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Supplementary Material

S1 Technical conditions

Let f(X) be the probability density function of X and the symbol 0,
represent the partial derivatives taken with respect to parameter a. De-
fine 7(X,Y) = Pr(d = 1|X,Y) = 7n(X.,Y, ), 7(X) = Pr(6 = 1]X),
G(X) = f(X){1 = 7(X)}, 2(X,Y,a) = dulogit{n(X,Y, )}, my(X,0,h) =
E{y(Y,X,0,h)|X,5 = 0}, and m%(X,a) = E(z2(X,Y,a)|X,d = 0). We
equip the space H with the semi-norm || - ||y, defined by || - || = supgee || -
lzopy = supg{[] - [*dP}/? with respect to all the f-arguments. Also,
we denote N(A\,H, || - ||3) as the covering number of the class H with
respect to the norm || - ||5. Define ©, =: {# € © : ||0 — 6] < o},
B, ={a € B:|a—awl <o} and H, = {h € H : ||h — ho||n < 0}. Let
Gn(0, h,0) =n"! S (Y, X, 0, hy ), where 9(Y;, X5, 6, h, @) is defined in
(2.3), and Q, (v, 0, h) = n~ ' 320 (1-8;) 2 {(Y;, X, 0, h) —m (X, 0, h, ) }.

Let A(6, hg) be the partial derivative of G(0,hy) = E{¢(Y, X, 60, ho)}
with respect to 6, that is,

0 .1
A0, ho) = %g(ea ho) = ,lﬁlg(l) E{g(e + £, ho04) — G(0, hop) }-
Let T'(6, ho)(h — ho) be the functional derivative of G(6, ho) in the direction
h — hg, that is,

(6, ho)(h — ho) = lim " {G(0, by + (h — ho)) — G(6, o)}

=1
Kk—0
Assumptions for consistency

(A1) For all o > 0, there exists € > 0 such that infjy_g >, [|G(0, ho)|lw >
e > 0.
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(A2) Uniformly for all 6 € ©, G(0,h) is continuous (with respect to the
metric || - ||3) in h at h = hy.

(A3) (3) || — holly = 0p(1); (4i) Given estimator & (including & = «y), for
all positive sequences g, = o(1),

sup  [|Ga(8, B, &) — Gu(6, h, ap)|| = 0,(1), and
96@7||h7h0||3‘-£§9n -
sup 1Qn(c, 8, h) — Qu(, 8, h)|| = 0,(1).

aEB,eE@7||h—h0”'H§gn

Assumptions for asymptotic normality

(B1) (i) The ordinary derivative A(6,hg) in 6 of G(0, hy) exists for 6 in
a neighborhood of 6y, and is continuous at § = 6y; (i7) the matrix
A =: A(6y, ho) is of full rank.

(B2) Let (Y, X,0,h) = (1(Y, X,0,h),...,0,(Y,X,0,h)". ;(Y,X,0,h)
(j=1,...,q) is locally uniformly Ls(P) continuous with respect to 6,
h in the sense:

E{ sup |%mxwvw—%wxﬁmw}SK&
©'n")

16" 6l <e,lIn ~hllx<e

for all (6,h) € © x H, all small positive values p = 0,(1), and for some
constants 0 < K < oo and 0 <¢ < 1.

(B3) For all § € ©,, the pathwise derivative I'(6, ho)(h — ho) of G(0, ho)
exists in all directions h — hy € H; and for all (6,h) € ©,, X H,, with
a positive sequence g, = 0,(1): (i) |G(8,h) — G(0,ho) —L'(8, ho)(h —
ho)llw < c|lh — ho|3, for some 0 < ¢ < oo; (ii) [|T(0, ho)(h — ho) —
(6o, ho)(h — ho)|lw = o(1)on, and

/ \/logN()\l/g,’H, |- [|#)dA\ < o0,
0

where ¢ is defined in (B2).

(B4) T'(8g, ho)(h — ho) = n~ ' 320 V(X,, Y;, 8) + 0,(n~"/?), where the func-
tion V(X,Y,8) = (V1(X,Y,d),...,V,(X,Y,08))" satisfies E{V;(X,Y,
§)} =0and F{V;(X,Y,d§)}? <ocfor j=1,...,q.
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(B5) (i) h € H with probability tending to one, || — holly = 0,(n~'/4);
(71) Given estimator & (including & = «y), for all positive values g, =
0(1), Sup* [|Gn (8, hy &) — Gu(8, hy 9) — Gu(Bo, ho, &) + Gu(80, o, )| =
0,(n"1/%), where sup* is the supremum over all ||§ — 6p] < o, and
||h - hO“H < On-

Regularity assumptions

(C1) The probability density function f(X) is bounded away from oo in the
support of X and the second partial derivative of f(X) is continuous
and bounded.

(C2) (i) The true response probability follows a parametric model given in
(2.1), ie,, m1(X,Y) = 7(X, Y, ap); (i1) 7(X,Y,a0) > ¢o > 0 a.s. for
some positive constant ¢y and 7(X) = E{7(X,Y, ap)| X} # 1 a.s.; (iii)
for a € B,, E|r(X,Y,a)]? < oo, and 8*7(X,Y, a)/0ada’ exists and
is bounded by an integrable function.

