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Abstract: This paper is concerned with an important issue in finite mixture model-

ing, the selection of the number of mixing components. A new penalized likelihood

method is proposed for finite multivariate Gaussian mixture models, and it is shown

to be consistent in determining the number of components. A modified EM algo-

rithm is developed to simultaneously select the number of components and estimate

the mixing probabilities and the unknown parameters of Gaussian distributions.

Simulations and a data analysis are presented to illustrate the performance of the

proposed method.
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1. Introduction

The finite mixture model is a flexible and powerful way to model data that

stem from multiple populations and is heterogeneous, such as data from pattern

recognition, computer vision, image analysis, and machine learning. Gaussian

mixture model is an important mixture model family, and it is well known that

any continuous distribution can be approximated arbitrarily well by a finite mix-

ture of normal densities (Lindsay (1995); McLachlan and Peel (2000)). However,

as demonstrated by Chen (1995), when the number of components is unknown,

the optimal convergence rate of the estimate of a finite mixture model is slower

than the optimal convergence rate when it is known. Recently, Nguyen (2013)

and Ho and Nguyen (2015) suggested the use of Wasserstein distance to system-

atically investigate the identifiability problem and the optimal rates of estimat-

ing convergence for the parameters of multiple types in finite mixtures without

constraint conditions. In particular, they pointed out that the finite multivariate

Gaussian mixture model is not second-order identifiable, and its optimal estimat-

ing convergence rate is unusually slow when the model is over-fitted. In practice,

with too many components, the mixture model may over-fit the data and yield

poor interpretations, while with too few components, the mixture model may

not be flexible enough to approximate the underlying data structure. Thus the
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selection of the number of components is not only of theoretical interest, but of

value in practical applications.

Most conventional methods for determining the order of a finite mixture

model are based on the likelihood function and some information criteria, such

as AIC and BIC. Leroux (1992) investigated the properties of AIC and BIC and

showed that these criteria do not underestimate the true number of components.

Roeder and Wasserman (1997) showed the consistency of BIC when a normal

mixture model is used to estimate a density function nonparametrically. Using

the locally conic parameterization method developed by Dacunha-Castelle and

Gassiat (1997), Keribin (2000) investigated the consistency of the maximum pe-

nalized likelihood estimator for an appropriate penalization sequence. Another

class of methods is based on the distance measured between the fitted model and

the nonparametric estimate of the population distribution, such as the penalized

minimum-distance method (Chen and Kalbfleisch (1996)), the Kullback-Leibler

distance method (James, Priebe and Marchette (2001)) and the Hellinger dis-

tance method (Woo and Sriram (2006)). To avoid the irregularity of the likeli-

hood function for the finite mixture model when the number of components is

unknown, Ray and Lindsay (2008) suggested the use of a quadratic risk-based

approach to select the number of components. These methods are all based on

the complete model search algorithm and, as a consequence, the computation

burden is heavy. To improve computational efficiency, Chen and Khalili (2008)

proposed a penalized likelihood method with the SCAD penalty (Fan and Li

(2001)) for mixtures of univariate location distributions. They applied SCAD

to penalize the differences of location parameters, which can then merge some

subpopulations by shrinking such differences to zero. However, similar to most

conventional order selection methods, their penalized likelihood method can be

only used for one-dimensional location mixture models. Moreover, it is not al-

ways reasonable to merge Gaussian components with the same mean but different

variance. Bunea et al. (2010) studied sparse density estimation via ℓ1 penaliza-

tion (SPADES). They assumed that the densities of true mixture components

come from a large known candidate density pool, and then selected the mixture

components by penalizing the mixing weights. According to their conditions on

the densities of true mixture components, SPADES can be effective only if the

local distances of true mixture components are quite large in comparison to their

variances or covariance matrices.

Bayesian approaches have also been used to find a suitable number of compo-

nents of the finite mixture model. For instance, Corduneanu and Bishop (2001)

and Bishop (2006) applied the variational inference method to determine the

number of components. Moreover, with suitable priors on the parameters, the

maximum a posteriori (MAP) estimator can be used for model selection. In

MODEL SELECTION FOR GAUSSIAN MIXTURE MODELS 3

particular, Ormoneit and Tresp (1998) and Zivkovic and van der Heijden (2004)
put the Dirichlet prior on the mixing probabilities, and Brand (1999) applied the
entropic prior on the same parameters to favor models with small entropy. The
MAP estimator then drives the mixing probabilities associated with unnecessary
components toward extinction. Based on an improper Dirichlet prior, Figueiredo
and Jain (2002) suggested using the minimum message length criterion to de-
termine the number of components, and further proposed an efficient algorithm
for learning a finite mixture from multivariate data. Although these Bayesian
approaches preform well in practice, in general their theoretical justifications are
still missing. The main challenge is that the objective function does not change
continuously and thus encounter a sudden drop when a component is eliminated,
as zero is not in the support region of the prior distribution for the mixing
probabilities, such as the Dirichlet prior.

We propose a new penalized likelihood method for estimating finite Gaus-
sian mixture models. Intuitively, if some of the mixing probabilities are shrunk
to zero, the corresponding components are eliminated and a suitable number of
components is retained. By doing this, we can deal with multivariate Gaussian
mixture models, and do not need to assume different mean vectors or the same co-
variance matrix for different components. We propose to penalize the logarithm
of mixing probabilities. Our proposed penalized likelihood method is significantly
different from various Bayesian methods in the objective function and theoretical
properties. When a component is eliminated, i.e., the mixing weight of that com-
ponent is shrunk to zero, the objective function of our proposed method changes
continuously. This enables us to fully investigate the statistical properties of the
proposed method, and especially the consistency of the model selection.

The rest of the paper is organized as follows. In Section 2, we propose a new
penalized likelihood method for finite multivariate Gaussian mixture models,
and describe a modified EM algorithm to simultaneously select the number of
components and estimate the unknown parameters. In Section 3, we derive
asymptotic properties of the estimated number of components. In Section 4,
simulation studies are presented to illustrate the performance of the proposed
method. Some discussions are given in Section 5. Proofs are relegated to the
Appendix.

2. Gaussian Mixture Model Selection

2.1. Penalized likelihood method

The density of a d-dimensional random variable x can be approximated by
a weighted sum of some Gaussian densities

f(x) =

M∑
m=1

πmϕ(x;µm,Σm), (2.1)
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where ϕ(x;µm,Σm) is a Gaussian density with mean vector µm and covariance

matrix Σm, and πm, m = 1, . . . ,M , are the positive mixing probabilities that

satisfy
∑M

m=1 πm = 1. For identifiability of the Gaussian mixture model (GMM),

let M be the smallest integer such that πm > 0 for 1 ≤ m ≤ M , and (µa,Σa) ̸=
(µb,Σb) for 1 ≤ a ̸= b ≤ M . Given the number of components M , the complete

set of parameters of the GMM, θ = {µ1,Σ1, . . . ,µM ,ΣM , π1, . . . , πM}, can be

conveniently estimated by maximum likelihood via the EM algorithm. To avoid

overfitting and underfitting, an important issue is to determine the number of

components M .

Intuitively, if some of the mixing probabilities are shrunk to zero, the cor-

responding components are eliminated and a number of components is smaller

retained. Denote by yim the indicator variable if the ith observation arises from

the mth component; the conditional expected complete data log-likelihood func-

tion (McLachlan and Peel (2000)) is

ℓ(θ) = log
n∏

i=1

f(xi;θ)

= E

{ n∑
i=1

M∑
m=1

yim [log πm + log ϕ(xi;µm,Σm)]

����xi, i = 1, . . . , n

}

=
n∑

i=1

M∑
m=1

him log πm +

n∑
i=1

M∑
m=1

him log ϕ(xi;µm,Σm), (2.2)

where him is the posterior probability that the ith observation belongs to the

mth component. This expression contains log πm, whose gradient grows very

fast when πm is close to zero. The Lp types of penalties may not be able to set

insignificant πm to zero.

We give a simple illustration of how the likelihood function changes when a

mixing probability approaches zero. In particular, a data set of 1,000 points was

randomly generated from a single bivariate Gaussian distribution. A GMM with

two components, f(x) = π1ϕ(x;µ1,Σ1)+(1−π1)ϕ(x;µ2,Σ2), was used to fit the

data. The learned two Gaussian components are depicted in Figure 1(a), and π̂1
is 0.227. For each fixed π1, we optimized all other parameters {(µi,Σi), i = 1, 2}
by maximizing the likelihood function. Figure 1(b) shows that the minimized

negative log-likelihood function changes almost linearly with log(π1) when π1
is close to zero, albeit with some small upticks. Thus the derivative of the log-

likelihood function with respect to π1 is approximately proportional to 1/π1 when

π1 is close to zero, and it would dominate the derivative of ∂
∂π max

µ1,µ2,Σ1,Σ2

ℓ(θ).

