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Supplementary Material

This note contains technical proofs of Theorems 1 and 2.

Proof of Theorem 1

We first need to show that An(K ) lie in a sufficiently large closed ball in R??, i.e. we
need to show that both the estimated regression coefficients and the estimated cluster
centers lie in a closed ball B(R) centered at the origin and of radius R when n is
large enough. Note that since n'/2),, — 0, the minimization of (8) is equivalent to the

minimization of

o~ 1)
B(APo), st Y Y ’”’ < sn, (S

where s,, — 00 as n — co. By the fact that s,, — o0, it is enough if we can establish
the asymptotic consistency for the estimation in the unpenalized framework.

Note that we need to prove the finiteness of both the estimated regression co-
efficients and the estimated cluster centers. For cluster centers, we can employ the

techniques used in Pollard (1981) for proving the consistency of cluster centers in k-
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means clustering algorithm. For regression coefficients, special care need to be con-
sidered. Let A,, denote the optimal subset which satisfy ®(A,,, P,) = mg(P,). Then
A, is the solution of the unpenalized composite regression model (3) since solving
MINC B ) (B ) > = xI Bew)? + 7% — e 1P} /n is equivalent to
finding a A € Ak such that (A, P,) is minimized. We need to first show that there
exists a sufficiently large closed ball which contains all the estimated parameters A,
when n is sufficiently large. Then the desired strong consistent results can be obtained
using the property of uniform convergence of (A, P,) to (A, P) within the closed
ball.

According to strong law of large number (SLLN), for any fixed A, we have ®(A, P,)
— ®(A, P). The first step is to show that there is at least one point of A,, contained in
a closed ball. By definition ®(A,,, P,) < ®(A, P,) VA € Ak. Choose A = A, which

consists of a single point at the origin, i.e. 3, = 0 and p, = 0. Then
B0, P) = [+ IP)Px.dy) > [ (7 + [P P(dx. dy) = By, P52

For any given A, = {(B1, 1), ", Bk #x)} € Axk. Denote C(:) the corre-
sponding partitioning of samples into & groups. The feature space R? can be divided
into K distinct regions By, k = 1,--- , K such that if x; € By, then C'(i) = k. If, for

infinity many values of n, no point of the estimated cluster centers (g, - - - , ) were



contained in B(M ), then

K
1
O(An, Py) = EZ > Al —x 8 + 7lxi — I}
k=1 C(i)=k
- K
SIS el
k=1 C(i)=k
- K
= EZ > (bell® = 25 e + [l ?)
k=1 C(i)=k
- K
> ;Z (leesll* = 2l1xill[lpegll) > @ (Ao, P)
k=1 C(i)=k

for large enough M since £ >~ | |x;| is finite. This would make ®(A,, P,) > ®(Ay, P,)
infinitely often: a contradiction. Denote u, = 3,/|3,] € O the unit vector for
B, Define cluster index &} = argmax,, (ZC(i):k ]xiTuk|2> and function ¢(x, 4,,) =

Zszl IxTui|21(x € By). If for infinity many values of n, no point of the estimated

regression coefficients (3, - - , B, ) were contained in B(M), then
1
NS > (007 ol i) > 5 )
"= e C(i)=ky,
1 1
> {0 = 2AuilIxill 1By | + (< Biy)*y = — D (1B Il I — all B |
C(i)=k3 C(i)=kx
K 2
11 H/Bk: I
2 s 2 Il —alligl = [ o A)Qudx) ~ al B
k=1 C(i)=k

Hﬁk I { [ ot )@l - Q) + [ o(x An>c2<dx>} —allBg

where a is defined in Condition 2. Because [ ¢(x, A,)Q(dx) < oo and the sample
paths of @, can get uniformly closer to @, the first term [ ¢(x, A,,)(Qn(dx) — Q(dx))
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approaches to 0 for large enough n . Therefore according to the definition of wy (Q) in

(10) and Condition 1,

2
vt ) > P80 o a0 -l

U)K(P)

> - - * 2_ *
= K ”ﬁan aHﬁkn

> ®(Ag, P)

for large enough M. This would also make ®(A,,, P,) > ®(Ao, P,) infinitely often: a
contradiction.

We use inductive method. The theorem can be proved for X' = 1. Assume the
conclusions of the theorem are valid for 1,2, --- | K — 1 clusters. For K > 1 clusters,
if some points in A,, are not eventually contained in B(M ), we can obtain a set of
K — 1 or less points by assigning the data belonging to the clusters outside B(M) to
the cluster inside B(M). From previous results, the closed ball B(M) of radius M
and centered at the origin contains at least one point of A,, for n large enough. Choose
€ > 0 to satisfy my (P)+¢e < mg_1(P). Denote fy(x,y) = (y—x7 B;)* +7|x— . ||*
fork =1,---, K. Without loss of generality, assume (3, p1) is inside B(M ) and gt
or B is outside B(M), then the increasing due to assigning data in cluster K to cluster

1 is at most

E, — / AT (i y) > fr(x.y)) Paldx, dy)

- / ) (i y) > fie(x ) (I + 52 > 5)
+I([|x[1* + y* < S)}Pu(dx, dy) (S3)

Since ||3,|| < M and ||p,|| < M, the first term of (S3) is smaller than ¢/2 when S is
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large enough according to Condition 2. For the second term, we can show that

A" + 57 < 5)

< {(S+ SM)2 + T(HXH2 +25M + Mz)}I(HxH2 + y2 < S)
and
Fre G112+ y* < S) > {7 (%11 = 28l || + e IIP)(NI%)1* + 9% < S).

If o is outside B(M ), the second term of (S3)

/ AL (i) > frlx ) I + o2 < S)Padx, dy)

< / AL ((S+SMY2 7+ (M + 8) > (|| — S)?)