(C3) For all z € X and 6 € O, the function z — E{'(Y, 2,0, ho)| X = x} is
uniformly continuous in z for l = 1 and 2, and 0 < E|¢(Y, X, 0, ho)|?> <
00. m?b(X ,0,h) is twice continuously differentiable in the neighbor-

hood of X.

(C4) na® — oo and na®™ — 0 as n — oo, where m is the order of the kernel
function K(-).

Remark. The regularity assumptions (C1)-(C4) are commonly adopted
in the missing data and nonparametric literatures. Conditions (A1)-(A3)
and (B1)-(B5) are required for the proof of consistency and asymptotic
normality of all proposed estimators. In fact, the proofs are totally based
on Theorems 1 and 2 in Chen et al. (2003). In these theorems high-level
conditions are given under which the proposed estimator is respectively,
weakly consistent and asymptotically normal. See Chen et al. (2003) and
Chen and Van Keilegom (2013) for discussion on each assumption. It is
easily shown that conditions (1.1)-(1.5) and (2.1)-(2.6) in Chen et al. (2003)
are valid by combining conditions (A1)-(A3), (B1)-(B5) and the following
Lemmas 1-3.

S2 An example

It is difficult to understand what the really use of above high-level condi-
tions in practical situations is. Under MAR setup, Chen and Van Keilegom
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(2013) considered an example of a partial linear regression model to illus-
trate their proposed strategy. Here we try to extend their illustrations to
MNAR framework, to verify the above listed conditions and to get a clear
understanding of the effect of using h in the proposed approach.

Let Y € R denote the outcome, X = (X, Xy) € R denote the
covariates, 6 denote the d-dimensional vector of regression covariates. Sup-
pose that Y and X are related by a partial linear regression model Y =
X0 + h(X3) + ¢, where € are random errors satisfying F(g|X) = 0. Let
{(X;,Y;,6;) i =1,...,n} be independent and identically distributed re-
alizations of (X,Y,¢), where ¢; is dichotomous taking values of 1 or 0,
and Y; is observed if and only if §; = 1. Define estimating functions
P(Y, X,0,h) = Xi(Y — X0 — h(Xy)). Let F(y|X) be the conditional
distribution of Y given X, let 7(X;,Y;) = Pr(6; = 1|X;,Y;) =: n(X;, Y, o)
be the response probability model, and O(X;,Y;, ag) = 7 1(X;, Yy, ag) — 1.
Let K(-) be a (d + 1)-dimensional kernel function. From (2.2), a kernel
estimator of F(y|X) based on the sample {(X;,Y;,,d;) : i = 1,...,n} is
given by

5JO(XJ7 Y}v aO)IO/} < y)Ka(X - XJ)
- -1
FY(y1X;a0) = -

0 : (S2.1)
Z 5J'O(Xj7 Y;'> aO)Ka(X - Xj)
j=1

and a kernel estimator of conditional expectation m{(X) = E(Y|X,d = 0)

could be obtained by

J

>4

j=1
2
J=1

O(Xj7 }/jv O{[))KG(X - XJ)YJ
ity (X.a0) = [ 9dFL(y|X500) = .
6;0(X;, Y}, a0) Ko (X — Xj)

Let Y; = 6;Yi4+(1—0,)m% (X, ), my (X) = E(Y|X) and X = (X1,..., X,).
Using the standard kernel regression theory and under MNAR assumption,
we have

. B{5:Y,0(X.,Y;, a0)| X

EIFOCY, ¥ X + Opla™)
EL(1 - 0)Yi|X, -~

= B(YIX) + Op(a™) = my (X)) + o (n/4).
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Note that m%(X) # my(X) under MNAR assumption. Consequently, a k-
ernel estimator of nonparametric function h(xs) is he(x2) = > i1 Wi (22)(Y;
—X0), where Wy;(z9) = Ky(za — Xo;5)/ 301 Ki(wa — Xo5), Ki(u) =
b~ 'K (u/b), K(+) is an univariate kernel function and b is a bandwidth.

Let hi(x3) = ho(z2) — E(X] | Xo = 22)(0 — 6y) = E(Y — X[ 0|X, =
o). Write hg(s) — hi(z2) = (ho(z2) — E{hg(x2)|X}) + (E{hg(z5)| X} —
hi(x2)) = (T} +T3)(x2). Using the facts that na*™ — 0, nb?(logn)=2? — oo,
na* @V (logn)~2 — oo and nb® — 0 as n — oo, we have

Ti(ra) = 3 Wag(ea)dy (3 = mi (X)) + 32 Way(za) (m () = my (X))

£ 30 W) (1= 0, (X, 00) = m (X))} + Oyfa”)
= Oy 2l )" + Oy(a) o)+ O

To(wa) = 32 Waj(aa){my (X;) — X560} — hj(x2) + Op(a™)

j=1
= 3 Wz {E(Y X)) — X0 — E(Y]Xy;) + E(X1[Xy;)0"}
j=1
+0,(b*) + Op(a™
= Op((nb)™2(logn)'/?) + Oy(a™)
= 0, n~1/4)

Using the arguments of Chen and Van Keilegom (2013), we can verify
conditions A3(i), B3(ii) and B5(i). Combining the above derivations with
na®" — 0 and nb* — 0 implies

ho(2) — h(ws) = > Wiy (22)[5;(Y; — m$(X;)) + m(X;) — my (X;)

+(1 = 6;){md (X, an) — m§(X;)}] + 0p(n™/2).

