
Statistica Sinica 27 (2017), 000-000

doi:http://dx.doi.org/10.5705/ss.202015.0120

PERSONALIZE TREATMENT FOR LONGITUDINAL DATA

USING UNSPECIFIED RANDOM-EFFECTS MODEL

Hyunkeun Cho, Peng Wang and Annie Qu

Western Michigan University, University of Cincinnati

and University of Illinois at Urbana-Champaign

Abstract: We develop new modeling for personalized treatment for longitudinal

studies involving high heterogeneity of treatment effects. Incorporating subject-

specific information into the treatment assignment is crucial since different indi-

viduals can react to the same treatment very differently. We estimate unobserved

subject-specific treatment effects through conditional random-effects modeling, and

apply the random forest algorithm to allocate effective treatments for individuals.

The advantage of our approach is that random-effects estimation does not rely on

the normality assumption. In theory, we show that the proposed random-effect

estimator is consistent and more efficient than the random-effect estimator that

ignores correlation information from longitudinal data. Simulation studies and a

data example from an HIV clinical trial also confirm that the proposed method can

efficiently identify the best treatments for individual patients.
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1. Introduction

In recent years there has been an increasing demand for effective personal-

ized treatments for individuals since their responses to the same treatment can

be very different. For example, in a nutrition study conducted at the University

of Illinois at Urbana-Champaign for patients with stage-five chronic kidney dis-

ease, personal information such as nutrition levels from blood tests are collected

repeatedly to assess treatment effects at different protein intake levels. Since the

patients’ responses to the assigned treatment have high variability, this imposes

a challenge for the accurate estimation of treatment effects without incorporat-

ing heterogeneity variability among individuals. Traditional approaches applying

one treatment for all patients are no longer seen as effective in achieving the best

treatment outcomes for different individuals. In this paper, we propose an ef-

ficient treatment assignment strategy to categorize patients who might benefit

from certain treatments more than others.
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Recent developments for personalized treatment include Bonetti and Gelber

(2000, 2004) approaches on discovering patterns of treatment effects for overlap-

ping subgroups of patients based on moving average techniques; Song and Pepe’s

(2004) subgroup identifications to select ideal treatments for patients assuming a

monotone relationship between the covariate and the binary response; and Qian

and Murphy’s (2011) optimal treatment scheme derived from conditional mean

estimation using the penalized least square. In addition, scoring systems under

parametric or semiparametric regression models have been proposed to specify

a desired level of treatment difference (Marlowe et al. (2007); Cai et al. (2011);

Zhao et al. (2013)). These approaches require that the optimal treatment for

subjects at each risk level be specified beforehand.

Nonparametric classification methods are also popular for categorizing sub-

jects into different groups through a multiple testing approach (Su et al. (2009);

Lipkovich et al. (2011)). Foster, Taylor and Ruberg (2011) introduce the con-

cept of “virtual twins” to assess treatment differences based on the prediction

of the interaction effects for treatment and covariate. Zhao et al. (2012) utilized

a weighted-outcome support vector machine to maximize the conditional mean

of the responses. However, these methods are mainly applicable for independent

observations, and do not consider heterogeneity variation among subjects. In

practice, there are often unobserved latent factors which contribute to individual

treatment effects, in addition to the observed covariate information.

To address subject-specific variation among patients, Diaz et al. (2007), Diaz,

Yeh, and Leon (2012) applied linear mixed models to estimate the frequency of

disease occurrence corresponding to different drug dosages. These were the first

attempts to provide random-effects model estimation and interpretation in the

personalized medicine literature. However, their approach does not consider

important latent factors induced from individual information such as clinical, ge-

netic, environmental, and demographic variables; these are essential to formulate

personalized treatment effectively. In addition, their model is mainly applicable

for the normal random-effects distribution.

In many clinical trials, a treatment which is beneficial for some patients

might be ineffective or have an adverse effect on others and the random effects

for modeling heterogeneity of the treatment effects need not be normal. Stan-

dard mixed-effects models assuming normality of random effects (Laird and Ware

(1982); Breslow and Clayton (1993); McCulloch (1997); Jiang and Zhang (2001);

Vonesh et al. (2002); McCulloch, Searle and Neuhaus (2008)) may not be effective

at capturing subject-specific treatment effects.

In this paper, we provide a new personalized treatment assignment strategy

that is applicable for continuous, discrete, and categorical longitudinal responses.

We estimate the random effect through generalized linear mixed modeling, and
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utilize supervised learning algorithms by treating the random-effect estimates

as responses. The proposed strategy provides a personalized treatment rule that

specifies a treatment according to an individual’s characteristics. This is achieved

by taking both observed covariates and unobserved random effects associated

with individuals into consideration. This leads to a more effective treatment

assignment to new patients. Among several supervised learning algorithms, we

adopt the random forest algorithm due to its accurate prediction and interpreta-

tion for tree-based models, see Breiman (2001, 2004), Biau, Devroye and Lugosi

(2008), Biau (2012), and Denil, Matheson and de Freitas (2014) for more details.

In addition, the random forest algorithm is able to identify important factors

that influence the outcome of the treatment. Simulations also show that the ran-

dom forest algorithm provides a better decision rule than the other supervised

learning algorithms in the sense of reducing prediction errors.

Estimating random effects accurately is a key step for optimal treatment as-

signments for patients. We propose estimating random effects without imposing

any distributional assumption on them. This is essential to obtaining accurate

subject-specific treatment effects in the mixed-effects model. An advantage of

the proposed estimation procedure is that it does not require specification of

the likelihood function, yet still accommodates serial correlation over time in

estimating both fixed and random effects. In theory, we show that the random-

effects estimator of the proposed approach is consistent and more efficient than

an estimator which ignores correlation information from longitudinal data.

The paper is organized as follows. Section 2 describes the existing estimation

procedures for the generalized linear mixed model. Section 3 introduces a per-

sonalized treatment assignment strategy and provides asymptotic properties of

the estimators and the implementation of the proposed method. Sections 4 and 5

provide simulation studies and data analysis for a human immunodeficiency virus

(HIV) clinical trial study. The final section gives concluding remarks. Proofs and

necessary conditions are provided in the Appendix.

2. Notation and Framework

For longitudinal data, let yit be a response variable and xit be an 1× p vec-

tor of covariates, measured at time t = t1, . . . , tni for subjects i = 1, . . . , N . To

simplify the notation, we set ni = n for all subjects; the implementation for un-

balanced data will be introduced in Section 3. We assume that the model satisfies

µit = E{yit} = µ{xitβ}, where µ(·) is a known inverse link function and β is a

p× 1 parameter vector; this is required to be correctly specified for the marginal

model approach. It is suitable when the inference of the population average is of

main interest. However, if there is strong indication of individual variations, it is
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more sensible to apply a random-effects model. For the generalized linear mixed

model, the conditional mean of the response given the random effects bi is

E{yit|bi} = µ{zitbi + xitβ} = µit, i = 1, . . . , N, (2.1)

where bi is a q × 1 vector of random effects corresponding to covariates zit for

the ith subject at time t.

If the conditional likelihood of yit given bi is unknown, we can solve the

quasi-likelihood equation (Wedderburn (1974)) to obtain fixed and random effects

estimators. Specifically, the estimating equations corresponding to the fixed-

effects parameters β and random-effects bi are
N∑
i=1

µ̇′
i,βV

−1
i (yi − µi) = 0, (2.2)

µ̇′
i,bi

V−1
i (yi − µi) = 0, i = 1, . . . , N, (2.3)

where µ̇i,β = ∂
∂βµi(β|bi), µ̇i,bi

= ∂
∂bi

µi(β|bi), Vi = Var (yi|bi), yi = (yit1 , . . .,

yitn)
′, and µi = (µit1 , . . . , µitn)

′. If the dimension of random effects b = (b′
1, . . .,

b′
N )′ in (2.3) increases as the sample size increases, then the estimation of random

effects could be non-convergent and inconsistent without additional constraints

or distributional assumptions.

