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S1 Proof of Proposition 1

In the variance definition (4), the variance of Y (z) at stage j + 1 is

Visi(z) = 0 {Pe(z,7) — o (z, X;11)Po(Xj1, Xj1) " O(Xj0,2) .
(S1.1)

Since X4, is comprised of X; and x4, (S1.1)) can be rewritten as

Via(w) = *{ B (e, 2) -

Po(zj41,7501) Polwjr1, Xj) Po(r,2541)
Po(z,7511) Polr,X)) }
Po(Xj,z541)  Po(Xj, Xj) o (X, 7)

R

(S1.2)

For simplicity, the second term of (S1.2) can be written as a partitioned



matrix, that is,

Bi1 B a1
] | (S1.3)

By B az

where

= q)@($7$j+1)7a2 = (I)@(Xj,$),

Bll = q)@(ijrhijrl)’ 312 = q)@(xj+1,Xj) = Bg and BQQ = @@(XJ,XJ)

Applying partitioned matrix inverse results (Harville, 1997) and sim-

plifying (S1.3) gives
a2TB2_21a2 -+ (a1 — B1232_21a2> Bll 2( 312322 CL2> (Sl4>

where B11.2 = BH — Blng_legl.

Then, taking (S1.4) into - leads to

V(Xji1) = 0{®e(x,2) — a3 Byy'ay — (a1 — BiaBay as)" Bi'y(a1 — BiaBay'as)}
= 0*{Pe(z,2) — Po(z, X;)Po(X;, X;) ™ Po(X;, 7)
— (a1 = BisByy'as)" Biiy(ar — BiaBy'as)}
= V(Xj) - 02{((11 - 31232_216‘2) By 2( Bl2B22 as)}

= V(X;) = o’ R(zj41),
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where
R(zj41) = (a1 — Bi12Byy'az)" Biiy(a1 — BiaBg'as)

= (a; — 31232721@2)2/3112

_ (Pl mj41) — Po ()41, X;)Po (X, X;) "' e (X, )
Co (71, 7j41) = Polwj1, X;)Pe(X;, X;) T Po (X, 2j41)”

and the second equality holds since Bjp.5 is a scalar.

S2 Proof of Theorem 1

Since (a — b)? < (a +b)? for a,b > 0, equation (8) can be bounded as

(Po(r,7j41) — Pol®js1, Xj)Po(X;, X;) ' Po (X, 7))

R(xj41) =
(s01) Po ()1, 2j41) — Po ()1, X;j) P (X, X;) 1 Pe (X, 2)11)
(CI)G)(x?xn—H)"f’q)@(xj—&-h )¢)9<X]7X]) 1@®(X J7)>
= Po(Tji1, Tir1) — Polwit1, Xj)Pe(Xj, Xj) 1 Pe (X, j11)
Also, since
a"B~'b < lall2| B7'0]l
and

a"B™'a < |a]3Amax(B™Y) = [lall3/ Amin(B),
where Apax(+) and Apin(+) denote the maximum and minimum eigenvalues

of a specific matrix, respectively, the inequality becomes

(Po (7, 2j11) + [|Po (s, X)) |2/ Po (X, X))~ e (X, )[|2)?
1- ||(D®(Xj7$j+1)||%/Amin ,

R(zj41) <



where Apin is the minimum eigenvalue of ®g(X;, X;).
Furthermore, according to the definition dyn(x;j+1) of the minimum
(Mahalanobis-like) distance as (6) and the definition ¢(-) as in Theorem 1,

we have
Do (u; Tj11) < G(dmin(zj41)), for any u € {z, X},

which also implies

1P6 (241, X))l = [P (X, 2j11) |2 < Vi (dumin(541)),

therefore the inequality can be bounded as

(P(duin(541)) + VIO (dimin (7541)) [P0 (X, X;) ' Po (X, 7)||2)”
1 — j¢*(dmin(7j11))/Amin ‘

R(zj41) <
(S2.1)
Thus, for 6 > 0, if

(& (dumin(%541)) + VP (dmin(2511)) |6 (X;, X5) " Po (X, 7)[[2)* _ 5
1 — j¢*(dumin(7j41)) /Amin -

or equivalently

d . (:B )> gb_l 0
min\Fjt+1) 2 (14 Vil P (X, X;) 106 (X, 2)]|2)% + 6/ Amin |’

then by (S2.1), R(z;41) < 6.
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S3 Proof of Theorem 2

Define U(t) = (v Ai01(t), VAapa(t), ..., vV Apep(t)T € RP*L where ;(+),i =
1,..., D is an orthonormal basis of L?(2) consisting of the eigenfunctions of
T, defined in (13), and Ay > A > ... > Ap are corresponding eigenvalues.
According to (14), the approximated eigen-decomposition can be rewritten
as

®(z,y) = U (x)U(y).

Also, define a matrix U(K) = [U(ky),U(ks),...,U(k,)] € RP*" for
K = (k1,k2, ..., k,). Then, the reduction in variance R(x;11) in (8) can be
approximated to the following:

(Po(z, j41) — Po(w)t1, X;)Po (X, X;) ' Pa(X;, 7))?
Do (Tj41, j41) — Po(Tj+1, X;)Po (X, X;) 1 Pe(X), x)11)
- (U@ )U(x) = UM (2;42)UX)[UT(X;)U (X5)] U (X;)U ()
UT(241)U(xj41) — UT (2540 U(X;) [UT(X;) U (X))~ U (X5)U(241)
_ (UM @)l = UX)UT(X)U (X))~ UT(X)]U ()
UT(zj41)[1 = U(XH)[UT(XH)U (X)) UL (XU (w541)

R(rj) =

where [UT(X;)U(X;)]~ denotes a generalized inverse of [UT(X;)U(X;)].

Let CX]. (t) = [] — U(XJ)[UT(XJ)U(Xj)]iUT(X])]U(t) Then,
Cx, (2541)Cx;, (x) = UM (20 [ = U(X))[UT (X)) U (X5)]" U (X))]U ().
Similarly,

CX, (@501)Cx, (2541) = U (242) [[=U (X)) [UT (X;)U(X;)]"UT(X)]U (241).



Therefore,

(CF, (j1)Cx, (@)
R(ns) ~ ngj (2j41)Cx, (711)

= [|Cx, (x)]3 cos™(¥),

where 9 is the angle between Cy,(x) and Cx, (z;41).
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