<

Let fx,(x2) be the probability density function of X;. Simple algebraic
manipulations show that, uniformly in j

X1 . . ' 2
E{micb(x2 - ij)} = E(X1| Xy = Xy;) + O0,(b?).
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Now, replacing W;(z2) by (nb) " K(2722)/ fx, (12) leads to
['(6o, ho)(h — ho) = —E{(ﬁe()ﬁ) ho(X2)) X1}
= —n7! Z E(X1|X5)[6,4Y; — my (X, a) } + miy(X;)
—mY(Xj)] —n! ZIE(X1|X2j)[( 0;) (X, )
()] + oy ).

Introducing a U statistic and using the same arguments as [,,3 in the proof
of Lemma 1, we have

1SS B Xa) (1 — 6) [ (X, a0) — m (X,)}]

=1

n X,;,Y))
—p-t L= Y) gy x 5;{Y; —m + 0,(n=1/2),
; A7) E(X1]X2;)0;{ Y(X;)} +0p(n1?)
which leads to
0; 0
VX, Y0) = (X“E)Eoc |Xzz>{Yz i (X))}
X1|X21 {m mY(XZ)}
_ 0
— —B(XX) L gy Y= m ()

Thus, we verify (B4). Some simple algebraic manipulations show

A= %E{w(y, X,0,ho)} = —E{(X1—E(X1]X,))" X1} = —E{Var(X;|X,)}.

With the true response model, we define a nonparametric estimator Onp of
6, which is the solution to G, (0, hg, ) = 0, where
. 1< . ) .
Gu(0, g, @) = S {5:0(Vi, X, 0, (X)) + (1= 88X, 0, g, )}
i=1

(52.2)
in which my),(X;, 0, hg, @) is defined in equation (2.4). Using the results of

Theorem 1, the asymptotic distribution of Onp is given by

n?(Onp — b0) 5 N(0, %),
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where ¥ = AT AT, Ty = Var[0{m(X,Y)} (Y, X, 6, ho) —my, (X, bo,
ho)} +m%(X, 0o, ho) + V(X,Y,6)]. Also, if mgj(Xi, o, ho) = E{¢(Y;, X;, b0,
ho)| X, 0 = 0} = E{v(Ys, Xs, 60, ho)| Xi} and m(X;) = E(Y|X:,0 = 0) =
E(Y|X;) are true, thus we have

4]
¥ =A""Var m{X1 — BE(X1|X2) HY — X[ 0y — ho(Xo)}|[A™T.
The equality is true because E{¢(Y,X,0y,ho)|X} = 0 and E(Y|X) =
XITQO — hO(XQ)

Thus, our presented methods and theories in the paper are fully illus-
trated for a special case. Using the same arguments as those used in the
Chen and Van Keilegom (2013), we can further apply our proposed ap-
proach to a single index regression model. To save space, we here omit the
details.

S3 Robust estimation via validation sample

To study the robustness of our proposed Propensity-Score-Based Nonpara-
metric Imputation procedure, following Kim and Yu (2011), we first con-
sider a simpler setup for estimating 6, defined via estimating equations
of the form ¥ (Y, X, 60y, hg) = Y — 0y, that is, consider the estimation of
the population mean 6, = E(Y) under MNAR assumption. Define Oy =
nt Y {0:Y 4 (1 —6;)mY (Xi, &)}, where m (X, o) = D0 wio(X, ap)Y;
with wio(X, Oéo) = 5ZO(X1, Y;‘, Oé)Ka(X — Xl)/{ZZ:l 5kO(Xk, Yk, O{)Ka(X —
Xy)}. Here dy, satisfies Y | Q1(X;, Vi, &) = >0 (1=8;)ri{Y; —m9 (X, &y
)} = 0, where 7; is an indicator, which takes 1 if individual ¢ belongs to
the follow-up sample and 0 otherwise. In the following proposition, we
study the asymptotic properties of 8,; in the presence of possible model
misspecification.
Proposition S1. Suppose that the assumptions of Theorem 1 hold, except
that the parametric response model (2.1) is misspecified. Assume that the
estimators ¢, satisfies Y . (1—6;)ri{Y; — (X, &)} = 0. Then, we have
nY2(0,;—00) 5 N(0,02), where o = Var(ny;) in which ny; = md (X, a*)+
{2(1=8)+ 0 H{Yi—mY (Xi,a")}, m§ (X, ) = B{6Y O(X, Y,a")| X}/ E{
O(X, Y,a")|X}, v=E(r|d =0), and a* is the probability limit of ¢.
Next, we consider another simpler setup of estimating the distribu-
tion function (i.e., F(y) = P(Y < y)) of the response variable Y. Define
Fo(y|Xi,0) = S wio(X,)[(Y; < y). Then, using our proposed im-
putation approach, a semiparametric estimator of F'(y) under MNAR can
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be obtained by Fsp(y) = n 'SP {6:I(Y;: < o) + (1 — 6;)FL(y|Xi, &)}
in which &, satisfies Y | Q2(X;,Y:, &) = >0 (1 — o)r{I(Y; < y) —
F{}(y|Xi,dv)} = 0. The following proposition presents some asymptotic
properties of the estimator ng(y) in the presence of possible model mis-
specification.