Thus (2.2) suggests that we need to consider penalizing log πm to achieve

the sparsity of π = {π1, . . . , πM}. We choose to penalize log((ϵ+ π)/ϵ) = log(ϵ+
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Figure 1. An illustration on the behavior of the negative log-likelihood func-
tion when a mixing probability is close to zero. (a) A simulated data set
and a learned two-component GMM model. (b) The minimized negative
log-likelihood as a function of log π1.

π)− log(ϵ), where ϵ is a very small positive number, say 10−6 or o(n−1/2 log−1 n),
as suggested in the proof of Theorem 1 and 2. Here log(ϵ + π) − log(ϵ) is a
monotonically increasing function of π, and it is shrunk to zero when the mixing
probability π goes to zero. We propose the penalized log-likelihood function

ℓP (θ) = ℓ(θ)− nλDf

M∑
m=1

[log(ϵ+ πm)− log(ϵ)] , (2.3)

where ℓ(θ) is the log-likelihood function, λ is a tuning parameter, and Df is
the number of free parameters for each component. For a GMM with arbitrary
covariance matrices, each component has Df = 1+d+d(d+1)/2 = d2/2+3d/2+1
number of free parameters. Although Df is a constant and can be removed from
(2.3), it simplifies the search range of λ in numerical study and hence is kept.

The objective function of our proposed penalized likelihood method is sim-
ilar to that derived, with Dirichlet prior, from the Bayesian point of view. In
the mathematical sense, such Bayesian methods cannot shrink the mixing prob-
abilities to zero exactly since the objective function is not continuous when some
of mixing probabilities shrink to zero. As discussed by Fan and Li (2001), such
discontinuity poses challenges to investigate the statistical properties of related
penalization or Bayesian methods.

Fan and Li (2001) suggested that a good penalty function should yield an
estimator with three properties: unbiasedness, sparsity, and continuity. It is
obvious that log((ϵ+ πm)/ϵ) would over penalize large πm and yield a biased
estimator. Hence, we also consider the penalized log-likelihood function

ℓP (θ) = ℓ(θ)− nλDf

M∑
m=1

[log(ϵ+ pλ(πm))− log(ϵ)] . (2.4)
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Here pλ(π) is the SCAD penalty function proposed by Fan and Li (2001) that is

conveniently characterized through its derivative:

p′λ(π) = I(π ≤ λ) +
(aλ− π)+
(a− 1)λ

I(π > λ),

for some a > 2 and π > 0. For a relatively large πm and πm > aλ, pλ(πm) is a

constant, and the estimator of this πm is expected to be unbiased.

2.2. Modified EM algorithm

We propose a modified EM algorithm to maximize (2.3) and (2.4) iteratively

in two steps. First to maximize (2.3), by combining (2.2) and (2.3), the expected

penalized log-likelihood function is
n∑

i=1

M∑
m=1

him log πm +
n∑

i=1

M∑
m=1

him log ϕ(xi;µm,Σm)

− nλDf

M∑
m=1

[log(ϵ+ πm)− log(ϵ)] . (2.5)

In the E step, we are given the current estimate, θ̂ = (µ̂0
1, Σ̂

0
1, . . . , µ̂

0
M , Σ̂

0
M ,

π̂0
1, . . . , π̂

0
M ), and calculate the posterior probability

him =
π̂0
mϕ(xi; µ̂

0
m, Σ̂

0
m)

∑M
m=1 π̂

0
mϕ(xi; µ̂

0
m, Σ̂

0
m)

.

In the M step, we update θ = {µ1,Σ1, . . . ,µM ,ΣM , π1, . . . , πM} by maximizing

the expected penalized log-likelihood function (2.5). We can update {π1, . . . , πM}
and {µ1,Σ1, . . . ,µM ,ΣM} separately, as they are not intermingled in (2.5). To

obtain an estimate for π = (π1, . . . , πM ), we aim to solve the set of equations

∂

∂πm

[
n∑

i=1

M∑
m=1

him log πm − nλDf

M∑
m=1

log(ϵ+ πm)− β(

M∑
m=1

πm − 1)

]
= 0. (2.6)

Given that ϵ is close to zero, ideally such that 1/πm ≈ 1/(πm + ϵ) for any

πm, by making use of
∑n

i=1

∑M
m=1 him = n and straightforward calculations, we

obtain β = n(1 −MλDf ). Since πm,m = 1, . . . ,M, are always nonnegative, we

have

π̂1
m = max

{
0,

1

1−MλDf

[ 1
n

n∑
i=1

him − λDf

]}
. (2.7)

Some π̂1
m may be shrunk to zero and, subsequently, the constraint

∑M
m=1 π̂

1
m = 1

may not be satisfied. However, this neither decreases the likelihood function nor

affects the estimate of the posterior probability him in the E-step or the update
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of πm in the M-step. We need only to normalize π̂ by enforcing
∑M

m=1 π̂m = 1

after the EM algorithm converges.

The update equations on {µ1,Σ1, . . . ,µM ,ΣM} are the same as those of the

standard EM algorithm for GMM (McLachlan and Peel (2000)). Specifically, we

update µm and Σm as

µ̂1
m =

∑n
i=1 himxi∑n
i=1 him

, Σ̂
1
m =

∑n
i=1 him(xi − µ̂1

m)(xi − µ̂1
m)T∑n

i=1 him
.

In summary the proposed modified EM algorithm works as follows. It starts

with a pre-specified large number of components, and whenever a mixing prob-

ability is shrunk to zero by (2.7), the corresponding component is deleted, and

thus fewer components are retained for the remaining EM iterations. Here we

abuse the notation M for the number of components at beginning of each EM

iteration, and through the updating process, M becomes smaller. For a given

EM iteration step, it is possible that zero, one, or more than one component are

deleted.

The modified EM algorithm for maximizing (2.4) is similar to the one for

(2.3), the only difference is in the M step for maximizing π. Given the current

estimate (π̂0
1, . . . , π̂

0
M ) for π, to solve

∂

∂πm

[
n∑

i=1

M∑
m=1

him log πm − nλDf

M∑
m=1

log(ϵ+ pλ(πm))− β(

M∑
m=1

πm − 1)

]
= 0,

we substitute log(ϵ + pλ(π̂m)) by its linear approximation log(ϵ + pλ(π̂
0
m)) +

[(p′λ(π̂
0
m))/(ϵ+ pλ(π̂

0
m))](π̂m − π̂0

m). By
∑n

i=1

∑M
m=1 him = n, we first update the

value of β by

β = n− nλDf

M∑
m=1

p′λ(π̂
0
m)π̂0

m

ϵ+ pλ(π̂0
m)

.

Then by straightforward calculations, πm can be updated as

π̂1
m =

1

Tm

n∑
i=1

hmi, (2.8)

where

Tm = n− nλDf

M∑
m=1

p′λ(π̂
0
m)π̂0

m

ϵ+ pλ(π̂0
m)

+ nλDf
p′λ(π̂

0
m)

ϵ+ pλ(π̂0
m)

.

In the numerical study, (2.8) is seldom exactly zero. To avoid possible numerical

instability, if an updated π̂1
m is smaller than a pre-specified small threshold, we

set it to zero and remove the corresponding component from the mixture model.

Because of the consistency of the proposed penalized likelihood method, we can

set this threshold value as small as possible, though a smaller threshold value
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Here pλ(π) is the SCAD penalty function proposed by Fan and Li (2001) that is

conveniently characterized through its derivative:

p′λ(π) = I(π ≤ λ) +
(aλ− π)+
(a− 1)λ

I(π > λ),

for some a > 2 and π > 0. For a relatively large πm and πm > aλ, pλ(πm) is a

constant, and the estimator of this πm is expected to be unbiased.

2.2. Modified EM algorithm

We propose a modified EM algorithm to maximize (2.3) and (2.4) iteratively

in two steps. First to maximize (2.3), by combining (2.2) and (2.3), the expected

penalized log-likelihood function is
n∑

i=1

M∑
m=1

him log πm +
n∑

i=1

M∑
m=1

him log ϕ(xi;µm,Σm)

− nλDf

M∑
m=1

[log(ϵ+ πm)− log(ϵ)] . (2.5)

In the E step, we are given the current estimate, θ̂ = (µ̂0
1, Σ̂

0
1, . . . , µ̂

0
M , Σ̂

0
M ,

π̂0
1, . . . , π̂

0
M ), and calculate the posterior probability

him =
π̂0
mϕ(xi; µ̂

0
m, Σ̂

0
m)

∑M
m=1 π̂

0
mϕ(xi; µ̂

0
m, Σ̂

0
m)

.