Breslow and Clayton (1993) proposed penalized quasi-likelihood; this re-

quires the normality of random effects to ensure the consistency of random-effects

estimation. Neuhaus, Hauck and Kalbfleisch (1992) and Wang, Tsai and Qu

(2012) indicate that, when the distribution of the random effects is not normal,

the estimators of the fixed effects could be biased. For personalized treatment

identification, the normality of random effects is too restrictive for effectively dis-

tinguishing individual treatments. Jiang (1999) estimates random effects without

any distributional assumption, but assumes that the observations are indepen-

dent conditional on the random effects. It is important to incorporate serial

correlations over time for longitudinal studies. However, the true covariance ma-

trix V−1
i = A

−1/2
i R−1A

−1/2
i in (2.2) and (2.3) is often unknown, where R is the

true correlation matrix and Ai = diag{var(yi1|bi), . . . , var(yin|bi)}. Qu, Lindsay

and Li (2000) approximate R−1 by
∑m

j=1 ajMj , where M1, . . . ,Mm are known

basis matrices, and the aj ’s are unknown constants. More details on choosing

the basis matrices of Mj (j = 1, . . . ,m) can be found in Zhou and Qu (2012).

Wang, Tsai and Qu (2012) define the fixed-effects extended score vector

to represent the quasi-likelihood equations in (2.2), conditional on the random

effects b, as

Gf
N =

1

N

N∑
i=1

gf
i (β) =

1

N




∑N
i=1 µ̇

′
i,βA

−1/2
i M1A

−1/2
i (yi − µi)

...∑N
i=1 µ̇

′
i,βA

−1/2
i MmA

−1/2
i (yi − µi)


 , (2.4)
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and the random-effects extended score vector conditional on the fixed effects β as

Gr = {(gI
1)

′, . . . , (gI
N )′, λb′, λ(PJb)

′}′. Here gI
i = µ̇′

i,bi
A−1

i (yi − µi), the tuning

parameter λ is chosen to be log(N), PJ = J(J′J)−1J′ is a known projection

matrix on the null space of (I − PX)Z, J is a matrix whose columns constitute

bases for the null space of (I − PX)Z, and PX is defined similarly as PJ with

covariates X and Z associated with fixed effects and random effects, respectively.

Two quadratic inference functions are minimized iteratively to obtain fixed and

random effects estimators:

Lf (β) = (Gf
N )′(Wf

N )−1(Gf
N ), (2.5)

Lr(b) = (Gr)′(Gr), (2.6)

where Wf
N = (1/N)

∑N
i=1(g

f
i )(g

f
i )

′. For estimation of the parameter β, Gf
N

does not involve any nuisance parameter to be estimated yet still accommodates

correlations within subjects holding E{gf
i (β)} = 0 under the true parameter.

Still, Wang, Tsai and Qu (2012) do not use the correlation information from

longitudinal observations in formulating gI
i .

3. Methodology

In this section, we introduce a personalized treatment strategy to assign the

best treatment for individuals that uses a generalized linear mixed model and

the nonparametric regression approach to longitudinal analysis.

3.1. Two-step procedure for personalized treatment

Random-effects modeling is useful for providing an interpretation of hetero-

geneous variation among subjects, and for estimating the personalized treatment

effects in personalized medicine. We divide our covariates xit as xit = (x0
it,x

1
it),

where x0
it are the covariates which are the same for every subject, and x1

it are

the baseline covariates providing the individual characteristics that might be rel-

evant to treatment assignment. Suppose there are k treatments. We consider

the generalized linear mixed model:

E{yit|bi, b0i} = µ{zi(β + bi) + x0
itβ0 + b0i} = µit, i = 1, . . . , N, (3.1)

where zi is the treatment vector with (k − 1) binary variables, β is the vector

of the average treatment effects, bi is the vector of subject-specific treatment

effects corresponding to zi for the ith subject, b0i is a random intercept, and

β0 are fixed effects corresponding to covariates x0
it. For example, given three

treatments (A, B, C), the vector zi = (z1i, z2i) represents the treatment the ith

subject receives, where zi = (1, 0), (0, 1), and (0, 0) corresponds to treatments

A, B, and C, respectively.

190



4 HYUNKEUN CHO, PENG WANG AND ANNIE QU

more sensible to apply a random-effects model. For the generalized linear mixed

model, the conditional mean of the response given the random effects bi is

E{yit|bi} = µ{zitbi + xitβ} = µit, i = 1, . . . , N, (2.1)

where bi is a q × 1 vector of random effects corresponding to covariates zit for

the ith subject at time t.

If the conditional likelihood of yit given bi is unknown, we can solve the

quasi-likelihood equation (Wedderburn (1974)) to obtain fixed and random effects

estimators. Specifically, the estimating equations corresponding to the fixed-

effects parameters β and random-effects bi are
N∑
i=1

µ̇′
i,βV

−1
i (yi − µi) = 0, (2.2)

µ̇′
i,bi

V−1
i (yi − µi) = 0, i = 1, . . . , N, (2.3)

where µ̇i,β = ∂
∂βµi(β|bi), µ̇i,bi

= ∂
∂bi

µi(β|bi), Vi = Var (yi|bi), yi = (yit1 , . . .,

yitn)
′, and µi = (µit1 , . . . , µitn)

′. If the dimension of random effects b = (b′
1, . . .,

b′
N )′ in (2.3) increases as the sample size increases, then the estimation of random

effects could be non-convergent and inconsistent without additional constraints

or distributional assumptions.

Breslow and Clayton (1993) proposed penalized quasi-likelihood; this re-

quires the normality of random effects to ensure the consistency of random-effects

estimation. Neuhaus, Hauck and Kalbfleisch (1992) and Wang, Tsai and Qu

(2012) indicate that, when the distribution of the random effects is not normal,

the estimators of the fixed effects could be biased. For personalized treatment

identification, the normality of random effects is too restrictive for effectively dis-

tinguishing individual treatments. Jiang (1999) estimates random effects without

any distributional assumption, but assumes that the observations are indepen-

dent conditional on the random effects. It is important to incorporate serial

correlations over time for longitudinal studies. However, the true covariance ma-

trix V−1
i = A

−1/2
i R−1A

−1/2
i in (2.2) and (2.3) is often unknown, where R is the

true correlation matrix and Ai = diag{var(yi1|bi), . . . , var(yin|bi)}. Qu, Lindsay

and Li (2000) approximate R−1 by
∑m

j=1 ajMj , where M1, . . . ,Mm are known

basis matrices, and the aj ’s are unknown constants. More details on choosing

the basis matrices of Mj (j = 1, . . . ,m) can be found in Zhou and Qu (2012).

Wang, Tsai and Qu (2012) define the fixed-effects extended score vector

to represent the quasi-likelihood equations in (2.2), conditional on the random

effects b, as

Gf
N =

1

N

N∑
i=1

gf
i (β) =

1

N




∑N
i=1 µ̇

′
i,βA

−1/2
i M1A

−1/2
i (yi − µi)

...∑N
i=1 µ̇

′
i,βA

−1/2
i MmA

−1/2
i (yi − µi)


 , (2.4)

PERSONALIZE TREATMENT FOR LONGITUDINAL DATA 5

and the random-effects extended score vector conditional on the fixed effects β as

Gr = {(gI
1)

′, . . . , (gI
N )′, λb′, λ(PJb)

′}′. Here gI
i = µ̇′

i,bi
A−1

i (yi − µi), the tuning

parameter λ is chosen to be log(N), PJ = J(J′J)−1J′ is a known projection

matrix on the null space of (I − PX)Z, J is a matrix whose columns constitute

bases for the null space of (I − PX)Z, and PX is defined similarly as PJ with

covariates X and Z associated with fixed effects and random effects, respectively.

