R Code for the paper Computer Experiments: Prediction Accuracy, Sample Size and Model Complexity Revisited

Ofir Harari, Derek Bingham, Angela Dean †and Dave Higdon ‡

```
#** This is the R code for the Simulation study of Section 5 of our
#** paper, entitled "Computer Experiments: Prediction Accuracy,
#** Sample Size and Model Complexity Revisited", tp appear in Statistica **
#** Sinica. For questions, comments or code for the accompanying R Shiny **
#** application, please write to oharari@sfu.ca
#************************************
#before running this script, make sure you have the following packages
#installed locally -
library(DiceKriging)
library(lhs)
library(fOptions)
#**** Rescaling everything from the unit cube to the original units
rescale <- function(D.0)
    D.1 \leftarrow D.0
    D.1[,1] <- D.1[,1]*30+30
    D.1[,2] \leftarrow D.1[,2]*.015 + .005
```

^{*}Department of Statistics and Actuarial Science, Simon Fraser University

[†]Department of Statistics, The Ohio State University

[‡]Social and Decision Analytics Laboratory, Biocomplexity Institute of Virginia Tech

```
D.1[,3] \leftarrow D.1[,3]*.008 + .002
    D.1[,4] \leftarrow D.1[,4]*4000 + 1000
    D.1[,5] <- D.1[,5] *20000 + 90000
    D.1[,6] \leftarrow D.1[,6]*6 + 290
    D.1[,7] \leftarrow D.1[,7]*20 + 340
    return(D.1)
}
piston <- function(xx)</pre>
 # PISTON FUNCTION
 # Authors: Sonja Surjanovic, Simon Fraser University
       Derek Bingham, Simon Fraser University
 # Questions/Comments: Please email Derek Bingham at dbingham@stat.sfu.ca.
 # Copyright 2013. Derek Bingham, Simon Fraser University.
 # For function details and reference information, see:
 # http://www.sfu.ca/~ssurjano/
 # OUTPUT AND INPUT:
 # C = cycle time
 \# xx = c(M, S, V0, k, P0, Ta, T0)
 M < -xx[1]
 S < -xx[2]
 V0 < -xx[3]
 k < -xx[4]
 P0 < -xx[5]
 Ta \leftarrow xx[6]
 T0 < -xx[7]
```

```
Aterm1 <- P0 * S
Aterm2 <- 19.62 * M
Aterm3 <- -k*V0 / S
A <- Aterm1 + Aterm2 + Aterm3
Vfact1 <- S / (2*k)
Vfact2 \leftarrow sqrt(A^2 + 4*k*(P0*V0/T0)*Ta)
V <- Vfact1 * (Vfact2 - A)</pre>
fact1 <- M
fact2 \leftarrow k + (S^2)*(P0*V0/T0)*(Ta/(V^2))
C <- 2 * pi * sqrt(fact1/fact2)</pre>
return(C)
}
Fitting a GP model
model.fit <- function(size, X.test, y.test)</pre>
{
   X.0 <- randomLHS(size, 5)</pre>
   X.0.1 \leftarrow cbind(X.0, .5, .5)
   X1 <- rescale(X.0.1)</pre>
    y <- apply(X1, 1, piston)
   X.0 <- data.frame(X.0)</pre>
    names(X.0) <- names(X.test)</pre>
   model <- km(design=X.0, response=y, covtype="gauss")</pre>
    y.hat <- predict(model, newdata=X.test, "UK")</pre>
   return(y.hat)
```

```
#**** Running the Simulation for random LHDs and various sample sizes ****
RAUV.sim <- function(X.test, y.test, size, n.rep, sd2)
     RAUV <- rep(0, n.rep)
     for(i in 1:n.rep)
     ₹
           y.hat <- model.fit(size, X.test, y.test)</pre>
           e <- y.test-y.hat$mean
           RAUV[i] <- sqrt(mean(e^2)/sd2)</pre>
           cat("\n End of repetition ")
           cat(i)
           cat(" for sample size ")
           cat(paste(size, "\n"))
           flush.console()
     }
     RAUV
#************************************
Plotting y vs. y.hat for a given model fit
plot.fit <- function(size, sd2)</pre>
     y.hat <- model.fit(size, X.test, y.test)</pre>
     e <- y.test - y.hat$mean
     Emp <- sqrt(mean(e^2)/sd2)</pre>
     lims.min <- min(min(y.test), min(y.hat$mean))-.05</pre>
     lims.max <- max(max(y.test), max(y.hat$mean))+.15</pre>
     lims <- c(lims.min, lims.max)</pre>
     plot(y.hat$mean, y.test, xlab=expression(hat(y)), ylab="y", cex.lab=1.5,
           axes=0, xlim=lims, ylim=lims)
     axis(1, pos=lims.min, at=round(seq(lims.min, lims.max, by=.2),1))
     axis(2, pos=lims.min, at=round(seq(lims.min, lims.max, by=.2),1))
     text(x=.8, y=.2, substitute(paste("ERAUV = ", tt), list(tt=round(Emp,3))))
     lines(c(0,1.1), c(0,1.1), col=2, lwd=2, lty=2)
```

```
Emp
}
End of functions, Simulation starts here
N.integration <- 100000 #size of holdout set
X.test <- runif.halton(N.integration, 7) #holdout set</pre>
X.test1 <- rescale(X.test)</pre>
y.test <- apply(X.test1, 1, piston) #response evaluation for hodout set (y.ho)
X.test <- data.frame(X.test[,1:5]) #reducing dimensionality to 5</pre>
#***** Fitting a model on 1000 observations to estimate sigma^2
X.sd2.est <- runif.halton(1000, 5) #training set</pre>
X.sd2.est1 \leftarrow cbind(X.sd2.est, .5, .5)
y.sd2.est <- apply(rescale(X.sd2.est1), 1, piston) #observed data (y)
model.sd2.est <- km(design=X.sd2.est, response=y.sd2.est, covtype="gauss") #fitting a GP
sd2 <- coef(model.sd2.est)$sd2 #estimated sigma^2</pre>
#****** Simulation ******
n.rep <- 50 # No. of repetitions per sample size
size \leftarrow c(30, 50, 70, 120) # sample sizes
#running simulation
RAUV <- sapply(size, RAUV.sim, X.test=X.test, y.test=y.test, n.rep=n.rep, sd2=sd2)
RAUV.hat <- apply(RAUV, 2, mean)
sds <- apply(RAUV, 2, sd)
```

title(main=paste("GP fit for a sample size of", size), cex.main=1.2)

```
#**** plotting boxplots *****
dev.new(width=8)
par(mar=c(5,6,3,1))
boxplot(RAUV, axes=0, xlab="Sample Size", ylab="ERAUV", cex.lab=2, ylim=c(0.04, 0.24))
axis(1, at=c(-1,1:4,6), labels=c("","30","50","70","120",""), cex.axis=1.6)
axis(2, pos=.5, at=seq(0,1,by=.01))
lines(c(.5,3.6), rep(median(RAUV[,4]),2), lty=2, col=4, lwd=2)
#***** Example of y vs. y.hat plots for the different sample sizes
dev.new(height=9, width=9)
par(mfrow=c(2,2), mar=c(5,5,3,1))
set.seed(24)
plot.fit(30, sd2)
set.seed(18)
plot.fit(50, sd2)
set.seed(17)
plot.fit(70, sd2)
set.seed(3)
plot.fit(120, sd2)
```