In the M step, we update θ = {µ1,Σ1, . . . ,µM ,ΣM , π1, . . . , πM} by maximizing

the expected penalized log-likelihood function (2.5). We can update {π1, . . . , πM}
and {µ1,Σ1, . . . ,µM ,ΣM} separately, as they are not intermingled in (2.5). To

obtain an estimate for π = (π1, . . . , πM ), we aim to solve the set of equations

∂

∂πm

[
n∑

i=1

M∑
m=1

him log πm − nλDf

M∑
m=1

log(ϵ+ πm)− β(

M∑
m=1

πm − 1)

]
= 0. (2.6)

Given that ϵ is close to zero, ideally such that 1/πm ≈ 1/(πm + ϵ) for any

πm, by making use of
∑n

i=1

∑M
m=1 him = n and straightforward calculations, we

obtain β = n(1 −MλDf ). Since πm,m = 1, . . . ,M, are always nonnegative, we

have

π̂1
m = max

{
0,

1

1−MλDf

[ 1
n

n∑
i=1

him − λDf

]}
. (2.7)

Some π̂1
m may be shrunk to zero and, subsequently, the constraint

∑M
m=1 π̂

1
m = 1

may not be satisfied. However, this neither decreases the likelihood function nor

affects the estimate of the posterior probability him in the E-step or the update
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of πm in the M-step. We need only to normalize π̂ by enforcing
∑M

m=1 π̂m = 1

after the EM algorithm converges.

The update equations on {µ1,Σ1, . . . ,µM ,ΣM} are the same as those of the

standard EM algorithm for GMM (McLachlan and Peel (2000)). Specifically, we

update µm and Σm as

µ̂1
m =

∑n
i=1 himxi∑n
i=1 him

, Σ̂
1
m =

∑n
i=1 him(xi − µ̂1

m)(xi − µ̂1
m)T∑n

i=1 him
.

In summary the proposed modified EM algorithm works as follows. It starts

with a pre-specified large number of components, and whenever a mixing prob-

ability is shrunk to zero by (2.7), the corresponding component is deleted, and

thus fewer components are retained for the remaining EM iterations. Here we

abuse the notation M for the number of components at beginning of each EM

iteration, and through the updating process, M becomes smaller. For a given

EM iteration step, it is possible that zero, one, or more than one component are

deleted.

The modified EM algorithm for maximizing (2.4) is similar to the one for

(2.3), the only difference is in the M step for maximizing π. Given the current

estimate (π̂0
1, . . . , π̂

0
M ) for π, to solve

∂

∂πm

[
n∑

i=1

M∑
m=1

him log πm − nλDf

M∑
m=1

log(ϵ+ pλ(πm))− β(

M∑
m=1

πm − 1)

]
= 0,

we substitute log(ϵ + pλ(π̂m)) by its linear approximation log(ϵ + pλ(π̂
0
m)) +

[(p′λ(π̂
0
m))/(ϵ+ pλ(π̂

0
m))](π̂m − π̂0

m). By
∑n

i=1

∑M
m=1 him = n, we first update the

value of β by

β = n− nλDf

M∑
m=1

p′λ(π̂
0
m)π̂0

m

ϵ+ pλ(π̂0
m)

.

Then by straightforward calculations, πm can be updated as

π̂1
m =

1

Tm

n∑
i=1

hmi, (2.8)

where

Tm = n− nλDf

M∑
m=1

p′λ(π̂
0
m)π̂0

m

ϵ+ pλ(π̂0
m)

+ nλDf
p′λ(π̂

0
m)

ϵ+ pλ(π̂0
m)

.

In the numerical study, (2.8) is seldom exactly zero. To avoid possible numerical

instability, if an updated π̂1
m is smaller than a pre-specified small threshold, we

set it to zero and remove the corresponding component from the mixture model.

Because of the consistency of the proposed penalized likelihood method, we can

set this threshold value as small as possible, though a smaller threshold value
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increases the modified EM algorithm’s iteration steps and computation time. In

our numerical studies, we set this threshold to be 10−4, smaller than the smallest

mixing probabilities in the simulation examples.

2.3. Selection of tuning parameters

To obtain the final estimate of the mixture model by maximizing (2.3) or

(2.4), one needs to select the tuning parameters λ (for both) and a (for maxi-

mizing (2.4)). Our simulation studies show that the numerical results are not

sensitive to the selection of a. Following the suggestion of Fan and Li (2001),

we set a = 3.7. For the standard LASSO (Tibshirani (1996)) and SCAD pe-

nalized regressions, there are many methods to select λ, such as generalized

cross-validation (GCV) and BIC (Fan and Li (2001); Wang, Li and Tsai (2007)).

Here we define a BIC value

BIC(λ) =

n∑
i=1

log
{ M̂∑

m=1

πmϕ(xi; µ̂m, Σ̂m)
}
− 1

2
M̂Df log n,

and take λ̂ = argmax
λ

BIC(λ), where M̂ is the estimate of the number of compo-

nents and µ̂m and Σ̂m are the estimates of µm and Σm for a given λ.

3. Asymptotic Properties

It is possible to extend our method to more generalized mixture models, but

we only show the consistency of model selection for Gaussian mixture models.

We need some conditions to derive asymptotic properties.

P1: ∥µi∥ ≤ C1, ∥Σi∥ ≤ C2, i = 1, . . . ,M, where C1 and C2 are large enough

constants.

P2: min
i,k

{αk(Σi), k = 1, . . . , d, i = 1, . . . ,M} ≥ C3, where αk(Σi) is the kth

eigenvalue of Σi and C3 is a positive constant.

Remark 1. If the number of components is known, say K, the maximum likeli-

hood function, or the penalized maximum likelihood function, has K! equivalent

solutions corresponding to the K! ways of assigning K sets of parameters to

K components. The identifiability problem is an important issue if we wish to

interpret the estimated parameter values for a selected model, but our main fo-

cus is to determine the model order and find a good density estimate with the

finite mixture model. The identifiability problem is irrelevant as all equivalent

solutions yields the same estimates of the order and the density function.

Remark 2. Compared to the conditions in Dacunha-Castelle and Gassiat (1997,

1999), conditions (P1) and (P2) are slightly stronger. Without lose of generality,
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we assume that the parameters of the mixture model are in a bounded compact

space. This is not only for mathematical conveniences, but also to ensure the

identifiability and to avoid the ill-posedness problems of the finite mixture model,

as discussed in Bishop (2006). These conditions are also practically reasonable

for our modified EM algorithm, as discussed by Figueiredo and Jain (2002).

Conditions (P1) and (P2) extend that of Hathaway (1985),

Ωc = {Ψ ∈ Ω :
σ2
h

σ2
i

≥ C > 0, 1 ≤ h ̸= i ≤ g},

where Ω denotes the unconstrained parameter space, g is the number of com-

ponents for the initial univariate Gaussian mixture model, and σ2
i and σ2

h are

variances of the Gaussian components in the model. With this condition, sin-

gularities in the likelihood function are avoided, which occur when the mean of

a component is set equal to any observed value and the variance goes to zero.

Hathaway (1985) also proposed a constrained parameter space for the multivari-

ate case,

Ωc = {Ψ ∈ Ω : all eigenvalues of ΣhΣ
−1
i ≥ C > 0, 1 ≤ h ̸= i ≤ g}.

Our proposed conditions (P1) and (P2) are stronger than such a requirement,

and hence undesirable properties of multivariate Gaussian mixture models can be

avoided. In fact, the conditions (P1) and (P2) naturally hold when the variances

of Gaussian mixture components are the same.

Theorem 1. Under conditions (P1) and (P2), if
√
nλ → ∞, λ → 0 and ϵ =

o(1/
√
n), there exists a local maximizer (θ,β) of ℓP , given in Appendix (A.3),

such that θ = Op(1/
√
n). For such a local maximizer, the estimated number of

components q̂n → q with probability tending to one.

Theorem 2. Under conditions (P1) and (P2), if
√
nλ → C and ϵ = o(1/

√
n log n)

where C is a constant, there exists a local maximizer (θ,β) of ℓP , given in Ap-

pendix (A.2), such that θ = Op(1/
√
n). For such a local maximizer, the estimated

number of components q̂n → q with probability tending to one.