Two quadratic inference functions are minimized iteratively to obtain fixed and

random effects estimators:

Lf (β) = (Gf
N )′(Wf

N )−1(Gf
N ), (2.5)

Lr(b) = (Gr)′(Gr), (2.6)

where Wf
N = (1/N)

∑N
i=1(g

f
i )(g

f
i )

′. For estimation of the parameter β, Gf
N

does not involve any nuisance parameter to be estimated yet still accommodates

correlations within subjects holding E{gf
i (β)} = 0 under the true parameter.

Still, Wang, Tsai and Qu (2012) do not use the correlation information from

longitudinal observations in formulating gI
i .

3. Methodology

In this section, we introduce a personalized treatment strategy to assign the

best treatment for individuals that uses a generalized linear mixed model and

the nonparametric regression approach to longitudinal analysis.

3.1. Two-step procedure for personalized treatment

Random-effects modeling is useful for providing an interpretation of hetero-

geneous variation among subjects, and for estimating the personalized treatment

effects in personalized medicine. We divide our covariates xit as xit = (x0
it,x

1
it),

where x0
it are the covariates which are the same for every subject, and x1

it are

the baseline covariates providing the individual characteristics that might be rel-

evant to treatment assignment. Suppose there are k treatments. We consider

the generalized linear mixed model:

E{yit|bi, b0i} = µ{zi(β + bi) + x0
itβ0 + b0i} = µit, i = 1, . . . , N, (3.1)

where zi is the treatment vector with (k − 1) binary variables, β is the vector

of the average treatment effects, bi is the vector of subject-specific treatment

effects corresponding to zi for the ith subject, b0i is a random intercept, and

β0 are fixed effects corresponding to covariates x0
it. For example, given three

treatments (A, B, C), the vector zi = (z1i, z2i) represents the treatment the ith

subject receives, where zi = (1, 0), (0, 1), and (0, 0) corresponds to treatments

A, B, and C, respectively.

191



6 HYUNKEUN CHO, PENG WANG AND ANNIE QU

We propose a two-step procedure to identify the best treatment for the ith

individual by comparing the random effects corresponding to each treatment.

In the first step, we estimate the random effects by solving (3.1), where the

normality assumption for the random effects bi is not required. This step provides

the estimate of the treatment effect only if patients receive the corresponding

treatment. In the second step, we grow a random forest using the estimated

random effects as the response variable and patient information as the covariates.

This allows us to compare all treatment effects even if some patients do not receive

certain treatments. For example, if a patient i receives treatment A, we first

estimate the effect of treatment A by b1i + b0i for the ith patient; in the second

step, we grow a random forest using the estimate of b1i + b0i as the response

variable, and the patient information as the covariates. This strategy allows

patients not receiving treatment A to have their effects predicted for treatment

A through the random forest.

The crucial step of solving the personalized treatment problem relies on ac-

curate estimation for the subject-specific effects in the mixed-effects model (3.1).

We estimate the random effect bi without assuming the normality condition for

the random effects, as in Wang, Tsai and Qu (2012). However, in contrast to their

approach that ignores correlation information for random-effects estimation, we

utilize the correlation of responses for random-effects estimation. We show in Sec-

tions 3.2 and 4 that incorporating correlation information for the random-effects

estimation yields more accurate and efficient subject-specific effect estimation in

both theory and practice.

We formulate the estimating equations corresponding to the random-effects

parameters in (2.3) as

gC
i = µ̇′

i,bi
A

−1/2
i C−1A

−1/2
i (yi − µi), i = 1, . . . , N, (3.2)

where C is the correlation matrix estimator based on the method of moments,

1/N
∑N

i=1(yi − µi)(yi − µi)
′. We construct extended scores with constraints of

the mean and variance for the random effects b as

Gc(b) = {(gC
1 )

′, . . . , (gC
N )′, λ1b

′, λ2(PJb)
′}′. (3.3)

We utilize tuning parameters λ1 and λ2 in (3.3), and provide a data-dependent

cross-validation approach to select λ1 and λ2 in Section 3.4. The fixed-effects

and random-effects parameters are obtained by iteratively minimizing Lf (β) in

(2.5) and the distance function

Lc(b) = (Gc)′(Gc). (3.4)

We apply nonparametric regression methods to develop a personalized treat-

ment rule. This is achieved by taking the observed data and the estimated ran-

dom effects associated with individuals into consideration. Specifically, we treat
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the estimator of the random effects b̂i in (3.1) as the response, x1
it as the co-

variates, and apply supervised learning algorithms to get better predictions for

individual treatment effects. Among them, we adopt the random forest algo-

rithm due to its accurate prediction and interpretation for tree-based models

without parametric assumptions. It also provides ranks for the covariates’ im-

portance which identifies important factors influencing the treatment outcome.

The random forest algorithm is an ensemble of a number of regression trees to

formulate a prediction rule. Specifically, we grow a regression tree from each

bootstrap sample, and the final prediction is obtained through averaging over all

the estimators from the regression trees. In building regression trees, we con-

sider a random sample of the covariates for splitting a tree, and choose the size

of random samples as the square root of the number of covariates. Here we do

not need to use all the covariates for the random samples, as we can reduce the

correlations among the regression trees and therefore reduce the variation of the

final prediction.

3.2. Asymptotic properties

In this section, we investigate the asymptotic properties of the proposed

random-effects estimators in the generalized linear mixed model (2.1), and show

that it is important to incorporate correlation information for random-effects

estimation. Let b0 = (b′
01, . . . ,b

′
0N )′ be the true realization of the random effects

and let b̂ = (b̂′
1, . . . , b̂

′
N )′ be the corresponding random-effects estimators, where

b0i and b̂i are q × 1 vectors of random effects for the ith subject.

Theorem 1. Under the regularity conditions provided in the Appendix, ||b̂i −
b0i|| = Op(n

−1/2) where || · || is the Euclidean norm.

In general, when the repeated observations are independent conditional on

the random effects, it is relatively straightforward to obtain
√
n-consistency for

the random-effects estimation. Here it is challenging due to an additional serial

correlation from repeated measurements conditional on the random effects; stan-

dard techniques for random-effects estimation for the independent case are not

applicable for correlated data. To obtain the
√
n-consistency of random-effects

estimation, we impose an L2-mixingale condition on the serial correlations for

the repeated measurements; the details of this are in the Appendix.

In contrast to the existing approaches assuming independent working struc-

ture for estimating the random effects (Breslow and Clayton (1993); Lee and

Nelder (1996); Jiang (1999); and Wang, Tsai and Qu (2012)), we incorporate

the serial correlation information for random-effects estimation. In the following

result, we show that our proposed estimator b̂ improves on the random-effects

estimator b̂I of Wang, Tsai and Qu (2012).
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gC
i = µ̇′

i,bi
A

−1/2
i C−1A

−1/2
i (yi − µi), i = 1, . . . , N, (3.2)

where C is the correlation matrix estimator based on the method of moments,

1/N
∑N

i=1(yi − µi)(yi − µi)
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1 )

′, . . . , (gC
N )′, λ1b

′, λ2(PJb)
′}′. (3.3)
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applicable for correlated data. To obtain the
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In contrast to the existing approaches assuming independent working struc-

ture for estimating the random effects (Breslow and Clayton (1993); Lee and
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the serial correlation information for random-effects estimation. In the following

result, we show that our proposed estimator b̂ improves on the random-effects

estimator b̂I of Wang, Tsai and Qu (2012).
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Theorem 2. Under the regularity conditions provided in the Appendix, Var (a′b̂i)

≤ Var (a′b̂I
i ) for any constant vector a.

