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Supplementary Materials

Proof of Theorem 2

The proof given below is a slight modification of the proof of Theorem 3.1
in Davanloo et al. (2015) to obtain tighter bounds. For the sake of complete-
ness, we provide the proof. Through the change of variables A := P — P*,

we can write (2.1) in terms of A as

A = argmin{F(A) := (S, A + P*) — logdet(A + P*) + a <G ® (1,1)),|A + P*|> A€ F),

where F := {A € R . A = A" a1 < A+ P* < b*I}. Note that
A = P — P*. Define g(A) := —logdet(A + P*) on F. g(.) is strongly
convex over F with modulus 1/ b*?; hence, for any A € F, it follows that
g(A) = g(0) > — (P, A) + 75 [|Al]}. Let H(A) := F(A) — F(0) and
Sa == {A € F: ||Allr > 2b**p(n + ||G||r)a}. Under probability event
Q= {]|vec(S¥ — V)|l < o, V(i,j) €Z x I}, for any A € Sy C F,

*— 1 * *
H(A) 2 (8.8) = (P A) + SllAlF +a (G0 (1,17), 1A+ PT) - a (G, |P7))

1 . .
> oAl + (8,5 - C7) —a (G (1,17).|A])

1
2b*?

2 IAIE = ap(n + |Gl F)AllF > 0,

where the second inequality follows from the triangle inequality, the third
one holds under the probability event €2 and follows from the Cauchy-
Schwarz inequality, and the final strict one follows from the definition of
Sa. Since F(0) is a constant, A = argmin{H(A) : A € F}. Hence,
H(A) < H(0) = 0. Therefore, A ¢ Sx under the probability event €. Tt

is important to note that A satisfies the first two conditions given in the
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definition of Sx. This implies ||A]lp < 20**p(n + ||G||r)or whenever the

probability event {2 is true. Hence,
Pr (||P — P*||p < 26" p(n + ||G\|F)a) > Pr (|| vec(SY — ¥ |le < a, V(4,5) € T x z)
=1-Pr (max | vec(S§7 — £7)||00 > a)
,JET

>1- Z Pr (||vec(5’ij = 29|00 > a).

ijer
Recall that S = ]lv Zi\[zl y(T)y(”)T and y() = [yy)]iez for r = 1,...,N.
Note X% = I'* for i € Z; hence, yi(r) ~ N(0,T%), i.e., multivariate Gaussian
with mean 0 and covariance matrix I'*, for all ¢ and r. Therefore, Lemma 1
in Ravikumar et al. (2011) implies Pr (|| vec(S% — X%)||, > a) < B, for
a € (0,40 max; I'};), where B,, := 4p® exp (% (Wxﬁ“f) Hence, given

N 2
any M > 0, by requiring N > <%) No, we get By < =5 (np)~.

Thus, for any N > Ny, we have > . Pr(||vec(SY —X¥9)| >a) <

ijeT
(np)~ for all 40 max; I';;4/ 52 < a < 40max; I'j;. O
Proof of Theorem 4

For the sake of simplicity of the notation let & = (I',C') € S" x S",
and define ||(T',C)||, := max{||T'||2, ||C]|2} over the product vector space

S™ x §"; also let ¥ = (0,I",C) € R? x S™ x S", and define ||(0,T,C)||, :=
10|l + ||(T, C)||, over the product vector space R? x §" x S". Throughout
the proof ® := (I',C), ®* := (I*,C*), and ¥ := (0, D), U* := (0", d*).

As 0" ¢ int(O), there exists §; > 0 such that B ,(8,9:) C ©. More-
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over, since p(x,x’; 0) is twice continuously differentiable in 8 over © for all
x,xX € X, R: © — S" is also twice continuously differentiable. Hence,
from (3.12), it follows that V2f(0;T,C) is continuous in ¥ = (0,T,C);
and since eigenvalues of a matrix are continuous functions of matrix en-
tries, Amin (V2£(0; T, C)) is continuous in ¥ on By, (¥*, ;) as well. There-
fore, it follows from Lemma 1 that there exists 0 < &y < d; such that
V2f(0;T,0) = L1 for all U = (0,T,C) € By, (V*, 5).