Our method is rather general as we do not impose conditions on the dif-

ference of mean vectors or assume a common covariance for different mixture

components. In practice it is easier to select an appropriate tuning parameter

for (A.3) than for (A.2) to guarantee the consistency of the final model selec-

tion and estimation. In particular, the proposed BIC method always selects a

reasonable tuning parameter. Let Componentλ denote the number of compo-

nents selected by (A.3) using the tuning parameter λ, and λBIC be the tuning

parameter λ selected by the proposed BIC method in Section 2.3.
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increases the modified EM algorithm’s iteration steps and computation time. In

our numerical studies, we set this threshold to be 10−4, smaller than the smallest

mixing probabilities in the simulation examples.

2.3. Selection of tuning parameters

To obtain the final estimate of the mixture model by maximizing (2.3) or

(2.4), one needs to select the tuning parameters λ (for both) and a (for maxi-

mizing (2.4)). Our simulation studies show that the numerical results are not

sensitive to the selection of a. Following the suggestion of Fan and Li (2001),

we set a = 3.7. For the standard LASSO (Tibshirani (1996)) and SCAD pe-

nalized regressions, there are many methods to select λ, such as generalized

cross-validation (GCV) and BIC (Fan and Li (2001); Wang, Li and Tsai (2007)).

Here we define a BIC value

BIC(λ) =

n∑
i=1

log
{ M̂∑

m=1

πmϕ(xi; µ̂m, Σ̂m)
}
− 1

2
M̂Df log n,

and take λ̂ = argmax
λ

BIC(λ), where M̂ is the estimate of the number of compo-

nents and µ̂m and Σ̂m are the estimates of µm and Σm for a given λ.

3. Asymptotic Properties

It is possible to extend our method to more generalized mixture models, but

we only show the consistency of model selection for Gaussian mixture models.

We need some conditions to derive asymptotic properties.

P1: ∥µi∥ ≤ C1, ∥Σi∥ ≤ C2, i = 1, . . . ,M, where C1 and C2 are large enough

constants.

P2: min
i,k

{αk(Σi), k = 1, . . . , d, i = 1, . . . ,M} ≥ C3, where αk(Σi) is the kth

eigenvalue of Σi and C3 is a positive constant.

Remark 1. If the number of components is known, say K, the maximum likeli-

hood function, or the penalized maximum likelihood function, has K! equivalent

solutions corresponding to the K! ways of assigning K sets of parameters to

K components. The identifiability problem is an important issue if we wish to

interpret the estimated parameter values for a selected model, but our main fo-

cus is to determine the model order and find a good density estimate with the

finite mixture model. The identifiability problem is irrelevant as all equivalent

solutions yields the same estimates of the order and the density function.

Remark 2. Compared to the conditions in Dacunha-Castelle and Gassiat (1997,

1999), conditions (P1) and (P2) are slightly stronger. Without lose of generality,
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we assume that the parameters of the mixture model are in a bounded compact

space. This is not only for mathematical conveniences, but also to ensure the

identifiability and to avoid the ill-posedness problems of the finite mixture model,

as discussed in Bishop (2006). These conditions are also practically reasonable

for our modified EM algorithm, as discussed by Figueiredo and Jain (2002).

Conditions (P1) and (P2) extend that of Hathaway (1985),

Ωc = {Ψ ∈ Ω :
σ2
h

σ2
i

≥ C > 0, 1 ≤ h ̸= i ≤ g},

where Ω denotes the unconstrained parameter space, g is the number of com-

ponents for the initial univariate Gaussian mixture model, and σ2
i and σ2

h are

variances of the Gaussian components in the model. With this condition, sin-

gularities in the likelihood function are avoided, which occur when the mean of

a component is set equal to any observed value and the variance goes to zero.

Hathaway (1985) also proposed a constrained parameter space for the multivari-

ate case,

Ωc = {Ψ ∈ Ω : all eigenvalues of ΣhΣ
−1
i ≥ C > 0, 1 ≤ h ̸= i ≤ g}.

Our proposed conditions (P1) and (P2) are stronger than such a requirement,

and hence undesirable properties of multivariate Gaussian mixture models can be

avoided. In fact, the conditions (P1) and (P2) naturally hold when the variances

of Gaussian mixture components are the same.

Theorem 1. Under conditions (P1) and (P2), if
√
nλ → ∞, λ → 0 and ϵ =

o(1/
√
n), there exists a local maximizer (θ,β) of ℓP , given in Appendix (A.3),

such that θ = Op(1/
√
n). For such a local maximizer, the estimated number of

components q̂n → q with probability tending to one.

Theorem 2. Under conditions (P1) and (P2), if
√
nλ → C and ϵ = o(1/

√
n log n)

where C is a constant, there exists a local maximizer (θ,β) of ℓP , given in Ap-

pendix (A.2), such that θ = Op(1/
√
n). For such a local maximizer, the estimated

number of components q̂n → q with probability tending to one.

Our method is rather general as we do not impose conditions on the dif-

ference of mean vectors or assume a common covariance for different mixture

components. In practice it is easier to select an appropriate tuning parameter

for (A.3) than for (A.2) to guarantee the consistency of the final model selec-

tion and estimation. In particular, the proposed BIC method always selects a

reasonable tuning parameter. Let Componentλ denote the number of compo-

nents selected by (A.3) using the tuning parameter λ, and λBIC be the tuning

parameter λ selected by the proposed BIC method in Section 2.3.
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Table 1. Parameter estimation with standard deviation (M = 10) for Ex-
ample 1.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3333 -1 1 2 0.2
(2.3) 0.3342(0.0201) -0.9911(0.0861) 1.0169(0.1375) 2.0034(0.3022) 0.1981(0.0264)
(2.4) 0.3356(0.0187) -1.0022(0.0875) 1.0007(0.1428) 2.0205(0.2769) 0.1973(0.0265)

2
True 0.3333 1 1 2 0.2
(2.3) 0.3317(0.0196) 1.0151(0.0845) 0.9849(0.1318) 1.9794(0.2837) 0.1977(0.0303)
(2.4) 0.3321(0.0193) 1.0108(0.0790) 0.9904(0.1253) 1.9825(0.2980) 0.1957(0.0292)

3
True 0.3333 0 -1.4142 2 0.2
(2.3) 0.3341(0.0171) 0.0019(0.1324) -1.4112(0.0405) 1.9722(0.2425) 0.1973(0.0258)
(2.4) 0.3322(0.0159) 0.0014(0.1449) -1.4103(0.0404) 1.9505(0.2424) 0.1978(0.0267)

Theorem 3. Under conditions (P1) and (P2), Pr(ComponentλBIC
= q) → 1.

The proofs of Theorems 1, 2 and 3 are given in the Supplementary Materials

for the paper.

4. Numerical Studies

Example 1. We generated 600 observations from a three-component bivariate

normal mixture with mixing probabilities π1 = π2 = π3 = 1/3, mean vectors

µ1 = [−1, 1]T , µ2 = [1, 1]T , µ3 =
[
0,−

√
2
]T

, and covariance matrices

Σ1 =

[
0.65 0.7794

0.7794 1.55

]
, Σ2 =

[
0.65 −0.7794

−0.7794 1.55

]
, Σ3 =

[
2 0

0 0.2

]
.

These three components are obtained by rotating and shifting a common Gaus-

sian density N (0, diag(2, 0.2)).

We ran our proposed penalized likelihood methods (2.3) and (2.4) for 300

times. The initial maximum number of components M was set to be 10 or

50, the initial value for the modified EM algorithm was estimated by K-means

clustering with K = 10 or 50, and the tuning parameter λ was selected by

our proposed BIC method. Figure 2 shows the evolution of the modified EM

algorithm for (2.4), with the maximum number of components as 10. We compare

our proposed methods with the traditional AIC and BIC methods. Figure 3(a−c)

shows the histograms of the estimated numbers of component. Our proposed

methods do better in identifying the correct number of components than do

the AIC and BIC methods. The proposed methods always correctly estimate the

number of components regardless of the initial maximum number of components.

Figure 3(d) depicts the evolution of the penalized log-likelihood function (2.3)

for the simulated data set in Figure 2(a) in one run.
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Figure 2. One typical run of Example 1. (a) a simulated data set. (b)
initialization for M = 10 components, (c-e) three intermediate estimates for
M = 6, 5, 4, respectively, (f) the final estimate for M = 3.