If the estimated correlation matrix C in (3.2) is consistent with the true cor-

relation matrix, the estimator b̂ is also optimal among all estimators solved by a

linear combination of estimating equations Gi(bi) =
{
µ̇′
i,bi

A
−1/2
i M1A

−1/2
i (yi −

µi), . . . , µ̇
′
i,bi

A
−1/2
i MmA

−1/2
i (yi − µi)

}′
for i = 1, . . . , N . The proofs of Theo-

rems 1 and 2 are provided in the Appendix.

3.3. Implementation and algorithm

In this section, we provide an algorithm to estimate fixed-effects and random-

effects parameters, and we formulate a prediction rule for the personalized treat-

ment. We demonstrate a cross-validation approach to select tuning parameters,

and an implementation strategy for handling unbalanced longitudinal data.

We develop the personalized treatment assignment strategy using a two-step

procedure.

Step 1: Obtain the random-effect estimator b̂ using the procedure described in

Step 1.1−1.6.

Step 1.1: Set the initial value of random effects as b̂ = 0.

Step 1.2: Obtain the initial estimate of β by minimizing (2.5).

Step 1.3: Update the correlation matrix C using the current estimators β̂

and b̂.

Step 1.4: Replace β with the current β̂ and update b̂ by minimizing (3.4).

Step 1.5: Replace b with b̂ and update β̂ by minimizing (2.5).

Step 1.6: Repeat Steps 1.3−1.5 until the convergence criterion is reached.

Step 2: Perform the random forest algorithm using the R package randomFor-

est (Breiman (2001)) by treating b̂ as the response and covariates x1
it as the

predictors.

In the first step, for fixed λ1 and λ2, the random effects are estimated by

minimizing two objective functions (2.5) and (3.4) iteratively. In the second step,

we treat the random-effects estimator b̂ as the response variable and apply the

random forest algorithm. The R coding of the above procedure is provided in

the online supplementary material.

The choice of tuning parameters is essential to accurate estimation of the

fixed and random effects. Wang, Tsai and Qu (2012) choose both λ1 and λ2

to be log(N). Random-effects estimation is less sensitive to the choice of λ2,

since it ensures the identifiability of random effects, and we fix λ2 to be log(N).
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The choice of λ1 is more critical as random-effects estimation depends on the

magnitude of its variance. Here we adopt a cross-validation approach for longi-

tudinal data to tune the parameter λ1. We fit the model with a parameter λ1 to

all observations except the kth repeated measurement, and obtain β̂
−k

(λ1) and

b̂−k(λ1) following Step 1 of the algorithm. We compute the prediction error for

the kth measurement based on this estimator as

PEk(λ1) =

N∑
i=1

[
yik − µ

{
z′ikb̂

−k(λ1) + x′
ikβ̂

−k
(λ1)

}]2
, k = 1, . . . ,K,

where K = min(n1, . . . , nN ). The cross-validation error is specified as CV (λ1) =

(1/K)
∑K

k=1 PEk(λ1). We choose the value of λ1 to minimize CV (λ1).

We follow Wang, Tsai and Qu’s (2012) strategy to implement our method

for unbalanced data. Let tn be the cluster size of subjects for fully observed data

without any missing observation. Let Ti be a tn × tni transformation matrix

for the ith cluster, where the Ti’s are generated by deleting the columns of the

tn×tn identity matrix corresponding to missing observations. We then transform

the response variable, the mean and marginal variance of the responses for the

ith subject, using µ∗
i = Tiµi, µ̇

∗
i,β = Tiµ̇i,β , y

∗
i = Tiyi, and A∗

i = TiAiT
′
i.

We replace gf
i in (2.4) by gf∗

i through substituting yi, µi, µ̇i,β , and Ai by y∗
i ,

µ∗
i , µ̇

∗
i,β , and A∗

i to estimate the fixed-effects parameters. In similar fashion, we

formulate estimating equations gC∗
i to estimate random-effects parameters for

the unbalanced data.

4. Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed

method in identifying the optimal treatment for individuals. The conditional

correlated responses were generated using the linear mixed model for longitudinal

data given by

yit = zi(β1 + b1i) + β0 + b0i + eit, for i = 1, . . . , N and t = 1, . . . , ni,

where treatments zi were generated from a Bernoulli, (P (zi = 1) = 0.5), deter-

mining treatment, 1, or control, 0. Here ei = (ei1, . . . , eini)
′ ∼ N(0,R) with R

being an AR(1) correlation matrix with the correlation coefficient ρ = 0.8. We set

β0 = β1 = 0, indicating no overall treatment effect for the population. Baseline

covariates xi,j , j = 1, . . . , 6, were generated independently from a uniform (-1,1).

We generated random effects as b0i = xi,1 and b1i = xi,2 − xi,1. The expected

value of the ith subject was xi,2 if the treatment was received (with zi = 1), and

xi,1 otherwise. If the ith random slope b1i is positive, then the treatment is bene-

ficial for the ith subject. The sample size was N = 100 or 300 in our simulations.
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effects parameters, and we formulate a prediction rule for the personalized treat-

ment. We demonstrate a cross-validation approach to select tuning parameters,

and an implementation strategy for handling unbalanced longitudinal data.

We develop the personalized treatment assignment strategy using a two-step

procedure.

Step 1: Obtain the random-effect estimator b̂ using the procedure described in

Step 1.1−1.6.

Step 1.1: Set the initial value of random effects as b̂ = 0.

Step 1.2: Obtain the initial estimate of β by minimizing (2.5).

Step 1.3: Update the correlation matrix C using the current estimators β̂

and b̂.

Step 1.4: Replace β with the current β̂ and update b̂ by minimizing (3.4).

Step 1.5: Replace b with b̂ and update β̂ by minimizing (2.5).

Step 1.6: Repeat Steps 1.3−1.5 until the convergence criterion is reached.

Step 2: Perform the random forest algorithm using the R package randomFor-

est (Breiman (2001)) by treating b̂ as the response and covariates x1
it as the

predictors.

In the first step, for fixed λ1 and λ2, the random effects are estimated by

minimizing two objective functions (2.5) and (3.4) iteratively. In the second step,

we treat the random-effects estimator b̂ as the response variable and apply the

random forest algorithm. The R coding of the above procedure is provided in

the online supplementary material.

The choice of tuning parameters is essential to accurate estimation of the

fixed and random effects. Wang, Tsai and Qu (2012) choose both λ1 and λ2

to be log(N). Random-effects estimation is less sensitive to the choice of λ2,

since it ensures the identifiability of random effects, and we fix λ2 to be log(N).
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The choice of λ1 is more critical as random-effects estimation depends on the

magnitude of its variance. Here we adopt a cross-validation approach for longi-

tudinal data to tune the parameter λ1. We fit the model with a parameter λ1 to

all observations except the kth repeated measurement, and obtain β̂
−k

(λ1) and

b̂−k(λ1) following Step 1 of the algorithm. We compute the prediction error for

the kth measurement based on this estimator as

PEk(λ1) =

N∑
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[
yik − µ
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z′ikb̂

−k(λ1) + x′
ikβ̂

−k
(λ1)

}]2
, k = 1, . . . ,K,

where K = min(n1, . . . , nN ). The cross-validation error is specified as CV (λ1) =

(1/K)
∑K

k=1 PEk(λ1). We choose the value of λ1 to minimize CV (λ1).