Proposition S2. Suppose that the assumptions of Theorem 1 hold, except
that the parametric response model (2.1) is misspecified. Assume that the
estimators Gy, satisfies S (1 — 6;)r{I(Y; < y) — F2(y|X;, )} = 0. For
any given y, we have nY*{Fsp(y) — F(y)} 5 N(0,02(y)), where o2(y) =
Var (1), 12 = Fy (Y| Xi, o) +{ri(1=0:) /v + 6 H{I(Y: < y) — FP(y] X, 0"},

Fy(ylXs,07) = E{QO(X.Y,a")|X}

v = E(r|d =0) and o* is the probability limit of &.

Following the same arguments as discussed in Theorem 3 in Kim and
Yu (2011), we can obtain that the validity of estimators 0y, and Fgp(y)
does not depend on the posited parametric response model, and the role of
response model (2.1) is to improve the efficiency. However, in evaluating Onr
and ng(y), estimating parameter « in a parametric response model may
involve solving some under-identified estimating equations @ (X;,Y;, @) and
Q2(X;,Y;, a) with respect to «, which can lead to infinitely many solutions.
To address the issue, we propose estimating response model by solving equa-
tions 1" | ©;(X;, Y;, o) = 0, where ®;(X;,Y;, a) = (Q;(X;,Y;, a), Q) (X3, Y,
)" for j =1 and 2, Q1(X;,Yi,a) = (1= 6:)riC(X){Yi — % (X;, én)},
Qa(Xi, Yiva) = (1= 0)rC (X {I(Ys < y) — F2(y] X, 60)}, and C(-) is an
arbitrary user-specified vector function such that ®; (j = 1, 2) has the same
dimension as a.

Proof of proposition S1. Define (o) = n=t 320 {6,V +(1—8;)m% (X;, ) }
+n Y (1=6,)2{Y; =l (X;, ) }. Tt is easy to show that 0y (dy) = O,
and

J 4 N
E{a—aéM(a)|a—a }—0.

This, together with the arguments of Randles (1982) and the fact n'/?(a, —
a*) = 0,(1), implies that

~

Br(ay) = Oar(a®) + 0 (n72).
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For 0,(a*), we have the following decomposition

() = %zf;{m+<1—6i>m°y<xi,a*>}
3= ) Y = m (X 0))
1 N

(o) —ra” MY (X, ) = mi (X, %)}
= an + Vn2 + Vn?)
Applying the same argument given in Lemma 1 and using the fact that

v = E(r|6 =0, X), we have V,,3 = 0,(n"'/2). Then, the proof of Proposition

S1 is completed. n

Proof of Proposition S2. Denote

{G(Y; <)+ (1= ) F(y| X, )}

NE

ﬁSP(yva) =

1

SO = 6){I(Y; < y) — Fy X0 a)).

=1

1
n;
+

3I*—‘ﬁ

Some simple algebraic manipulations show
. . A 0 - X
Fsp(y,ay) = Fsp(y), and E a—aFSP(yaoé)’a =a =0,
where o is the probability limit of &,. According to Kim and Yu (2011)

and Randles (1982), using n'/2(&, — o*) = O,(1), we have Fsp(y,dy) =
Fsp(y, o) + 0,(n"1/2). For Fsp(y, a*), we have

Faplpa’) = 13RI < 9)+ (1= 5) RylXsa")
3= ) I < ) — Pl )}
S = 8) = ) {EL X %) — FYIXG. %)
|4

n1(Y) + Vaa(y) + Vas(y).

According the same argument given in Lemma 1 and using the fact that
v = E(r|§ = 0,X), we have that n'/2V,3(y) = 0,(1). Hence, the proof of
Proposition S2 is completed. O]
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S4 Lemmas
Lemma 1. Assume that the regularity conditions (C1)-(C4) hold. Then,

we have

1 .n
gn<00ah07a0) = EZ|: (X Y){w(Y;AXueOahO)_m'LO/;(XZ’eO)hO)}

+m?/’(le HOa ho):| + Op(nil/Q)'

Proof. By the definition of G,, (0, hg, ), we have

1 n
g (907h07a0) - ﬁ Zél{w(K7Xi7907h0) mq/;<X27007h0)}
=1
1 n
_’_E Z m?p(XZ) 907 h/(])
i=1
1> R
‘|‘ﬁ ;(1 — i), (X, 0o, ho, o) — My (X, 00, ho) }
= [nl + In2 + In3

Define 7(X) = F(0|X) and G(X) = f(X)(1—-n(X)). From E{JO(X,Y, ap)|X}
— 1—7(X), using the kernel regression method yields G(X) = n~* > -1 Di(X),
where D;(X) = 0;0(X,,Y;, a9)Ko(X; — X). Then, for 1,3, we have

nt Z?:1 D (Xi){v(Y;, Xj, 00, ho) — m?p(Xj7 0o, ho)}

Ls = L E0-4) G(X)
—l—% Zn:l(l — ;) {my(Xi, 00, ho) — m%(Xi, 6o, ho) {1 — GA(Xl)/G(XZ)}
L1y nt 30 Dy (X ){m (X5, 6o, ho) — me,(Xi, 0o, ho)

1—
2 5087 G(X)
= In31 + In32 + Inss.
We first investigate asymptotic properties of 1,31 and I,33.
Let S - { 7 ]aé} BTZ)( ) Wy O(Xja ]aao){mw(X 007h0) -

mzp(Xza 007h0)} W = 0; O( 7 j7a0){¢( 007h0) (X 907h0)}7
B (Xi) = n~' 30 Ko(X;=Xi)By(X;, Xi), and SDn(Xi) = nfl 2 i1 Ka(X—
i)W;. Define a kernel function of the U statistic for all pair (i, j):