Table 2. Parameter estimation with standard deviation (M = 50) for Ex-
ample 1.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3333 -1 1 2 0.2
(2.3) 0.3342(0.0201) -1.0080(0.0881) 0.9854(0.1372) 1.9603(0.2857) 0.1974(0.0296)
(2.4) 0.3320(0.0190) -1.0017 (0.0859) 0.9985(0.1389) 1.9604(0.2830) 0.1960 (0.0286)

2
True 0.3333 1 1 2 0.2
(2.3) 0.3347(0.0170) 0.9879(0.0885) 1.0166(0.1385) 1.9531(0.2701) 0.1981(0.0283)
(2.4) 0.3345 (0.0182) 0.9987(0.0896) 1.0044(0.1402) 1.9661(0.2460) 0.1971 (0.0248)

3
True 0.3333 0 -1.4142 2 0.2
(2.3) 0.3329(0.0198) 0.0210(0.1329) -1.4105(0.0344) 1.9717(0.2505) 0.1975(0.0265)
(2.4) 0.3334(0.0164) 0.0117(0.1302) -1.4116(0.0372) 1.9736(0.2769) 0.1998(0.0281)

When the number of components is correctly identified, we summarize the

estimation of the unknown parameters of Gaussian distributions and the mixing

probabilities in Tables 1 and 2 with different initial maximum number of compo-

nents. For the covariance matrix, we used eigenvalues since the three components

have the same shape as N (0, diag(2, 0.2)). Tables 1 and 2 show that the modified

EM algorithm gives accurate estimates for parameters and mixing probabilities.

The final estimate of these parameters is robust to the initialization of the max-
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Table 1. Parameter estimation with standard deviation (M = 10) for Ex-
ample 1.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3333 -1 1 2 0.2
(2.3) 0.3342(0.0201) -0.9911(0.0861) 1.0169(0.1375) 2.0034(0.3022) 0.1981(0.0264)
(2.4) 0.3356(0.0187) -1.0022(0.0875) 1.0007(0.1428) 2.0205(0.2769) 0.1973(0.0265)

2
True 0.3333 1 1 2 0.2
(2.3) 0.3317(0.0196) 1.0151(0.0845) 0.9849(0.1318) 1.9794(0.2837) 0.1977(0.0303)
(2.4) 0.3321(0.0193) 1.0108(0.0790) 0.9904(0.1253) 1.9825(0.2980) 0.1957(0.0292)

3
True 0.3333 0 -1.4142 2 0.2
(2.3) 0.3341(0.0171) 0.0019(0.1324) -1.4112(0.0405) 1.9722(0.2425) 0.1973(0.0258)
(2.4) 0.3322(0.0159) 0.0014(0.1449) -1.4103(0.0404) 1.9505(0.2424) 0.1978(0.0267)

Theorem 3. Under conditions (P1) and (P2), Pr(ComponentλBIC
= q) → 1.

The proofs of Theorems 1, 2 and 3 are given in the Supplementary Materials

for the paper.

4. Numerical Studies

Example 1. We generated 600 observations from a three-component bivariate

normal mixture with mixing probabilities π1 = π2 = π3 = 1/3, mean vectors

µ1 = [−1, 1]T , µ2 = [1, 1]T , µ3 =
[
0,−

√
2
]T

, and covariance matrices

Σ1 =

[
0.65 0.7794

0.7794 1.55

]
, Σ2 =

[
0.65 −0.7794

−0.7794 1.55

]
, Σ3 =

[
2 0

0 0.2

]
.

These three components are obtained by rotating and shifting a common Gaus-

sian density N (0, diag(2, 0.2)).

We ran our proposed penalized likelihood methods (2.3) and (2.4) for 300

times. The initial maximum number of components M was set to be 10 or

50, the initial value for the modified EM algorithm was estimated by K-means

clustering with K = 10 or 50, and the tuning parameter λ was selected by

our proposed BIC method. Figure 2 shows the evolution of the modified EM

algorithm for (2.4), with the maximum number of components as 10. We compare

our proposed methods with the traditional AIC and BIC methods. Figure 3(a−c)

shows the histograms of the estimated numbers of component. Our proposed

methods do better in identifying the correct number of components than do

the AIC and BIC methods. The proposed methods always correctly estimate the

number of components regardless of the initial maximum number of components.

Figure 3(d) depicts the evolution of the penalized log-likelihood function (2.3)

for the simulated data set in Figure 2(a) in one run.
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Figure 2. One typical run of Example 1. (a) a simulated data set. (b)
initialization for M = 10 components, (c-e) three intermediate estimates for
M = 6, 5, 4, respectively, (f) the final estimate for M = 3.

Table 2. Parameter estimation with standard deviation (M = 50) for Ex-
ample 1.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3333 -1 1 2 0.2
(2.3) 0.3342(0.0201) -1.0080(0.0881) 0.9854(0.1372) 1.9603(0.2857) 0.1974(0.0296)
(2.4) 0.3320(0.0190) -1.0017 (0.0859) 0.9985(0.1389) 1.9604(0.2830) 0.1960 (0.0286)

2
True 0.3333 1 1 2 0.2
(2.3) 0.3347(0.0170) 0.9879(0.0885) 1.0166(0.1385) 1.9531(0.2701) 0.1981(0.0283)
(2.4) 0.3345 (0.0182) 0.9987(0.0896) 1.0044(0.1402) 1.9661(0.2460) 0.1971 (0.0248)

3
True 0.3333 0 -1.4142 2 0.2
(2.3) 0.3329(0.0198) 0.0210(0.1329) -1.4105(0.0344) 1.9717(0.2505) 0.1975(0.0265)
(2.4) 0.3334(0.0164) 0.0117(0.1302) -1.4116(0.0372) 1.9736(0.2769) 0.1998(0.0281)

When the number of components is correctly identified, we summarize the

estimation of the unknown parameters of Gaussian distributions and the mixing

probabilities in Tables 1 and 2 with different initial maximum number of compo-

nents. For the covariance matrix, we used eigenvalues since the three components

have the same shape as N (0, diag(2, 0.2)). Tables 1 and 2 show that the modified

EM algorithm gives accurate estimates for parameters and mixing probabilities.

The final estimate of these parameters is robust to the initialization of the max-
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Figure 3. Histogram of estimated numbers of components for Example 1.
(a) the proposed method (2.3), (b) BIC, (c) AIC. (d) The penalized log
likelihood function for a typical run.

imum number of components.

Example 2. We considered a situation where the mixture components overlap

and may have the same means but different covariance matrices. Neither of the

proposed methods of Chen and Khalili (2008) and Bunea et al. (2010) is expected

to work well here, as some components have the same mean. Specifically, we

generated 1,000 samples with mixing probabilities π1 = π2 = π3 = 0.3, π4 = 0.1,

mean vectors µ1 = µ2 = [−2,−2]T , µ3 = [2, 0]T , µ4 = [1,−4]T , and covariance

matrices

Σ1 =

[
0.1 0

0 0.2

]
, Σ2 =

[
2 2

2 7

]
,Σ3 =

[
0.5 0

0 4

]
, Σ4 =

[
0.125 0

0 0.125

]
.

We ran our proposed methods 300 times. The maximum number of compo-

nents M was set to be 10 or 50, the initial value for the modified EM algorithm

was estimated by K-means clustering, and the tuning parameter λ was selected
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Figure 4. One typical run of Example 2. (a) a simulated data set. (b)
initialization for M = 10 components, (c-e) three intermediate estimates for
M = 7, 6, 5, respectively, (f) the final estimate for M = 4.

Table 3. Parameter estimation with standard deviation (M = 10) for Ex-
ample 2.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3 -2 -2 0.1 0.2
(2.3) 0.3022(0.0093) -2.0010(0.0216) -1.9989(0.0291) 0.0979(0.0114) 0.2010 (0.0242)
(2.4) 0.3009(0.0095) -1.9995(0.0206) -1.9975(0.0319) 0.0990(0.0119) 0.2003(0.0226)

2
True 0.3 -2 -2 1.2984 7.7016
(2.3) 0.2995(0.0112) -1.9989(0.1133) -1.9963(0.1837) 1.2864(0.1407) 7.7219(0.7301)
(2.4) 0.3017(0.0118) -1.9995(0.1202) -2.0049(0.1811) 1.2926(0.1343) 7.5856(0.7301)

3
True 0.3 2 0 0.5 4
(2.3) 0.3019(0.0083) 1.9943(0.0483) 0.0001(0.1294) 0.4986(0.0529) 3.9951(0.3496)
(2.4) 0.3012(0.0087) 1.9995(0.0511) -0.0001(0.1244) 0.4963(0.0544) 3.9998(0.3911)