We follow Wang, Tsai and Qu’s (2012) strategy to implement our method

for unbalanced data. Let tn be the cluster size of subjects for fully observed data

without any missing observation. Let Ti be a tn × tni transformation matrix

for the ith cluster, where the Ti’s are generated by deleting the columns of the

tn×tn identity matrix corresponding to missing observations. We then transform

the response variable, the mean and marginal variance of the responses for the

ith subject, using µ∗
i = Tiµi, µ̇

∗
i,β = Tiµ̇i,β , y

∗
i = Tiyi, and A∗

i = TiAiT
′
i.

We replace gf
i in (2.4) by gf∗

i through substituting yi, µi, µ̇i,β , and Ai by y∗
i ,

µ∗
i , µ̇

∗
i,β , and A∗

i to estimate the fixed-effects parameters. In similar fashion, we

formulate estimating equations gC∗
i to estimate random-effects parameters for

the unbalanced data.

4. Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed

method in identifying the optimal treatment for individuals. The conditional

correlated responses were generated using the linear mixed model for longitudinal

data given by

yit = zi(β1 + b1i) + β0 + b0i + eit, for i = 1, . . . , N and t = 1, . . . , ni,

where treatments zi were generated from a Bernoulli, (P (zi = 1) = 0.5), deter-

mining treatment, 1, or control, 0. Here ei = (ei1, . . . , eini)
′ ∼ N(0,R) with R

being an AR(1) correlation matrix with the correlation coefficient ρ = 0.8. We set

β0 = β1 = 0, indicating no overall treatment effect for the population. Baseline

covariates xi,j , j = 1, . . . , 6, were generated independently from a uniform (-1,1).

We generated random effects as b0i = xi,1 and b1i = xi,2 − xi,1. The expected

value of the ith subject was xi,2 if the treatment was received (with zi = 1), and

xi,1 otherwise. If the ith random slope b1i is positive, then the treatment is bene-

ficial for the ith subject. The sample size was N = 100 or 300 in our simulations.
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Table 1. Performance of the penalized quasi-likelihood (PQL), Wang, Tsai,
and Qu’s approach (WQIF), and the proposed approach (PQIF). Random
forest (RF), support vector machines (SVM), and decision trees (TREE)
were implemented for prediction.

N max(ni) Method MSE(b̂)
PE(b̃) CE

RF TREE SVM RF TREE SVM

PQIF 0.231 0.118 0.132 0.134 0.19 0.22 0.21
5 WQIF 0.484 0.192 0.207 0.170 0.25 0.28 0.24

PQL 0.615 0.171 0.208 0.218 0.23 0.27 0.25
100

PQIF 0.216 0.107 0.112 0.115 0.17 0.21 0.20
10 WQIF 0.419 0.145 0.174 0.147 0.21 0.22 0.21

PQL 0.554 0.141 0.176 0.161 0.20 0.23 0.22

PQIF 0.226 0.090 0.098 0.108 0.14 0.20 0.16
5 WQIF 0.434 0.148 0.151 0.150 0.18 0.22 0.19

PQL 0.635 0.113 0.140 0.231 0.16 0.21 0.18
300

PQIF 0.190 0.070 0.074 0.083 0.13 0.18 0.15
10 WQIF 0.382 0.091 0.112 0.135 0.15 0.20 0.16

PQL 0.512 0.080 0.115 0.167 0.16 0.20 0.17

The repeated measurements were monotone missing, and the cluster sizes were

unequal, with 70% of subjects having ni = 10 and 30% of having ni = 8. We

also investigated performance with relatively small cluster sizes ni = 5 for 70%

and ni = 4 for 30% of subjects.

We compared the proposed mixed-effects approach utilizing the correlation

structure for the fixed-effect estimation to the penalized quasi-likelihood method

and to Wang, Tsai and Qu’s (2012) mixed-effects approach. We generated

200 simulated data sets and report the mean square error for b̂, MSE(b̂) =∑200
k=1

∑N
i=1 ||b̂

(k)
i −bi||2/200N, where b̂

(k)
i is the estimator of bi = (b0i, b1i) from

the kth simulation, bi is the true parameter, and || · || denotes the Euclidean

norm. Table 1 shows that the proposed mixed-effects approach performs the

best in terms of the mean squared errors of b̂ for all cases, and substantially so.

We treated the random-effects estimators as the responses, and investigated

how the six baseline covariates (two of them relevant) were associated with the

response based on three supervised learning algorithms: the random forest, the

support vector machine, and the decision tree. To evaluate their performance,

we built a predictive model for random effects for the training data (randomly

selecting 80% of the subjects), and checked the validity of the model through the

prediction error for the testing data (the other 20% of the subjects). We took
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PE(b̃) =
∑200

k=1

∑N/5
i=1 ||b̃(k)

i − bi||2/40N, where b̃
(k)
i was the predicted value for

the ith subject in the testing set from the kth simulation. The classification error

rate was the proportion of the subjects whose sign of the predicted random slope

effect was different from that of the true parameter in the testing data.

In Table 1, the random forest outperforms the support vector machine and

the decision tree in terms of the prediction error and the classification error

rate. The classification error rate and the prediction error based on the proposed

method were smaller than those of Wang, Tsai and Qu (2012) and the penalized

quasi-likelihood approaches in all cases.

5. Data Analysis for a HIV Study

In this section, we use data from the Harvard AIDS clinical trial group

(ACTG) 116A, 116B/117 studies to identify subgroups of patients with HIV

who might benefit from a certain treatment. These patients were randomly

assigned to one of three treatments (500 mg didanosine, 750 mg didanosine, or

zidovudine), and each patient was measured nine times at weeks 0, 2, 8, 12, 16,

24, 32, 40, and 48. To incorporate the serial correlations over time, we selected

410 patients having at least the first 7 measurements. The objective of our study

was to determine whether a certain treatment can improve a patient’s condition

and significantly slow down the progression of HIV. Here we used the CD4 cell

counts as response measurements since the decrease in CD4 cell counts indicates

a deterioration of the immune system.

A marginal regression model provides the association between the CD4 cell

counts and the drug effect:

CD4it = β0 + β1ddi500i + β2ddi750i + β3CD40i + eit, (5.1)

where CD4it are the CD4 cell counts, ddi500i = 1 if the ith patient receives

500 mg didanosine treatment and 0 otherwise, ddi750i = 1 if the ith patient

receives 750 mg didanosine treatment and 0 otherwise, and CD40 are the CD4

cell counts at the initial visit. We estimated the fixed-effects parameters, us-

ing the generalized estimating equation approach, for all patients to compare

the three treatment effects. Here the AR(1) working correlation structure was

assumed for the generalized estimating equation approach. Table 2 provides es-

timators for the fixed effects, their standard errors, the Wald test statistics, and

the corresponding p-values. The conditional mean of the CD4 cell counts with

750mg didanosine is higher than those of either 500mg didanosine or zidovudine.

However, the treatment effect is not significant for the marginal model using all

patients, indicating that there is no difference among treatments in controlling

the progression of CD4 cell counts.
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Table 1. Performance of the penalized quasi-likelihood (PQL), Wang, Tsai,
and Qu’s approach (WQIF), and the proposed approach (PQIF). Random
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The repeated measurements were monotone missing, and the cluster sizes were

unequal, with 70% of subjects having ni = 10 and 30% of having ni = 8. We

also investigated performance with relatively small cluster sizes ni = 5 for 70%

and ni = 4 for 30% of subjects.

We compared the proposed mixed-effects approach utilizing the correlation

structure for the fixed-effect estimation to the penalized quasi-likelihood method

and to Wang, Tsai and Qu’s (2012) mixed-effects approach. We generated

200 simulated data sets and report the mean square error for b̂, MSE(b̂) =∑200
k=1

∑N
i=1 ||b̂

(k)
i −bi||2/200N, where b̂

(k)
i is the estimator of bi = (b0i, b1i) from

the kth simulation, bi is the true parameter, and || · || denotes the Euclidean

norm. Table 1 shows that the proposed mixed-effects approach performs the

best in terms of the mean squared errors of b̂ for all cases, and substantially so.

