)",n(3)") = (w(1)",v(2)",v(3)")" and & =7 —no = (H(1)" —
mo(1)",4(2)" —no(2)",7(3)") = (6(1)", 8(2)",9(3)")".

We define Un (v) = 31, [(€i=Bv) =€ ]+n" 2 pn([[0(1)+n0 ()][1/[F(1) )+l [0(2)+B0) 1472 i ([[0(3) 1 /[7(2)])-
One has © = argmin, U, (v).

The first summation in U, (v) can be simplified as —2W* (n'/2v)+(n/2v) ™ D(n/?v), where W* = (W*(1)T, W*(2)T, W*(3)T)*
(n"Y2BTe,n"Y/?BTe,n /2 BY¢). Then by definition,

sign(7);) = sign(n,o),for all j =1,...,s, implies that sign(no(1))d(1) > —|no(1)].

By the Karush-Kuhn-Tucker conditions and the uniqueness of LASSO solutions, if there exists a © the following

equation and equalities hold,

Dii(n'"?8(1)) + D12(n'/*5(2)) - W*(1) = =,

[D(1)] < Ino(1)],

—(4n)"* X1 < Doy (n'/26(1)) + Daz(n*/?6(2)) — W*(2) < (4n) 2,1,
—(1a/2)(1/IF(2)]) < Dar(n'/?6(1)) + Daz(n'/*8(2)) = W*(3) < (1n/2)(1/F(2)]);

where @ = (—pn/2){Isign(do(1))|/F(DI}, then sign(i(1)) = sign(no(1)) and sign(#(3)) = sign(o(3)) = 0. As
Dy, = I,,, and D3; = 0, substitute 9(1) and bound the absolute values, the existence of such ¢ satisfying 9(2) = 0 is
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implied by
AL )] <P mo(1)] - |l
B: i |[DaW*(1) = W*(2)| < (4n)"*\u1 — | Do
Co WG (0 /2)1/F(2)]).

As a result, pr(§ =5 v) > pr(§ =s v0,9(2) = 0) > pr(A;, N B; NC).
After we obtain the lower bound of pr(% =5 v), we will show that pr(4; N B, NC;) — 1 when n — co. Notice
that

1—pr(4,NB,NCy)

Yo or(lz5] = 0 {1} — eyl ") + Y pr(¢] = b))

j=1 j=1

IN

n—=sn

+ ) pr(Ig1 = 6)),
j=1

where 2* = (21,...,2: )T = W*(1), ¢* = ({{,..., )" = DaW*(1) — W*(2), b* = (b7,...,b5)" = (4n)~Y2x,1 —
|D21w|7 §* = (Ef? e 75;;—37,,)T = W*(?)) and (b* = ((biv c '7¢:L—sn)T = (N/n/Q)(]-/FY'(Q)D

For z7, we can write 2z = ¢; for 1 < j < s,, and for £}, we can write £ = €4, for any 1 < j < n—s,. Further,
we can write ¢ = Hpe where Hp = (hf,...,hS_,)" = Da1(n™"/?BT) —n~'/?BJ, then

HEHp =n 'Bi{I, — Bi(BfB:1) ‘Bl }Bs.

Since I, — B1(Bf B1)"'B{ has eigenvalues between 0 and 1, under Condition (B2), one obtains ¢ = (h$)"e with
[[h§]]> < My for any 1< j <p.

Part 2:
Thus, under Condition (A), one obtains E((2})*") < oo, E((¢})?*) < oo and E((£])?*) < oo because for any given
constant n-dimensional vector a, E(ae?*) < (2k — 1)!!]|a||?E(e?"). For random variables Z with bounded 2k’th
moments, the tail probability is bounded by pr(Z > t) = O(t~2).

By Lemma 2, for any 1 < j < sp,

;| <27

Noticing that n'/?minj—1, s, [70;(1)| = Op(m), by Conditions (C1), combining with the fact that s, = O(n),

UnTyn ' = o(my), we obtain
Sn
S pr(z] = 02 (L)1} - wl*) = O(nm, ) = o(1).
j=1

Further, as

Doy = Dai(pn /2)sign(sho(1))[/[7(1)]

Thus, under Conditions (B2), combining with Lemma 2, the second term of |b}| can be bounded above by Mll/Qsi/2 (1in/2)/0n =
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Op(n*?puy /7). Combining with Condition (C3), when n'/2pu, 7! = o(n"'/2),) and A,n~/? = oo, we obtain

> pr(IG] = b)) < pO(n*A;%F) = o(1).

j=1
Moreover, recall that Ds; = 0 when nx2* %% = o(1), we have

n—sn

> opr(€] = ¢)) = Okt *) = o(1).
j=1

—1/2k 2k —2k

As we require m,n — 00, Tt = o(mn), Nk ur2* = o(1) and n/2u,myt = o(n"2\,), combining with

the fact that A,n~'/? = oo, to guarantee there exist a 1 satisfies these conditions, we reed to require man Y 5 o,
tn = o(m2), pin™' — oo and Ayn " uy 'm, — co. Thus, we have pr(§ =5 v0) — 1.