H(S;,5)) = 5 Ka(Xi = X5){(1 = 0)Wi/G(X;) + (1 = 3)W;/G(X5) }.
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It is easy to show that E(W,) = 0. Therefore, we have

E {m(xil—_ );j)—ﬂg(ig)m }

= @E’{I{GQXZ — X])W]|Sz}}
= ?T)%;E{Ka()(l — XJ)W3|X1}}
= £ LB~ ) ROV X)) )

According to the symmetry of U statistic H(S;, S;), we have E{H(S;,S;)} =
0.
On the other hand, we have

14,
E{H(S;,5;)|8;} = QG(X})E{Ka(Xi—Xj)WJSj}
J
W, -6,
e {Ka(Xi - Xﬂm@}
= Jl + JQ.
From E(W;|X;) = 0, we have
15,
‘]1 - 21g<AXg)E{Ka(XZ - X])WllXJ}
= — T E{K.(X: — X;,)EOW;|X;)|X;, X;} = 0.
29(X) { Kl DEW;]X5)] it
For J5, we have
Jo = TE{Ka(Xi_Xj)WLXJ}
_ % [ Ka(z — X,)de = W;/2 + O, (a?)
1 —7m(X;,Y)) 0 2
= W@W(Yj, X, 00, ho) — my, (X, 00, ho)} + Op(a®).

Combining the above equations yields

Hy(S;) = E{H(S;,S;]S))}
{1 —7(X;,Y5)}0;{0 (Y5, Xj, 6o, ho) — m(X;,00)}

_ T {1+ 0(a?)}.
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Now, we show that

S B 6 = O, -

To save space, we only prove (S4.3). (S4.4) can be similarly shown.
It can be shown that

n Y (1= 6)en(X0)/G(X;) =Y H(S;, Si) + Un,
i=1 =1

where U, = 2n237" | 37" H(S;, ;). By the definition of H(S;,S;), it
is easy to obtain that E{H(S;,S;)} = 0. By the law of large number-
s, we obtain that n=2> " | H(S;,S;) approximates o(n™') in probability,
which indicates that it suffices to only consider statistic U, in statistic
nt (1=6:)pn(X;)/G(X;). Tt is easy to show that ¢; := Var{H(S;)} =
E[{47T(Xi’ Y;)}il{l - 7T<X%7Y;)}{¢(Y;7 X, 0o, hO) - m?p(XZ’ 0o, hO)}®2](1 +
O(a?)). Similarly, we have

G = Var{H(S;,S;)}

_ Lo L=0)WP\ 1] e (1 - o)W
- Z—LE{KG(Xi—Xj) ) }%—ZE{KQ(Xi—Xj) K] }

= K1+K2.
For K, we have

1 ) (1 — 6,V
K, = ZE{E{Ka()g—)(]-)WDQ,YZ,(S}}

= iE{W@E{E(K?(X X)( )|X X],Y;)‘XMY;'}}

G2(X;)
_ L e KeXa = X5 e
-3 s{w E[{ (§§§1}<X<1 R
= EE W G2(;(i) J K2 (u)du o + 0,(1)

L { (1 — 7(X;,Y2)* (0 (Yi, Xi, 60, ho) — mY(X, 0, o))

da (X V) (1 — (X)) [(X) J K2<u>du} +0p(1).
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Similarly, for K5, it can be shown that

1 (A= m(X Y)Y, Xi, b0, ho) — mg (X, 60, ho))¥? wdu S + o
o= b (X V)1 = m(X) () T} + o),

4a

Combining the above two equations yields

_ L [ (X YRR Y X5 B, ho) = m (X, B0, ho)l™
= 2aE{ "X V)1 - 2(X)]f(X) J }+ 0

N 2 N
Define U,, = — Z? L H1(S;) from which it can be shown that EU? = 4(;/n.

Also, by the definition of U,, we have E(U?) = 4(n — 2)¢;/{n(n — 1)} +
2¢/{n(n — 1)}. Combmmg the above equations yields E(U, — U,)?
2 /{n(n — 1)} + O(n=?). Thus, we obtain

U, = @+{a%%ﬁ+0( )E
n_ 9 3> Xi, 0o, ho —m) i» 00, ho —7(X;, Y
B SRS R ﬂéf(m R = (X0 V) )y
+0((n%a)"2).

This completes the proof of (S4.3). Using the same arguments, we can
prove (S4.4).
It follows from (S4.3) and (S4.4) that I,33 = 0,(n"*/?) and

(1 —7(X4, 7)) 0 (0 (Y3, X4, 00, ho) — m, (X5, 00, ho))

— ~1/2y

By a standard argument, we have I3 = op(nfl/ 2). Combining the above
results leads to

Gi(f0 s 0) = 13 Gl (Y5, X B, o) = (X, )}
—|—l i (1 — 7(X4,Y3))0i (0(Yi, X, 00, ho) — m (X5, 0o, ho))
N =1 W(Xz‘,yz')
= %Zil ﬁ{iﬁ(ﬁ,){u 0o, ho) — m,(Xi, 00, ho)}
+% iém?ﬁ(}(u 00, ho) + 0p(n~1/?).
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Therefore, we have

1 i
Gn(0o, ho, o) = ﬁ;m{w<}/ﬁX7L7807h0)_m?p(Xi700>h0)}
1 .n
+E Z 1/’(X“ 00, ho) + op(n’l/Q).
=1

This completes the proof. O

Lemma 2. Assume that the regularity conditions (C1)-(C4) hold. Then,
for any estimator & of a, we have

Gn (0o, ho, &) = G, (6o, ho, g) — H X (& — o) + Op(nfl/Q);

where H = E[(l — 5){@/1(Y,X, go,ho) — m?p(X, 90,h0,a0)}{z(X, Y, Oéo) —
mY(X, ap)}'] with 2(X,Y,a) = dlogit{n(X,Y,a)}/da and m°(X,a) =
E{z(X,Y,a)| X, 6 =0}, and logit(p) = log{p/(1 —p)}.