4
True 0.1 1 -4 0.125 0.125
(2.3) 0.0964(0.0038) 1.0005(0.0373) -3.9966(0.0394) 0.1143(0.0245) 0.1339(0.0252)
(2.4) 0.0962(0.0047) 0.9993(0.0394) -4.0013(0.0417) 0.1167(0.0259) 0.1317(0.0278)

by our proposed BIC method. Figure 4 shows the evolution of the modified

EM algorithm for (2.3) with the initial maximum number of components as 10

for one simulated data set. Figure 5 shows that our method always identifies

the number of components correctly and performs much better than AIC and

BIC methods. Tables 3 and 4 show that the modified EM algorithm gives accu-

rate estimates for both parameters and mixing probabilities. The final estimates
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Figure 3. Histogram of estimated numbers of components for Example 1.
(a) the proposed method (2.3), (b) BIC, (c) AIC. (d) The penalized log
likelihood function for a typical run.
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Example 2. We considered a situation where the mixture components overlap

and may have the same means but different covariance matrices. Neither of the

proposed methods of Chen and Khalili (2008) and Bunea et al. (2010) is expected

to work well here, as some components have the same mean. Specifically, we

generated 1,000 samples with mixing probabilities π1 = π2 = π3 = 0.3, π4 = 0.1,

mean vectors µ1 = µ2 = [−2,−2]T , µ3 = [2, 0]T , µ4 = [1,−4]T , and covariance

matrices

Σ1 =

[
0.1 0

0 0.2

]
, Σ2 =

[
2 2

2 7

]
,Σ3 =

[
0.5 0

0 4

]
, Σ4 =
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0 0.125
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.

We ran our proposed methods 300 times. The maximum number of compo-

nents M was set to be 10 or 50, the initial value for the modified EM algorithm

was estimated by K-means clustering, and the tuning parameter λ was selected
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Figure 4. One typical run of Example 2. (a) a simulated data set. (b)
initialization for M = 10 components, (c-e) three intermediate estimates for
M = 7, 6, 5, respectively, (f) the final estimate for M = 4.

Table 3. Parameter estimation with standard deviation (M = 10) for Ex-
ample 2.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3 -2 -2 0.1 0.2
(2.3) 0.3022(0.0093) -2.0010(0.0216) -1.9989(0.0291) 0.0979(0.0114) 0.2010 (0.0242)
(2.4) 0.3009(0.0095) -1.9995(0.0206) -1.9975(0.0319) 0.0990(0.0119) 0.2003(0.0226)

2
True 0.3 -2 -2 1.2984 7.7016
(2.3) 0.2995(0.0112) -1.9989(0.1133) -1.9963(0.1837) 1.2864(0.1407) 7.7219(0.7301)
(2.4) 0.3017(0.0118) -1.9995(0.1202) -2.0049(0.1811) 1.2926(0.1343) 7.5856(0.7301)

3
True 0.3 2 0 0.5 4
(2.3) 0.3019(0.0083) 1.9943(0.0483) 0.0001(0.1294) 0.4986(0.0529) 3.9951(0.3496)
(2.4) 0.3012(0.0087) 1.9995(0.0511) -0.0001(0.1244) 0.4963(0.0544) 3.9998(0.3911)

4
True 0.1 1 -4 0.125 0.125
(2.3) 0.0964(0.0038) 1.0005(0.0373) -3.9966(0.0394) 0.1143(0.0245) 0.1339(0.0252)
(2.4) 0.0962(0.0047) 0.9993(0.0394) -4.0013(0.0417) 0.1167(0.0259) 0.1317(0.0278)

by our proposed BIC method. Figure 4 shows the evolution of the modified

EM algorithm for (2.3) with the initial maximum number of components as 10

for one simulated data set. Figure 5 shows that our method always identifies

the number of components correctly and performs much better than AIC and

BIC methods. Tables 3 and 4 show that the modified EM algorithm gives accu-

rate estimates for both parameters and mixing probabilities. The final estimates
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Figure 5. Histogram of estimated numbers of components for Example 2. (a)
the proposed method (2.3), (b) BIC, (c) AIC. (d) The penalized log likeli-
hood function for one typical run.

Table 4. Parameter estimation with standard deviation (M = 50) for Ex-
ample 2.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3 -2 -2 0.1 0.2
(2.3) 0.3016(0.0107) -1.9982(0.0223) -1.9998(0.0312) 0.0986(0.0110) 0.2034 (0.0241)
(2.4) 0.3009(0.0095) -1.9986(0.0218) -1.9978(0.0320) 0.0993(0.0110) 0.2010(0.0238)

2
True 0.3 -2 -2 1.2984 7.7016
(2.3) 0.3002(0.0128) -2.0040(0.1086) -2.0052(0.1819) 1.2823(0.1386) 7.6696(0.7538)
(2.4) 0.3017(0.0115) -1.9988(0.1173) -2.0116(0.1811) 1.2757(0.1318) 7.6734(0.7476)

3
True 0.3 2 0 0.5 4
(2.3) 0.3015(0.0083) 1.9986(0.0500) 0.0054(0.1365) 0.4998(0.0531) 3.9951(0.3651)
(2.4) 0.3012(0.0084) 2.0015(0.0505) 0.0102(0.1268) 0.4915(0.0524) 3.9751(0.3770)

4
True 0.1 1 -4 0.125 0.125
(2.3) 0.0966(0.0044) 0.9983(0.0408) -4.0019(0.0431) 0.1150(0.0251) 0.1327(0.0258)
(2.4) 0.0962(0.0050) 1.0011(0.0402) -4.0019(0.0425) 0.1154(0.0256) 0.1313(0.0254)

of these parameters are robust to the initialization of the maximum number of

components.
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Table 5. Frequency of correct order selection (%) for Example 3.

M 20 40 60 80 100 120 140 160 180 200

k = 2, n = 50,m = 25 89 84 88 89 88 88 92 85 90 87

M 100 150 200 250 300 350 400 450 500 550 600

k = 5, n = 300,m = 150 98 98 97 99 98 98 100 100 97 100 98

Example 3. Bunea et al. (2010) studied sparse density estimation via ℓ1 pe-

nalization (SPADES), and, under some regularity conditions, they showed their

proposed method can recover the true number of components in the finite mix-

ture models with high probability. For comparison, we considered a univariate

Gaussian mixture model with the true number of components k = 2 and k = 5.

The mixture components were chosen at random from a large pool of M Gaus-

sian distributions N (aj, 1), 1 ≤ j ≤ M , where for k = 2, a was 4, and for k = 5,

a was 5. The mixing probabilities are all equal to 1/k. The maximum size M of

the candidate pool was M = 200 for k = 2 and M = 600 for k = 5. Similar to

Bunea et al. (2010), our results were based on T = 100 simulations.

To compare the accuracy of order selection, we considered the above two

finite mixture model settings with the sample size n = 50 for k = 2, and n = 300

for k = 5. We let the size of the candidate Gaussian pool M change from 20 to

200 for k = 2, and M change from 100 to 600 for k = 5. The initial value for the

modified EM algorithm was estimated by K-means clustering with 25 and 150

components for k = 2 and k = 5, respectively. Bunea et al. (2010) used a larger

initial order for SPADES. Table 5 reports the frequencies of selecting the correct

order base on 100 simulations. For k = 2 and n = 50, our result is slightly better

than the result shown by Figure 2 in Bunea et al. (2010). For k = 5 and n = 300,

our results are clearly better than theirs.

To evaluate the effect of the mean distance between mixture components on

the accuracy of order estimate, we changed a from 0 to 5 for the setting k = 2,

n = 100 and M = 25. We considered two initial estimates for our modified EM

algorithm. One was by the K-means clustering with 25 components, and the

other was a Gaussian candidate pool N (aj, 1) with M = 25, πj = 1/M , and

1 ≤ j ≤ M . As shown in Figure 6, the percentage of times that the estimated

order was the true order was similar for these two initial estimates. Compared to

Figure 3 of Bunea et al. (2010), Figure 6 shows that, when the distance between

the means is relatively small, our method is more adaptive in detecting the true

number of mixture components.
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Figure 5. Histogram of estimated numbers of components for Example 2. (a)
the proposed method (2.3), (b) BIC, (c) AIC. (d) The penalized log likeli-
hood function for one typical run.

Table 4. Parameter estimation with standard deviation (M = 50) for Ex-
ample 2.