We treated the random-effects estimators as the responses, and investigated

how the six baseline covariates (two of them relevant) were associated with the

response based on three supervised learning algorithms: the random forest, the

support vector machine, and the decision tree. To evaluate their performance,

we built a predictive model for random effects for the training data (randomly

selecting 80% of the subjects), and checked the validity of the model through the

prediction error for the testing data (the other 20% of the subjects). We took
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(k)
i was the predicted value for

the ith subject in the testing set from the kth simulation. The classification error

rate was the proportion of the subjects whose sign of the predicted random slope

effect was different from that of the true parameter in the testing data.

In Table 1, the random forest outperforms the support vector machine and

the decision tree in terms of the prediction error and the classification error

rate. The classification error rate and the prediction error based on the proposed

method were smaller than those of Wang, Tsai and Qu (2012) and the penalized

quasi-likelihood approaches in all cases.

5. Data Analysis for a HIV Study

In this section, we use data from the Harvard AIDS clinical trial group

(ACTG) 116A, 116B/117 studies to identify subgroups of patients with HIV

who might benefit from a certain treatment. These patients were randomly

assigned to one of three treatments (500 mg didanosine, 750 mg didanosine, or

zidovudine), and each patient was measured nine times at weeks 0, 2, 8, 12, 16,

24, 32, 40, and 48. To incorporate the serial correlations over time, we selected

410 patients having at least the first 7 measurements. The objective of our study

was to determine whether a certain treatment can improve a patient’s condition

and significantly slow down the progression of HIV. Here we used the CD4 cell

counts as response measurements since the decrease in CD4 cell counts indicates

a deterioration of the immune system.

A marginal regression model provides the association between the CD4 cell

counts and the drug effect:

CD4it = β0 + β1ddi500i + β2ddi750i + β3CD40i + eit, (5.1)

where CD4it are the CD4 cell counts, ddi500i = 1 if the ith patient receives

500 mg didanosine treatment and 0 otherwise, ddi750i = 1 if the ith patient

receives 750 mg didanosine treatment and 0 otherwise, and CD40 are the CD4

cell counts at the initial visit. We estimated the fixed-effects parameters, us-

ing the generalized estimating equation approach, for all patients to compare

the three treatment effects. Here the AR(1) working correlation structure was

assumed for the generalized estimating equation approach. Table 2 provides es-

timators for the fixed effects, their standard errors, the Wald test statistics, and

the corresponding p-values. The conditional mean of the CD4 cell counts with

750mg didanosine is higher than those of either 500mg didanosine or zidovudine.

However, the treatment effect is not significant for the marginal model using all

patients, indicating that there is no difference among treatments in controlling

the progression of CD4 cell counts.
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Table 2. For the HIV disease study, coefficients estimated by the generalized
estimating equation approach along with the standard errors (s.e.), Wald
test statistics, and the p-values for all subjects (Overall) and three identified
subgroups.

Group Effect Estimator s.e. Wald p-value

Overall

intercept 11.21 5.02 4.99 0.025
ddi500 -13.86 7.90 3.08 0.079
ddi750 1.57 7.85 0.04 0.841
CD40 0.99 0.04 750.26 < 0.001

500mg ddi beneficiary

intercept -1.75 9.42 0.03 0.852
ddi500 30.32 15.04 4.06 0.043
ddi750 4.37 17.17 0.06 0.799
CD40 1.03 0.08 179.38 < 0.001

750mg ddi beneficiary

intercept 15.78 9.73 2.63 0.105
ddi500 -31.80 12.51 6.47 0.010
ddi750 5.11 13.98 0.13 0.714
CD40 1.04 0.05 493.08 < 0.001

zidovudine beneficiary

intercept 18.76 7.08 7.02 0.008
ddi500 -33.55 11.44 8.60 0.003
ddi750 -1.82 10.72 0.03 0.865
CD40 0.88 0.06 225.22 < 0.001

We applied the proposed method to investigate whether certain subgroups

of patients are more likely to benefit from any of these treatments. The linear

mixed-effects model was specified as

CD4it = β0 + b0i + (β1 + b1i)ddi500i + (β2 + b2i)ddi750i + β3CD40i + eit, (5.2)

where bi = (b0i, b1i, b2i)
′ is a vector of the ith patient’s treatment effect. We

estimated the random effect bi and applied the random forest to establish a

relationship between the random-effects estimates and the patient’s individual

characteristics such as age, weight, gender, ethnic origin, sexual orientation, and

positive/negative AIDs diagnosis. Based on the personalized treatment assign-

ment in Section 3.1, we defined three beneficiary groups corresponding to each

treatment, and estimated the parameter β = (β0, β1, β2, β3)
′ in (5.1) using the

generalized estimating equation approach for them. The results are summarized

in Table 2. The coefficient of ddi500 in the 500mg didanosine beneficiary group

and the coefficient of ddi750 in the 750 mg didanosine group are positive, while

both coefficients in the zidovudine group are negative.

To validate whether the strategy is effective or not, we split the HIV data

as 2/3 training set and 1/3 testing set. We built the prediction model using the
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Figure 1. For the testing data, a comparison of the differences between av-
erage CD4 cell counts and the baseline CD4 cell counts corresponding to
three treatments among all patients (Overall), the 500mg didanosine ben-
eficiary group, the 750mg didanosine beneficiary group and the zidovudine
beneficiary group.

training data and identified the ‘best’ treatment for individuals in the testing

data. Figure 1 provides the differences between the average CD4 cell counts and

its baseline for patients in the testing data. There was not much difference among

the three treatment groups for the entire test data. However, once we divided

the test data into three beneficiary subgroups based on our prediction model,

the CD4 cell counts were the highest for patients receiving the ‘best’ treatment

compared to the ones receiving other treatments in each beneficiary subgroup.

This suggests that the proposed approach can effectively identify ideal treatments

for individuals.

We further compared the performance of the proposed method with the

mixed-effects model of Wang, Tsai and Qu (2012) and the penalized quasi-

likelihood approaches. We utilized the random forest algorithm to establish the

predictive model based on training data (randomly selecting 80% of the subjects)

and computed the prediction error from the rest of the patients. Here the true

random effect is unknown in practice. Thus, we took the prediction error for the

testing data to be PE(b̃) =
∑n

i=1 |b̃i − b̂i|2/n, where b̃i is the predicted value

for the ith subject in the testing data, b̂i is its random-effect estimator, and n

is the size of the testing data. The prediction error using the proposed method

(PE(b̃) = 6.8) was smaller than those based on Wang, Tsai, and Qu’s approach

(PE(b̃) = 12.1) and the penalized quasi-likelihood method (PE(b̃) = 15.0). In

summary, the proposed personalized treatment assignment approach was efficient

in identifying the effective treatment for individuals.
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the three treatment groups for the entire test data. However, once we divided
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the CD4 cell counts were the highest for patients receiving the ‘best’ treatment

compared to the ones receiving other treatments in each beneficiary subgroup.
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for individuals.

We further compared the performance of the proposed method with the

mixed-effects model of Wang, Tsai and Qu (2012) and the penalized quasi-

likelihood approaches. We utilized the random forest algorithm to establish the

predictive model based on training data (randomly selecting 80% of the subjects)

and computed the prediction error from the rest of the patients. Here the true

random effect is unknown in practice. Thus, we took the prediction error for the
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6. Discussion

The proposed personalized treatment strategy for longitudinal data is useful

when subjects show great variations in response to different treatments. We are

able to assign an optimal treatment to new patients according to their own char-

acteristics. This is achieved through a random-effects estimation method that

does not require a specified distribution of the random effects. This approach is

able to capture the subject-specific variations of treatment effects, and to distin-

guish treatment outcomes among different subjects. In general, the mixed-effects

approaches yield more accurate estimators when the cluster size is large. Our

simulation studies, however, indicate that our proposed method still performs

well with relatively small cluster sizes.