Proof. By the definition of G, (6o, ho, &), we have the following decomposi-
tion

gn(e()a h07 d)

JRL 1 n
= 5 Z 52{¢(K7Xu 907 hO) - mgz;(Xh 907 hg)} + E Z mg;(le 00) hO)
=1 =1
12 R
+-> (1= 5‘){7”%()(1'7 0o, ho, ap) — m%@% 00, ho) }

nz 1
+ = n Z( ){ 1 O(Xi7807 h()?d) - m?p(XiaHO,hoaao)}
=y + In? + In3 + [n47

where 1,1, I,,2, I3 are defined in Lemma 1. We now consider [,4. By the
first-order Taylor expansion of mg(X,-, 0o, ho, &) at ap, we have

1 - am?p(*xi?eO?hOJOéO) ~ ~
I, = EZ(l—éi) BaT X (& —ag) =W x (& — ),

i=1

where

Ot (X, 6o, ho, o) 5 OFulools B Faloolds 1 0Fu(0o)Ys

da’ il]:z'j(ao) {iﬂj(ao)}Q
in which 1; = (Y}, X;, 0, ho), Fij(ao) = 6;0;(a0) Ko (X; , 0F (o) =

0;000;(00) Ko(X;—X5), Oj(0g) = O(X],Y],ao)andﬁO(ao): O;(ap)/0a.
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Define m;(av) := 7(Xj, Y}, ap) and z;(ap) := Ologit{m;(c)}/0c. By simple
calculation, we obtain 87T](a0) /0o = Wj(ao)( m;(ap))z; (), which leads
to 00;(ag) /Do = (1 — m; () zj () = —Oj(n)z(w). Let m(X, o) =

E(z (X Y, ap)|X,0 =0) andmw(X, ap) = E( (X,Y, )Y, X, 0y, ho)|Z,
= 0). Using the kernel regression method yields

> ) () 32 Fijlao)z(ao)y;
mg(Xi7O[()> = = oy s mg¢(Xi,a0) = oy .
; Fij(ao) Z Fij(ao)

Combining the above equations leads to

8m10p(XZ7 907 h07 Oé(])
Oa

= (Xl,e(),hg,ao) (Xz,Oé()) 2¢(Xi7040>.

Let A, (X;) = G(X;) — G(X;). For the sake of notation simplicity, we tem-
porarily denote mi,(X) = my,(X;, 0o, ho) and 1 (X;) = i, (Xi, 6o, ho, o).
Taking further decomposition for W, we have

n 50 (X
R R
= %ié(l — 0i){m% (X)) ( X, o) — 1y (X, o) }
- %12":1(1 — ) {mg (Xi)md (X, ag) — my,(Xi)m2(Xy, ao) }
S 8, (6 ) (52X, 00}
= W —W;,

For Wy, we have

Wi = 2330 6)md( X an) (i (X,) — m (X))
1350 = 8, a0) — m(Xs, a0 i (X)) = m (X,))
e 350 ) (X6 (X, ) = (XK )}

.

= Wi+ Wig + Wis.
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For W5, we have

Wo = =331 5) il (X a0) = m (X)md(X;, )
- %i(l R, (X 0) =m0, (X, )}

+ 2(1 — o) {m2, (X, ag) — my (Xi)m2(Xs, ag) }
= W21 + Waa.

It follows from standard arguments that Wy, = 0,(n~%/2). Using the similar
arguments given in proof of Lemma 1 for I3, we have

Wh = é d; W;(TJ (C)YO) {¥; — mw( j)}m2<Xi) + Op(nfl/Q),
% z:: #&O;O){Zj(ao) —m3(X;)}mb, (X}, 0o, ho) + 0p(n~13),
% ZZ: #E]O;O){Zj<a0>¢j — m2¢(X, 040)} + OP(TL_I/Q),

By the law of large number,

Wll - [( >{¢<Y7 X7 007h0) _mzo/;(X7 607h07a0)}m2<X7 Oéo)] +OP<1)7
Wiz = E[(1 = 6){z(c0) — m2(X)}my (X, 00, ho) + 0,(1),

Wor = E[(1 = 0){z(a0)y — m2,(X, a0)} + 0p(1),

Was = E[(1 = 6){m2,(X, ag) — mg,(X)m2(X, ao)} + 0p(1).