Component Mixing Probability Mean Covariance (eigenvalue)

1
True 0.3 -2 -2 0.1 0.2
(2.3) 0.3016(0.0107) -1.9982(0.0223) -1.9998(0.0312) 0.0986(0.0110) 0.2034 (0.0241)
(2.4) 0.3009(0.0095) -1.9986(0.0218) -1.9978(0.0320) 0.0993(0.0110) 0.2010(0.0238)

2
True 0.3 -2 -2 1.2984 7.7016
(2.3) 0.3002(0.0128) -2.0040(0.1086) -2.0052(0.1819) 1.2823(0.1386) 7.6696(0.7538)
(2.4) 0.3017(0.0115) -1.9988(0.1173) -2.0116(0.1811) 1.2757(0.1318) 7.6734(0.7476)

3
True 0.3 2 0 0.5 4
(2.3) 0.3015(0.0083) 1.9986(0.0500) 0.0054(0.1365) 0.4998(0.0531) 3.9951(0.3651)
(2.4) 0.3012(0.0084) 2.0015(0.0505) 0.0102(0.1268) 0.4915(0.0524) 3.9751(0.3770)

4
True 0.1 1 -4 0.125 0.125
(2.3) 0.0966(0.0044) 0.9983(0.0408) -4.0019(0.0431) 0.1150(0.0251) 0.1327(0.0258)
(2.4) 0.0962(0.0050) 1.0011(0.0402) -4.0019(0.0425) 0.1154(0.0256) 0.1313(0.0254)

of these parameters are robust to the initialization of the maximum number of

components.
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Table 5. Frequency of correct order selection (%) for Example 3.

M 20 40 60 80 100 120 140 160 180 200

k = 2, n = 50,m = 25 89 84 88 89 88 88 92 85 90 87

M 100 150 200 250 300 350 400 450 500 550 600

k = 5, n = 300,m = 150 98 98 97 99 98 98 100 100 97 100 98

Example 3. Bunea et al. (2010) studied sparse density estimation via ℓ1 pe-

nalization (SPADES), and, under some regularity conditions, they showed their

proposed method can recover the true number of components in the finite mix-

ture models with high probability. For comparison, we considered a univariate

Gaussian mixture model with the true number of components k = 2 and k = 5.

The mixture components were chosen at random from a large pool of M Gaus-

sian distributions N (aj, 1), 1 ≤ j ≤ M , where for k = 2, a was 4, and for k = 5,

a was 5. The mixing probabilities are all equal to 1/k. The maximum size M of

the candidate pool was M = 200 for k = 2 and M = 600 for k = 5. Similar to

Bunea et al. (2010), our results were based on T = 100 simulations.

To compare the accuracy of order selection, we considered the above two

finite mixture model settings with the sample size n = 50 for k = 2, and n = 300

for k = 5. We let the size of the candidate Gaussian pool M change from 20 to

200 for k = 2, and M change from 100 to 600 for k = 5. The initial value for the

modified EM algorithm was estimated by K-means clustering with 25 and 150

components for k = 2 and k = 5, respectively. Bunea et al. (2010) used a larger

initial order for SPADES. Table 5 reports the frequencies of selecting the correct

order base on 100 simulations. For k = 2 and n = 50, our result is slightly better

than the result shown by Figure 2 in Bunea et al. (2010). For k = 5 and n = 300,

our results are clearly better than theirs.

To evaluate the effect of the mean distance between mixture components on

the accuracy of order estimate, we changed a from 0 to 5 for the setting k = 2,

n = 100 and M = 25. We considered two initial estimates for our modified EM

algorithm. One was by the K-means clustering with 25 components, and the

other was a Gaussian candidate pool N (aj, 1) with M = 25, πj = 1/M , and

1 ≤ j ≤ M . As shown in Figure 6, the percentage of times that the estimated

order was the true order was similar for these two initial estimates. Compared to

Figure 3 of Bunea et al. (2010), Figure 6 shows that, when the distance between

the means is relatively small, our method is more adaptive in detecting the true

number of mixture components.
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Figure 6. The percentage of times the estimated order k̂ is the real order
k for different values of a under the setting k = 2, n = 100 and M = 25.
The solid line: N (aj, 1), j = 1, 2, . . . , 25 with the weight 1/25 as the initial
estimate. The dash line: K-means estimate with K = 25 as the initial
estimate.

5. Conclusions and Discussions

In this paper, we proposed a penalized likelihood method for multivariate fi-

nite Gaussian mixture models that integrates model selection and parameter esti-

mation. The method involves light computations and is attractive when there are

many possible candidate models. Under mild conditions, our proposed method

can select the number of components consistently. Although we mainly focused

on Gaussian mixture models, we believe our method can be extended to more

generalized mixture models, such as the mixture of factor analyzers (Ghahramani

and Hinton (1997)).

Our proposed modified EM algorithm gradually discards insignificant com-

ponents, and does not generate new components or split any large components.

If necessary, for complex problems, one can perform the split-and-merge opera-

tions (Ueda et al. (1999)) after certain EM iterations to improve the final results.

We only show the convergence of our algorithm through simulations, and fur-

ther theoretical investigation is needed. Classical acceleration methods, such as

Louis’ method, Quasi-Newton method and the Hybrid method (McLachlan and

Peel (2000)), may be used to improve the convergence rate of our algorithm.

Another practical issue is the choice of the tuning parameter λ for the pe-

nalized likelihood function. We propose a BIC selection method, and simulation

MODEL SELECTION FOR GAUSSIAN MIXTURE MODELS 17

results show that it works well. Moreover, our simulation results show that the

final estimate is quite robust to the initial number of components, given that is

reasonably large.

We proposed two penalized likelihood functions at (2.3) and (2.4). Although

the numerical results obtained by these two penalized likelihood functions are

similar they likely have different theoretical properties. We have shown the con-

sistency of model selection and tuning parameter selection by maximizing (2.4)

and the proposed BIC method under mild conditions. We have also shown the

consistency of model selection by maximizing (2.3), but the conditions are some-

what restrictive. In particular, the consistency of the proposed BIC method for

(2.3) needs further investigations.

An ongoing work is to investigate how to extend our method to the mixture

of factor analyzers (Ghahramani and Hinton (1997)), to integrate clustering and

dimensionality reduction.

Supplementary Materials

Simulation Example 4, Data Analysis and Proofs of Theorem 2 and 3.
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1, . . . , q. Then by the idea of locally conic models (Dacunha-Castelle and Gas-

siat (1997, 1999)), the density function of the Gaussian mixture model can be

rewritten as

f(x,θ) = f(x, θ,β) =

M−q∑
i=1

αiθ ·ϕ(µi,Σi) +

q∑
l=1

(π0
l + ρlθ) ·ϕ(µ0

l + θδlµ,Σ
0
l + θδlΣ),

where β = (α1, . . . , αM−q,µ1, . . . ,µM−q,Σ1, . . . ,ΣM−q, δ
1
µ, . . . , δ

q
µ, δ1Σ, . . . , δ

q
Σ, ρ1,

. . . , ρq), and (π1, . . . , πM ) in (2.1) can be defined as πi = αiθ, i = 1, . . . ,M − q

and πi = π0
l +ρlθ, i = M−q+1, . . . ,M , l = 1, . . . , q. By the restrictions imposed

on the β

αi ≥ 0, µi ∈ Rd, andΣi ∈ Rd×d, i = 1, . . . ,M − q,

δlµ ∈ Rd, δlΣ ∈ Rd×d, and ρ ∈ R, l = 1, . . . , q, (A.1)

M−q∑
i=1

αi +

q∑
l=1

ρl = 0, and

M−q∑
i=1

α2
i +

q∑
l=1

ρ2l +

q∑
l=1

∥δlµ∥2 +
q∑

l=1

∥δlΣ∥2 = 1

and, by permutation, such a parametrization is locally conic and identifiable.

After the parametrization, the penalized likelihood functions (2.3) and (2.4)

can, respectively, be rewritten as

ℓP (θ) = ℓ(θ)− nλDf

M∑
m=1

[log(ϵ+ πm))− log(ϵ)]

=̂ ℓP (θ,β) =

n∑
i=1

log f(xi, θ,β)− nλDf

M∑
m=1

[log(ϵ+ πm)− log(ϵ)] , (A.2)

ℓP (θ) = ℓ(θ)− nλDf

M∑
m=1

[log(ϵ+ pλ(πm))− log(ϵ)]

=̂ ℓP (θ,β) =
n∑

i=1

log f(xi, θ,β)− nλDf

M∑
m=1

[log(ϵ+ pλ(πm))− log(ϵ)] .(A.3)

For the key ideas of the proof of Theorem 1, first assume that the true

Gaussian mixture density is g0 =
∑q

l=1 π
0
l ϕ(µ

0
l ,Σ

0
l ), and then define D as the

subset of functions of the form

q∑
l=1

π0
l

d∑
i=1

δlµi
D1

i ϕ(µ
0
l ,Σ

0
l )

g0
+

q∑
l=1

π0
l
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δlΣi,j
D1

i,jϕ(µ
0
l ,Σ

0
l )
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+

q∑
l=1

ρl
ϕ(µ0

l ,Σ
0
l )
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+
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i=1

αi
ϕ(µi,Σi)

g0
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where D1
i is the derivative of ϕ(µl,Σl) for the ith component of µl, D

1
i,j is the

derivative of ϕ(µl,Σl) for the (i, j) component ofΣl. Functions in D, (µi,Σi), i =

1, . . . ,M − q and (µ0
l ,Σ

0
l ), l = 1, . . . , q satisfy conditions P1 and P2; for any

Σi, i = 1, . . . ,M−q, there exists a Σ0
l , 1 ≤ ℓ ≤ q such that Σi ≤ (1+κ)Σ0

l where

0 ≤ κ < 1.