This completes the proof of Theorem 3.

4 Proof of Corollaries

4.1 Proof of Corollary 1

We will follow the same framework as the proof of Theorem 1. Part 1 is the same as the proof of Theorem 1 under
Conditions (B1)-(B4) except that we need to change p into p, and g and ¢g,. We change part 2 of the proof of

Theorem 1 as follows:

Under Condition (D1), the tail probabilities of z;, ¢; and &; are bounded by pr(Z > t) = o(efctz) for some
constant C.
Also notice that

n” Ana; <07 A|C sign(Bo(1))]|2 < My T Ang,

By Condition (B5), for A, = O(n{*3T1/2) with 0 < ¢3 < d — ¢1, one has n™*\,a; = o(n'*"1/2). Thus, we obtain

Zn:pr(lzj'l > n'2{]00(1)] - (20) " Anas}) = mo(e™"") = o(1),

j=1
Further, by Condition (D1), and p, = O(e"cz) with 0 < ¢2 < c3, one has

S pr(1G] = (4n) 2 h0b)) = o(pe” ") = o(1).

j=1

Under Conditions (B2) and (C3), one has |(4n) /2 \u¢;| < qn/* M, /> My (4n) V2 Angh/? = (2My) ™ M, *n= /2 X0
Thus when \,n~2/2nct = o(tn/kKn), which is indicated by

pnn 1717 /2 o6 by Lemma 4, we have

Zpr(lij\ > pin/(25]) = (4n) "2 Xug5) = o(1).



14 Dehan Kong, Howard Bondell and Yichao Wu

This completes the proof of Corollary 1.

4.2 Proof of Corollary 2

If we replace the initial least trimmed squares estimator and the residual by the corresponding sparse least trimmed
squares estimator and residual, we can prove this corollary similarly as the proof of Theorem 2 because the sparse

least trimmed squares estimator has a breakdown point of (n — h + 1)/n (Alfons, Croux, and Gelper, 2013).

4.3 Proof of Corollary 3

We will follow the same framework as the proof of Theorem 3. Part 1 is the same as the proof of Theorem 3 except

that we need to change p into p,. We change part 2 of the proof of Theorem 3 as follows:

Under Condition (D1), the tail probability of 2}, ¢ and &; are bounded by pr(Z > t) = o(e_Ctz) for some
constant C.

By Lemma 2, for any 1 < j < sp,
@5 <27 s

Noticing that n'/? minj—1 s, |170;(1)] = Op (), by Conditions (C1) and 7, (logn)~ /% — oo, combining with the

,,,,,

fact that s, = O(n), pnm, ' = o(m,), we obtain

i:pr(IZ}*l > n'*{no(1)]}; — [w,]") = O(ne= ™) = o(1).

Jj=1

Further, as

Dorw = Dai(pn /2)sign(so(1)[/7(1)]

Thus, under Conditions (B2), combining with Lemma 2, the second term of |b}| can be bounded above by Mll/zs,l/2 (tn/2)/0n =

Op(n*'?pn /7).  Combining with Condition (C3) and p, = o(e™”) with 0 < ¢2 < di —¢1 (e1 > 0), when

nY 2t = o(n"V2\,) and ApnY274/2 5 oo, we obtain

Pn
Yo rr(IG] 2 85) < paO(e™ ™) = o(1).
Jj=1

—1/2

Moreover, recall that D3; = 0 when pnk, > (logn) — 00, we have

=" * * — 2.472
S pr(€] > 6) = O(ne™ ) = o(1),
j=1
As we require m,(logn) "2 = 00, pamnt = o(mn), pnkn(logn) 2 — oo and nt?u.myt = o(nY/2N,),

“U 00, Un = O(Wi):

to guarantee there exist a p, satisfies these conditions, we need to require m,n~Y 2(logn)
pnn " (logn)~1/?

This completes the proof of Corollary 3.

— oo and )\nnflu,jlﬂn — o00. Thus, we have pr(§ =s y0) — 1.
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