This leads to
W =—-E[1-0){v(Y, X, b, ho)—m?p(X, 0o, ho, a0) Hz(X, Y, ag)—m2(X, ag) } '] +0,(1).
It follows from Lemma 1 and the above arguments that
Gu(0o,ho, &) = Gn(0o, ho, ap) — H x (& — ap) + 0,(n1/2),
This completes the proof. O]

Lemma 3. Suppose that the regularity conditions (C1)-(C4) hold. Then,
we have

1 n
Qn<Oéo, 90’ ho) = ﬁ Z Di(907 h07 Oéo) + Op(n_1/2)7
=1
aQn(Oé 79 7h)
% H + 0p(1),

where Di(007 h‘07 O[O) = [(1_6z)rz/y_6z{ﬂ-_1<XZJ }/:L'? Oéo)_l}]{'l/}<}/;, Xi7 007 hO)_
m%(Xi, 0o, ho, )}, and H is defined in Lemma 2.
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Proof. For Q,(a,0,h), we have

1 .
=1
1 .
- Z;(1 — 0 {mY(Xi, 0, h, ) — my(X;,0,h, )}
12 YA
+ﬁ z:zl(l —6;){1 — j}{m%(Xi,Q, h, o) — m?p(Xi,Q, h,a)}.

Using the similar arguments as given in proof of Lemma 1 for I3, we have
n=t Y (1= 0){md (X5, 0o, ho, o) — M (X, b0, ho, ag)} =071 300 6i(1 —
mi(ao)) {mi(ao)}H{(Yi, X, 0o, ho) — mi(Xi, 00, ho, )} + 0y(n™"/?), and
Y (1=6;) (1=ri /) {1, (X5, 6o, ho, ag)—mS,(Xi, 0o, ho, ) } = 0p(n™/?2).

Using the similar arguments as given in proof of Lemma 2 for I,4,
together with E{r|d =0, X} = v, we have

0Qn(aozogé,T90, h) _% Z:il(l B 50%87%2)()8(23 h, «)
J omY (X;,0,h, «
B _52(1—50 w(aaTaAo)X -
+%§1(1 —8)(L—ri/v) mw(a;T» )
= H+o0,(1)
Lemma 3 is proved. O

S5 Proofs of Theorems 1 - 5

Proofs of Theorem 1 and Theorem 2. We only prove Theorem 2. Theorem
1 can be proved in the same way by setting & = «ap and using Lemma
1. Define G(0,h,a) = E{d(Y;, X;,0,h,a)}, where ¥(Y;, X;, 0, h, ) is de-
fined in equation (2.3). It is easily shown that [|G, (6, h, &) — G(0, b, ap)|| <
1Gn (0, by &) = G (0, hy o) |+ [1Gn (0, by ctg) =G (0, h, ) ||, where G, (0, h, o) =

n~t 0 (Y5, X, 0, by «). From condition (A3), we have, for all sequences
On = 0p<1)a

sup 1Gn (6, hy &) — G (6, h,y )| = 0,(1).
0€0,||h—ho||<on
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It is easily shown that supgeg 4o <on 1Gn (0, hy ) — G (0, b, ) || = 0,(1).
Therefore, we obtain

sup |G (8, h,&) — G0, h,ap)|| = 0,(1).
0€0,||h—hol|<en
Under NMAR assumption, and when the response model (2.1) is correctly
specified, we obtain E{QH(GO, ho,ap)} = GV(HO, ho, o) = G(6o, ho) = 0. This,
together with the construction of estimator gp, conditions (A1), (A2), and
applying Theorem 1 in Chen et al. (2003), implies the uniform consistency

of Hsp.
Next, we investigate the asymptotic normality #sp. Note that

1G. (0, h, &) — G(0, b, a9) — Gn(00, ho, &) + G (6o, ho, )|
< ||gn£97 h,&) — gn(gv h,op) — gn@m ho, &) + gn(QOa ho, o) ||
+|Gn(0, h, a0) — G(0, h, ag) — G (6o, ho, ) + G (6o, ho, )]

Using condition (B5) yields
Sup#< ||gn(07 h) d) - /gvn(07 h7 O[0> - gn(907 h07 &) + /gvn(007 h07 O[())H = Op(n71/2)7

where sup* is the supremum over all |0 — 0| < o, and |h — hlly <
On, with 0, = o(1). Under NMAR assumption, and when the response

model (2.1) is correctly specified, we have that (i) (Y;, X;,0, h, ) =
00 (Y3, Xi, 0, h) + (1 = 6;) E{y(Y;, X5, 0, h)[X;, 6, = 0}, (ii) 5(97 h, o) =
G(0,h) and G (6o, ho, ag) = G(6o, ho) = 0. Therefore, by condition (B2), for
j=1,--- qand for fixed (6,h) € © x H,

-E|:Sup>|<>k |1;j()/;7X’L79l7 h/,Olo) - &](K)leev h,OZ0>|
= F [sup** 095 (Y, X, 0 h') — 0;(Y, X, 0, h)
< 2E{sup™ |9;(Y, X, 0, h') —;(Y, X, 0, h)|},

where sup*™* is the supremum over all [|§' —0| < o, and ||h’ —hl||» < on, With
on = o(1). Following the argument of Theorem 3 in Chen et al. (2003) and

using condition (B3), we have 1G (0, hy ) — G(B, h, avg) — Gn(bo, ho, ov0) +
G (0o, ho, a9)|| = 0,(n"1/?). Therefore, we obtain

Sup* Hgn(ea h7 d) - 9(07 h) - gn(907 h07 OAé) + g(007 hO)H = Op(n_l/Q)-
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Now we define the linearization £,,(0) = G, (6o, ho, &) + A(0g, ho)(0 — 6y) +
['(0g, ho)[h— ho]. By conditions (B1)-(B5) and using the arguments of Chen
et al. (2003), we obtain

1Gn(Osp, h, &) = La(Osp)|l
< |Gn(bsp, hy &) = G(Osp, h) — Gu(bo, ho, &) + G (bo, ho) |
+[1G(0sp, h) = G(Bsp, ho) — T'(6o, ho)[h — hol|
+1G(0sp, ho) — A(bo, ho)(sp — bo)|| = 0p(n~"7?).