A major advantage of the proposed strategy is that we can significantly re-

duce the error rate in classifying subjects to the wrong treatment group. Since our

random-effects approach utilizes the correlation information for repeated mea-

surements in random-effects estimation. In addition, we apply random forests to

improve accuracy in predicting individual treatments. Asymptotically, we show

that the efficiency of the proposed random-effects estimators is better than that

of Wang, Tsai and Qu’s (2012) random-effects estimators that assume indepen-

dence.

The proposed approach is generally applicable when there is a common cor-

relation structure of repeated measurements across subjects. If repeated mea-

surements from different subjects are collected at different time points and there

is no shared information of correlation structure among subjects, we can apply

the nonparametric functional data approach. For example, Li (2011) models the

covariance function nonparametrically using the kernel smoothing approach that

does not require parametric modeling of the covariance structure. However, the

functional data analysis approach typically requires more data collection from

each subject and it does not take into account serial correlations for the errors.

Further investigation on this topic is needed.

We can apply the proposed method to investigate the time-varying treat-

ment effect through modeling the random effects as a function of time. Wu

and Liang (2004) propose the varying-coefficient model to estimate coefficient

functions for random effects. Their method can be applied for identifying time-

varying personalized treatment, although their method assumes that the random

effects are normal. Theoretical development and computational implementation

for a time-varying random-effects model without normality for random effects

could be quite challenging, but should be a valuable future research direction.
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Appendix: Proofs of Theorems

Suppose β0 is the true parameter of fixed effects and that β̂ is the estimator

of fixed effects obtained by minimizing (2.5) conditional on the random-effects

estimators b̂. We need some regularity conditions for establishing its asymptotic

properties:

(1) The parameter space is compact.

(2) If U is the weighting matrix, decomposed as C−1 = U′U, C and U converge

almost surely to constant matrices C0 and U0 that satisfy C−1
0 = U′

0U0.

(3) E{gf (β|b)} and E{gC
i (β|bi)} are continuous and differentiable.

(4) There exists a unique β0 such that E{gf (β0|b0)} = 0.

(5) The expectation of E{gf (β|b̂)} with respect to the random-effect parameters

converges to 0 in probability as N → ∞.

(6) The derivative of gf (β|b0) with respect to the fixed-effects parameter, con-

ditional on the true parameter of random effects, is uniformly bounded in

probability.

(7) If eij = yij −µij(β|bi) is the residual for the jth observation of subject i, the

residuals within the same subjects (ei1, . . . , ein) satisfy ||E(eij |ei,j−m)||2 ≤
cjϕm, for j = 1, . . . , n and m = 1, . . . , j − 1, and ||eij − E(eij |ei,j+m)||2 ≤
cjϕm+1, for j = 1, . . . , n and m = 1, . . . , n−j, where || · ||2 is the L2 norm, ψm

are some non-negative constants such that ψm → 0 as m → ∞, and the cj ,

j ≥ 1, satisfy limn→∞(1/n)
∑n

j=1 cj < ∞, or {cj} can be given by {||eij ||2}.

Proof of Theorem 1. We write A
−1/2
i C−1A

−1/2
i as Qi. Since each element of

Qi is bounded in probability, the order of ||Qi||1 is between n and n2, where || · ||1
is the sum of all matrix entries’ absolute values. Let rn ∈ [n, n2] denote the order

of ||Qi||1, ||Qi||1 = Op(rn). We take gi(β|bi) = µ̇i,bi(β|bi)
′Qi{yi − µi(β|bi)} =∑n

k=1

∑n
j=1 cikjµ̇ik,bieij for i = 1, . . . , N, where µ̇i,bi(β|bi) = ∂

∂bi
µi(β|bi) =
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(µ̇i1,bi , µ̇i2,bi , . . . , µ̇in,bi)
′, cikj is the (k × j)th component of Qi, and eij = yij −

µij(β|bi). The estimator b̂i is obtained by solving gi(β̂|bi) = 0.

By a Taylor expansion, we have b0i − b̂i = {ġi,bi(β̂|b̃i)}−1gi(β̂|b0), where

ġi,bi(β̂|b̃i) = ∂
∂bi

gi(β̂|bi) |bi=b̃i
and b̃i is between b̂i and b0i. If β̂

p→ β0, it

follows that b0i − b̂i → {ġi,bi
(β0|b̃i)}−1gi(β0|b0). Since µ̇ij,bi

(β|b̃i) is bounded

in probability, we have {ġi,bi
(β0|b̃i)}−1 = Op(r

−1
n ). There then exists a constant

K1 such that

|gi(β0|b0)| =
∣∣∣∣

n∑
k=1

n∑
j=1

cikjµ̇ik,bieij

∣∣∣∣ ≤ K1rn

∣∣∣∣
n

rn

n∑
k=1

cikj
1

n

n∑
j=1

eij

∣∣∣∣ = Op(rnēi),

where (n/rn)
∑n

k=1 cikj = Op(1) and (1/n)
∑n

j=1 eij = ēi. It follows from

{ġi,bi
(β0|b̃i)}−1 = Op(r

−1
n ) and gi(β0|b0) = Op(rnēi) that b0i − b̂i = Op(ēi).

Therefore, it suffices to show that ēi = Op(n
−1/2), equivalently E(|ēi|2) =

Op(n
−1), since for any ε, there exists a constant K2 such that P

[
|
√
nēi| > K2

]
≤

K−2
2 nE(|ēi|2) < ε. Under the condition that the sequence of random variables

eij satisfies the L2 mixingale condition and
∑∞

k=1 ϕk < ∞,

E(|ēi|2) ≤
2

n2

n∑
t=1

t∑
j=1

E|eijeit| ≤
2

n2

n∑
t=1

t∑
j=1

E(|eij ||E(eit|eij)|)

≤ 2

n2

n∑
t=1

t∑
j=1

||eij ||2||E(eit|eij)||2

≤ 2

n2

n∑
t=1

t∑
j=1

vjvtϕt−j =
2

n2

n∑
k=1

ϕk

n−k∑
j=1

vjvj+k,

where ||eij ||2 = (E(|eij |2))1/2 is bounded by vj , and this implies E(|ēi|2) =

Op(n
−1).

Proof of Theorem 2. The inverse of the estimated correlation matrix C can

be decomposed as C−1 = a0I + D, where I is an identity matrix and a0 is an

unknown coefficient. Then, the random-effects estimator b̂i can be obtained by

solving

µ̇i,bi
(β̂|bi)

′A
−1/2
i C−1A

−1/2
i {yi−µi(β̂|bi)} = a0gI(β̂|bi)+gD(β̂|bi) = 0, (A.1)

where µ̇i,bi
(β̂|bi) =

∂
∂bi

µi(β̂|bi), gI(β̂|bi) = µ̇i,bi
(β̂|bi)

′A−1
i {yi−µi(β̂|bi)} and

gD(β̂|bi) = µ̇i,bi
(β̂|bi)