Let Q = B”.”a(q)*, %52) and ©' := 0N B”,”Q(B*, %52), i.e.,
Q ={(I,C): max{|[l =T"|l, [|C' = C"[ls} < 302}, (5.1)
O ={0cO: |06 <1is}) (5.2)

Clearly f is strongly convex in 8 over ©" with convexity modulus 77 for all

(', C') € Q. Define the unique minimizer over ©":

0(I',C) := argmin f(0; T, C). (5.3)
oce’

Since ©’ is a convex compact set and f(0;1",C) is jointly continuous in
U =(0,T',C) on ©x Q, from Berge’s Maximum Theorem — see Ok (2007),
0(T',C) is continuous at (I'*,C*) and @(I'*,C*) = 0*. Therefore, for any
0 < € < 305, there exists 6(€) > 0 such that 6(e) < 36, and ||@(", C)—0|| <
e for all & = (T, C) satisfying ||® — *||, < d(e).

Fix some arbitrary € € (0, 1d,]. Let P(¢) be computed as in (3.6) with



42 Sam Davanloo Tajbakhsh, Necdet Serhat Aybat, and Enrique Del Castillo

ale) = 40 max (') ]\],\E(;) where sample size N(¢) denotes the number
i=1,..., D

of process realizations (chosen depending on ¢ > 0). Hence, Theorem 3
implies that by choosing N(e) sufficiently large, we can guarantee that

~

C(e) = P(e)7", and T'(e) defined as in (3.8) satisfy

max{[|C(e) — C*[l2, [E(e) = T'[la} < 8(€) < 16a, (5.4)

ie., ||® — ®*||, < &(e), with high probability. In the rest of the proof, for
the sake of notational simplicity, we do not explicitly show the dependence
on the fixed tolerance ¢; instead we simply write ]5, C , and I.

Note that due to the parametric continuity discussed above, (5.4) im-
plies that |0(T',C) — 0%|| < e < 105. Hence, the norm-ball constraint in the
definition of ©’ will not be tight when f(8; T, C’) is minimized over 8 € ©/,
ie., O(,C) = argming.o f(8;T,C) = argming.g f(6;T,C) =: 0 — see

(3.9) for the definition of 6. Therefore, ||¥ — ¥*||, < &, < 4y, i.e.,

16 — 0%|| + ||(T,C) — (I, C)||la < 65 < 6y. (5.5)

This implies that 6 € int ©; thus, Vo f(8;T,C) = 0.

Although one can establish a direct relation between d(e) and € by
showing that (T, C') is Lipschitz continuous around 0*, we will show a
more specific result by upper bounding the error ||@ — 8*|| using ||® — &*||,.

Indeed, since (f‘,é) € Q, f(O;f,C’) is strongly convex in @ € ©' with
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modulus %7*; hence, 8* € © and 6 € © imply that
V16— 072 < (Vo f(67:1.C) — Vo f (B:T.C), 67— b
?H - H = Bf( ) )_ ef( ) )7 -

- <v9f(9*; [,C) — Vo f(07:T%,C"), 6" — é> . (5.6)

0. Next, from (3.11) it follows that

0
‘aak S5O 5

‘( IDI7 = IT71%) (Ri.(67), R(67)) + (C*, Ri(6") @ I'") — (C, Ri(6") @ I)

(6%;T%,C%)

< (Ilf + L [RO7)]] + ||é||*> 1R (62T = T*[lo + n | | R (8) |2 € — C* o,

where the second inequality uses the following basic inequalities and iden-
tities: Given X, Y, VW € R™™ i) (X\Y) < [|[ X[V, ii) | X% —
IYVF = (X+Y, X =Y),iii) (X,V) = (V.W) = (X, Y = W)+(W, X = V);
given X € &,V € 8 iv) X @ Vo = [IX[ollY]2 v) X ® V]I, <
min{p[| X |[[[Y[|., n[|X[[.[Y]l2}. Note that since R(6) € §%,, | R(6")]|. =
Tr(R(6%)) = n. Moreover, (5.4) implies that ||, < ||T*]. + £6,, and

1O < [|C*]l + “26,. Hence,

. . np+1
ms(mwm+wm+(ﬁ )

52) R, (67)2]I(T, €) = (T, C7)lo.
Therefore, for % := <3ny|r*u 1O+ G ) (i I RL(6) 13 )3

IVof (6L, C) = Vof (617, C7)2 < & ||(T',C) — (I, C) ]l
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Applying Cauchy Schwarz inequality to (5.6), we have

0 * K n A * *
16 — 67| < 2¥ (L, C) = (I, C%) [|a- (5.7)

Thus, choosing N(€) > Ny := [2[(M + 2) In(np) + In4]] such that

N k(b 1
() > 160 max (F;")v_ (—) p(n+Gllr) <,

a*

i.e., N(e) = O(%), implies that 10 — 6| <€, and |0 —T*|, < L ¢ with

probability at least 1 — (np) =M. O]