Proposition 1. D is a Donsker class.

Proof. The functions in D can be decomposed as

I1=

q∑
l=1

π0
l

d∑
i=1

δlµi
D1

i ϕ(µ
0
l ,Σ

0
l )

g0
+

q∑
l=1

π0
l

d∑
i≥j=1

δlΣi,j
D1

i,jϕ(µ
0
l ,Σ

0
l )

g0
+

q∑
l=1

ρl
ϕ(µ0

l ,Σ
0
l )

g0
,

I2=

M−q∑
i=1

αi
ϕ(µi,Σi)

g0
.

Hence D = {f + g : f ∈ D1, g ∈ D2} where D1 is the function set with form I1
indexed by δ∗ and ρ∗ and D2 is the function set with form I2 indexed by α∗, µ∗
and Σ∗.

Here I1 is a linear combination of given functions, and the linear combination

coefficients should satisfy (A.1). Hences as shown by Example 19.17 in van der

Vaart (1998) and under conditions P1 and P2, the class of the functions in D1 is

a Donsker class.

On the other hand, for I2, under conditions P1 and P2, µi, i = 1, . . . ,M − q,

are bounded and Σi, i = 1, . . . ,M − q, are positive with bounded eigenval-

ues. Then under the conditions P1 and P2, for each 1 ≤ l ≤ q define Fil =

{αiϕ(µi,Σi)/g0 : (αi,µi,Σi) ∈ Ωl}, where Ωl = {α,µ,Σ : −1 ≤ α ≤ 1,Σ ≤
(1+κ)Σ0

l } and 0 ≤ κ < 1. Through some cumbersome calculations involving ma-

trix operations and matrix derivatives, we can show that functions αiϕ(µi,Σi)/g0
in Fil satisfy a Lipschitz condition, and that the L2(g0) norm of the Lipschitz

coefficient is bounded. Therefore for each 1 ≤ l ≤ q, the class of functions in Fil

is a Donsker class by Theorem 19.5 and Example 19.7 in van der Vaart (1998).

Hence, under the conditions P1 and P2, Fi =
∪q

l=1Fil = {αiϕ(µi,Σi)/g0 :

(αi,µi,Σi) ∈
∪q

l=1Ωl} is a Donsker class. So by Example 19.20 in van der Vaart

(1998), D2 = {I2 : I2 =
∑M−q

i=1 hi, hi ∈ Fi} is a Donsker class.

Finally as shown by Example 19.20 in van der Vaart (1998), the class of

functions in D = {f + g : f ∈ D1, g ∈ D2} is a Donsker class.

Proof of Theorem 1. To prove the theorem, we first show that there exists a

maximizer (θ,β) such that θ = Op(1/
√
n). In fact, it is sufficient to show that,

for a large constant C, ℓ(θ,β) < ℓ(0,β) where θ = C/
√
n and β is in a local
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l + θδlµ,Σ
0
l + θδlΣ),
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1
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q
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q
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compact area Ω = {β : (αi,µi,Σi) ∈
∪q

l=1Ωl, i = 1, . . . ,M − q} where Ωl is
defined in the proof of Proposition 1. If θ = C/

√
n, then

ℓp(θ,β)− ℓp(0,β)

≤
n∑

i=1

{log f(xi, θ,β)− log g0(xi)}

−nλDf

M∑
m=M−q+1

[log(ϵ+ pλ(πm))− log(ϵ+ pλ(π
0
m−M+q))]=̂I1 + I2.

For I2, because of θ = C/
√
n and by the restriction condition on ρl, l = 1, . . . , q,

we have |πm − π0
m−M+q| ≤ C/

√
n when m > M − q. By the property of the

penalty function, we then have

|I2| = | − nλDf

M∑
m=M−q+1

[log(ϵ+ pλ(πm))− log(ϵ+ pλ(π
0
m−M+q))]|

= | − nλDf

M∑
m=M−q+1

[log(ϵ+ aλ)− log(ϵ+ aλ)]| = 0.

For I1, we have

I1 =

n∑
i=1

f(xi, θ,β)− g0(xi)

g0(xi)
− 1

2

n∑
i=1

(
f(xi, θ,β)− g0(xi)

g0(xi)

)2

+
1

3

n∑
i=1

Ui

(
f(xi, θ,β)− g0(xi)

g0(xi)

)3

if θ = C/
√
n, where |Ui| ≤ 1. Expanding f(x, θ,β) up to the second order gives

f(x, θ,β) = g0(x) + θ · f ′(x, 0,β) +
θ2

2
· f ′′(x, θ∗,β),

for some θ∗ ≤ θ.
Noticing θ = C/

√
n, Ef ′/g0 = 0, Ef ′′/g0 = 0, by conditions P1 and P2, and

Proposition 1 for the class D, we have

I1 =

{
n∑

i=1

θ
f ′(xi, 0,β)

g0(xi)
− 1

2

n∑
i=1

θ2
(
f ′(xi, 0,β)

g0(xi)

)2
}
(1 + op(1)).

Since (1/
√
n)

∑n
i=1 f

′(xi, 0,β)/g0(xi) converges uniformly in distribution to a
Gaussian process by Proposition 1 and

∑n
i=1 (f

′(xi, 0,β)/g0(xi))
2 is of order

Op(n) by the Law of Large Numbers, we have

I1 =
C√
n
·OP (

√
n)− C2

n
·Op(n).
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When C is large enough, the second term of I1 dominates other terms in the

penalized likelihood ratio function. Then we have ℓp(θ,β) − ℓp(0,β) < 0 with

probability tending to one. Hence there exists a maximizer (θ,β) with probability

tending to one such that θ = Op(1/
√
n).

Next we show that there exists a maximizer (θ̂, β̂) satisfying θ̂ = Op(1/
√
n)

such that q̂ = q or π̂m = 0,m = 1, . . . ,M − q. In fact, when θ̂ = Op(1/
√
n),

by the restriction condition on αi, we have π̂m = Op(1/
√
n), m = 1, . . . ,M − q.

A Lagrange multiplier β is taken into account for the constraint
∑M

m=1 π̂m = 1.

Then it is sufficient to show that

∂ℓ∗(θ)

∂π̂m
< 0 for π̂m < εn (A.4)

with probability tending to one for the maximizer (θ,β), where εn = Cn−1/2,

m ≤ M − q, and ℓ∗(θ) = ℓp(θ)− β(
∑M

m=1 πm − 1). To show that (A.4) holds, we

consider the partial derivatives for π̂m,m > M − q and have

∂ℓ∗(θ)

∂π̂m
=

n∑
i=1

ϕm(µm,Σm)∑M
i=1 π̂iϕi(µi,Σi)

− nλDf
1

ϵ+ π̂m
− β = 0. (A.5)

The first term in (A.5) is of order Op(n) by the Law of Large Numbers. Given

m > M − q and θ = Op(1/
√
n), we have π̂m = π0

m−M+q + Op(1/
√
n) > (1/2) ·

min(π0
1, . . . , π

0
q ); then the second term is Op(nλ) = op(n), and moreover β =

Op(n).

Next, consider

∂ℓ∗(θ)

∂π̂m
=

n∑
i=1

ϕm(µm,Σm)∑M
i=1 π̂iϕi(µi,Σi)

− nλDf
1

ϵ+ π̂m
− β, (A.6)

where m ≤ M−q and π̂m < εn. The first term and β in (A.6) are of order Op(n).

For the second term, because πm = Op(1/
√
n),

√
nλ → ∞, and ϵ is sufficient

small, we have

{nλDf [1/(ϵ+ πm)]}
n

= λDf
1

ϵ+ πm
= Op(

√
nλ) → ∞

with probability tending to one. Hence the second term in (A.6) dominates the

first and the third terms. Therefore we prove (A.4), or, equivalently, π̂m = 0,

m = 1, . . . ,M − q with probability tending to one when n → ∞.
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