Using the arguments of Pakes and Pollard (1989) and Chen et al. (2003)
again, we have that ||G,(0, h) — £, (0)| = 0,(n~'/?), where

n'2(0 — 0y) = —(ATWA) T ATWn2{G, (0o, ho, &) 4 T(6, ho)[h — hol},

is the minimizer of £, (), and n'/?(Asp — 0) = 0,(1). This, together with
Lemma 2 and condition (B4), implies that
Osp—0p = —n 1> (ATWA)IATW{S(X;, Yo, ho)—H x (G—ag) }+0,(n~12).

i=1
Since & is independent of zﬂ(Y,-, X;, 0, h,«), it follows from the above argu-
ments that n'/2(0gp — 6,) A N(0,%5). Theorem 2 is proved. O

Proof of Proposition 1. Let @n(a, 0,h) =nt 3" (1=0;) 2 {(Y;, X;,0, h)—
my(X;,0,h,a)}. Note that, under condition (A3), we have

sup™* || Qn(a, 0, h) — Q(a, 6, h)| N
< sup™* || Q,(a, 0, h) — Q,(a, 0, h)|| + sup™* || Qn(c, 0, h) — Q(c, 8, h)||
= Op(1)>

where sup*** is the supremum over all a € B,0 € O, and ||h — ho||» < on
for all positive values g, = o(1). Using the argument of Theorem 1 in Chen
et al. (2003) implies the uniform consistency of é.

By Q(ag,0,h) = 0 for any §# € © and h € H, we obtain that estima-
tions of nuisance parameters ¢ and h in (3.2) do not affect the asymptotic
properties of a. That is, we could consider the asymptotic properties of &,
for some fixed 0 and h in (3.2). Therefore, the asymptotic linear expansion
for a, is given by

*

— S
Gy —ap = —(H TWH) " HTW > " Di(0, ho, ) + 0,(n2).
=1

The proof is completed. O
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Proof of Theorem 3. To prove Theorem 3, we should first consider the asymp-
totic prosperities of G, (0o, ho, &) when &, is computed from the validation
sample. According to Lemma 2, together with proposition 1, we have

N . 1 n (57, 0 1 n 0
gn(eo)hmaV) - nz_zl{ﬂ'(XuY;) {¢z mw(Xz)}+ nizzlmzp(Xz)
+H(HTWH)™ H WD;(0p, ho, Oéo)} + 0,(n71/2).

The rest of the proof of consistency and normality is similar to that given
in Theorem 2. O]

Proof of Proposition 2. Following Qin et al. (2002), we define some nota-
tions: ¢ = >\1(1 —(.U), n= (OJ,W, C)Ta Mo = (Oéo,td(), O)T and a, = nnl_l _w()_la
where (ap,wp) denotes the true value of (o,w). Denote E and Var as the
expectation and variance with respect to F(X,Y) and E¢ as expectation
with respect to the conditional distribution m(X,Y, ag)dF(X,Y)/wy. Let

®i1(M9) = Odim(a)x1,

Gia(mo) = 1iuowOW[1(ao)(W¢(ao)—wo),
Gislm) = i) (X)),
L= R Be{n (o) log o),
, = _(1_—;}0)2190{%2(040)(%(040)—&10)2}7
L = e Beln )X (o) )
and
0 %m(ao) w09<Xi)aa7Ti(a0)
o) oy ) (X)) )
B WoOa T &g Wo T\ &) — Wo Wog )\ T () — Wo
M= T wefog) (- wPron) (L woPray)
wog(X;)Oam;(xg) _ wog(Xi) W%Q(Ui)g (Xi)
(1 = wo)m(ao) (1 — wo)?77 (an) (1 —wo)mf (o)’

Then, using the arguments of Qin et al. (2002), we obtain

n12(1) — o) = U='0 12 32 65(m0) + 0,(1) 5 N(0, UV (U,

=1
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where U = —woEc{M (o)}, V = Var{¢;(no) } and ¢;(10) = 0i(di1(m0) ", ¢i2(m0) T,
bis(no) )T+ T(1/wo — 8;/w}) with T = (Z],Z, ,Z] ). Consequently, the
asymptotic expansion for &, could be given by

n1/2(ds —ap) = n=/? Z Wi(ap) + Op(l)a
=1

where ¥;(«) is the influence function, which is given by the appropriate
submatrix of the matrix U~¢;(np). O

Proof of Theorem 4. According to Lemma 2 together with Proposition 2,
we have G, (6o, ho, &) = n™' 301 {(vs — m(Xy))/7(X5,Y5) + my(Xi) —
HV;(ap)} + 0p,(n~Y/2). Proof of consistency and asymptotic normality is
similar to those given in Theorem 2 and Theorem 3. O]

Proof of Theorem 5. The proof of Theorem 5 can be easily obtained by
using the same argument as given in the proof of Theorems 1-4, and hence
is omitted here. O
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