′A
−1/2
i DA

−1/2
i {yi − µi(β̂|bi)}. In order to separate the

contribution of gI(β̂|bi) and gD(β̂|bi) for random-effects estimation, we orthog-

onalize gD(β̂|bi) from gI(β̂|bi) as g∗D(β̂|bi) = gD(β̂|bi) − W21W
−1
11 gI(β̂|bi),

where W21 = cov(gD(β̂|bi), gI(β̂|bi)) and W11 = Cov (gI(β̂|bi)). Through the

orthogonalization, cov(g∗D(β̂|bi), gI(β̂|bi)) = 0.
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It follows from the generalized method of moments that solving (A.1) is

equivalent to minimizing G(β̂|bi)
′W−1

G G(β̂|bi), where G(β̂|bi) = (gI(β̂|bi)
′,

g∗D(β̂|bi)
′)′ and WG = Cov (G(β̂|bi)). The inverse of the asymptotic covari-

ance for the random-effects estimator b̂i is proportional to

Ġbi
(β̂|bi)

′W−1
G Ġbi

(β̂|bi) = ġI,bi
(β̂|bi)

′W−1
11 ġI,bi

(β̂|bi)

+ġ∗D,bi
(β̂|bi)

′W∗−1
22 ġ∗D,bi

(β̂|bi),

where W∗
22=Cov (g∗D(β̂|bi)), Ġbi

(β̂|bi)=
∂

∂bi
G(β̂|bi), ġI,bi

(β̂|bi)=
∂

∂bi
gI(β̂|bi),

and ġ∗D,bi
(β̂|bi) =

∂
∂bi

g∗D(β̂|bi). Here W
∗
22 = W2−W21W

−1
11 W12, where W2 =

Cov (gD(β̂|bi)). Under β̂
p→ β0, it follows that

Ġbi
(β0|bi)

′W−1
G Ġbi

(β0|bi)→ ġI,bi
(β0|bi)

′W−1
11 ġI,bi

(β0|bi)

+ġ∗D,bi
(β0|bi)

′W∗−1
22 ġ∗D,bi

(β0|bi).

Since W∗
22 is a non-negative definite weighting matrix, Ġbi

(β0|bi)
′ W−1

G Ġbi

(β0|bi) ≥ ġI,bi
(β0|bi)

′W−1
11 ġI,bi

(β0|bi) in the sense of the Loewner ordering.

Therefore, the efficiency of the random-effects estimator is improved by utilizing

the estimated correlation matrix.
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(µ̇i1,bi , µ̇i2,bi , . . . , µ̇in,bi)
′, cikj is the (k × j)th component of Qi, and eij = yij −

µij(β|bi). The estimator b̂i is obtained by solving gi(β̂|bi) = 0.

By a Taylor expansion, we have b0i − b̂i = {ġi,bi(β̂|b̃i)}−1gi(β̂|b0), where

ġi,bi(β̂|b̃i) = ∂
∂bi

gi(β̂|bi) |bi=b̃i
and b̃i is between b̂i and b0i. If β̂

p→ β0, it

follows that b0i − b̂i → {ġi,bi
(β0|b̃i)}−1gi(β0|b0). Since µ̇ij,bi

(β|b̃i) is bounded

in probability, we have {ġi,bi
(β0|b̃i)}−1 = Op(r

−1
n ). There then exists a constant

K1 such that

|gi(β0|b0)| =
∣∣∣∣

n∑
k=1

n∑
j=1

cikjµ̇ik,bieij

∣∣∣∣ ≤ K1rn

∣∣∣∣
n

rn

n∑
k=1

cikj
1

n

n∑
j=1

eij

∣∣∣∣ = Op(rnēi),

where (n/rn)
∑n

k=1 cikj = Op(1) and (1/n)
∑n

j=1 eij = ēi. It follows from

{ġi,bi
(β0|b̃i)}−1 = Op(r

−1
n ) and gi(β0|b0) = Op(rnēi) that b0i − b̂i = Op(ēi).

Therefore, it suffices to show that ēi = Op(n
−1/2), equivalently E(|ēi|2) =

Op(n
−1), since for any ε, there exists a constant K2 such that P

[
|
√
nēi| > K2

]
≤

K−2
2 nE(|ēi|2) < ε. Under the condition that the sequence of random variables

eij satisfies the L2 mixingale condition and
∑∞

k=1 ϕk < ∞,

E(|ēi|2) ≤
2

n2

n∑
t=1

t∑
j=1

E|eijeit| ≤
2

n2

n∑
t=1

t∑
j=1

E(|eij ||E(eit|eij)|)

≤ 2

n2

n∑
t=1

t∑
j=1

||eij ||2||E(eit|eij)||2

≤ 2

n2

n∑
t=1

t∑
j=1

vjvtϕt−j =
2

n2

n∑
k=1

ϕk

n−k∑
j=1

vjvj+k,

where ||eij ||2 = (E(|eij |2))1/2 is bounded by vj , and this implies E(|ēi|2) =

Op(n
−1).

Proof of Theorem 2. The inverse of the estimated correlation matrix C can

be decomposed as C−1 = a0I + D, where I is an identity matrix and a0 is an

unknown coefficient. Then, the random-effects estimator b̂i can be obtained by

solving

µ̇i,bi
(β̂|bi)

′A
−1/2
i C−1A

−1/2
i {yi−µi(β̂|bi)} = a0gI(β̂|bi)+gD(β̂|bi) = 0, (A.1)

where µ̇i,bi
(β̂|bi) =

∂
∂bi

µi(β̂|bi), gI(β̂|bi) = µ̇i,bi
(β̂|bi)

′A−1
i {yi−µi(β̂|bi)} and

gD(β̂|bi) = µ̇i,bi
(β̂|bi)

′A
−1/2
i DA

−1/2
i {yi − µi(β̂|bi)}. In order to separate the

contribution of gI(β̂|bi) and gD(β̂|bi) for random-effects estimation, we orthog-

onalize gD(β̂|bi) from gI(β̂|bi) as g∗D(β̂|bi) = gD(β̂|bi) − W21W
−1
11 gI(β̂|bi),

where W21 = cov(gD(β̂|bi), gI(β̂|bi)) and W11 = Cov (gI(β̂|bi)). Through the

orthogonalization, cov(g∗D(β̂|bi), gI(β̂|bi)) = 0.
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It follows from the generalized method of moments that solving (A.1) is

equivalent to minimizing G(β̂|bi)
′W−1

G G(β̂|bi), where G(β̂|bi) = (gI(β̂|bi)
′,

g∗D(β̂|bi)
′)′ and WG = Cov (G(β̂|bi)). The inverse of the asymptotic covari-

ance for the random-effects estimator b̂i is proportional to

Ġbi
(β̂|bi)

′W−1
G Ġbi

(β̂|bi) = ġI,bi
(β̂|bi)

′W−1
11 ġI,bi

(β̂|bi)

+ġ∗D,bi
(β̂|bi)

′W∗−1
22 ġ∗D,bi

(β̂|bi),

where W∗
22=Cov (g∗D(β̂|bi)), Ġbi

(β̂|bi)=
∂

∂bi
G(β̂|bi), ġI,bi

(β̂|bi)=
∂

∂bi
gI(β̂|bi),

and ġ∗D,bi
(β̂|bi) =

∂
∂bi

g∗D(β̂|bi). Here W
∗
22 = W2−W21W

−1
11 W12, where W2 =

Cov (gD(β̂|bi)). Under β̂
p→ β0, it follows that

Ġbi
(β0|bi)

′W−1
G Ġbi

(β0|bi)→ ġI,bi
(β0|bi)

′W−1
11 ġI,bi

(β0|bi)

+ġ∗D,bi
(β0|bi)

′W∗−1
22 ġ∗D,bi

(β0|bi).

Since W∗
22 is a non-negative definite weighting matrix, Ġbi

(β0|bi)
′ W−1

G Ġbi

(β0|bi) ≥ ġI,bi
(β0|bi)

′W−1
11 ġI,bi

(β0|bi) in the sense of the Loewner ordering.

Therefore, the efficiency of the random-effects estimator is improved by utilizing

the estimated correlation matrix.
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