I([x[* +y* < S)Pu(dx, dy)

which is 0 when |py| > Cy = S + /(S + SM)?/7 + (M + S)2. Similarly we can

show
S I[P +y? < 8) < {y? +25°M + S2M? +7(S + M)*H([|x]]> +y* < S)
and

Fre (e I(x|* + % < ) > (" = 28|x" Bl + Ix" B (Ix]* +y* < S).



If B is outside B(M), the second term of (S3) is

[ R (i) > ficle) TP + 37 < S)Pa(dxdy) - (54
< /fl(x, YIL{S*(M +1)* +7(S + M)* > (|x" Bk| — 9)*}
(]2 + 42 < S)Py(dx, dy)
[ R ("Bl < Co) (I + 7 < 5)
[(Puldx, dy) — P(dx, dy)) + P(dx, dy)}.

IN

where Cy = S + /S2(M + 1)2 + 7(S + M)2. The first term of (S4) approaches to
zero for large enough n. According to Condition 3 the second term of (S4) is smaller
than €/2 if |3, | > C5/dp. Therefore from (S3), we get F,, < ¢ if either pj or B is
outside of the closed ball B(R) with R = max(Cy,Cy/dy). The set A% obtained by
deleting from A,, all points outside B(R) is a candidate for minimizing ®(-, P,,) over
sets of K — 1 of fewer points; it is therefore beaten by the optimal set B,, of K — 1

points. Thus
O(Ax, P,) > (B, P), (S5)

which by the inductive hypothesis, converges almost surely to my_1(P). If A, ¢

B(R) along some subsequence {n;} of values of n, we therefore get

i

mig_1(P) = HUm®(B,,, P,,) < lim igfq)(A;i, P,,) <limsup{®(A,,, P,,) + E,,}

< limsup®(A, P,.) + ¢ = mg(P) +e¢,
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which is a contradiction to m g (P) + € < mg_1(P). Therefore, B(R) contains all the
estimated parameters A,, when n is sufficiently large.

Now we prove the uniform SLLN. Define £, = {A € B(R) : A contains K
points} the collection of all finite subsets of B(R) which contains K points. For n
large enough, it suffices to search for A, € £x. Now we can show that the function
®(A, P) is continuous on E. The convergence is determined by the Hausdorff metric
H(-,-). For A,A" € &k, it H(A,A") < 6, to each (B, ) € A, there is a point
(B'(8), 1(n)) € A such that |8(8) — B]| < & and ||p'(n) — pl| < 6. Define

f(ﬁ,u)(x’y) = (y — xTB)? + 7||x — w||*>. Then

O(A,P)—d(A, P)

) / {(B'r,r;lti'r)lemf(ﬁﬂu')(xvy)—(ﬁfflj?e Af<ﬂ,u)(x’y>}P(dX,dy)

= ) A, 180 g %:0) — Fig g (50| Plax.dy)

< /{QR||X|I25 +[IxI1%6% + 2[1x||ylo + 7 (2l|x[|d + 6% + 218) } P(dx, dy)

< 2Raé + ad® + ad + 7(2ad + 6* + 2R6), (S6)

which is less than € if § is chosen small enough. Here «a is defined in (12). The other
inequality needed for proving the continuity is obtained by exchanging the roles of A
and A’. Similarly we can prove the continuity for empirical measure P, when n is large
enough.

Define Fj a finite subset of B(R) such that each point of B(R) is within a distance

0 of at least one point of F5. Write Ex5 for {A € Ex; A C Fs}. Givena A =

{(Blaul)v T 7(/6[{,#1()} in SK’ there exists a A’ = {(,8/1,;1,/1), 7(:3/K7MIK)} in
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Ex,s with H(A, A’) < 6. Corresponding to each function

¢A (X7 y) = (BI’IE?GA f(ﬁ#;,) (Xa y)a

define two functions

palx,y) = min {(Jly—x"Bl+&)*+7(|x — p| +61)*}
(B.p)ear

¢,(xy) = min {(ly—x"Bl— &) +7(|x — pll - 6)*}.
(B e

The continuity of ®(A, P) allows us to choose appropriate d; such that

[ oatxnPlixdn < [ oatxpPlix.dy) < [ bate)Plix,dy)
and

[ ocPitixdy) < [oax)Putixdy) < [ Gatx)Pa(ax.dy)

when n is large enough. Therefore for any A € £, we have

‘/QﬁAdPn—/qﬁAdP‘ gmax{‘/mdpn—/g_bAdP ,'/QSAdP—/QAdPn}
g’/¢AdP—/QAdP‘+max{‘/q§AdPn—/¢AdP’, /QAdPn—/QAdP’}.

From the fact that ¢4, ¢ , are from Ex s which is a finite set, the second term can be

made less that €/2 for large enough n. The first term can be made less than €/2 by



choosing small enough d;. This completes the proof of uniform SLLN

sup |B(A, P,) — ®(A, P)| — 0. (S7)
A€gy

From assumption, we have
d(A,, P,) < @(A,Pn). (S8)

The right hand side ®(A, P,) — ®(A, P). Apply uniform SLLN (S7) to the left hand
side, we have ®(A4,, P,) — ®(A4,, P) — 0. Therefore ®(4,, P) < ®(4,P) forn
large enough. On the other hand, according to assumption, ®(A,, P) > ®(A, P). So
®(A,, P,) — ®(A, P)and A, — A. This completes the proof of the consistency
for the estimation in the unpenalized framework. By Condition 4 and the fact that
S, — 00, the solution A,, based on the penalized formula (8) will eventually approach

to A,, and thus to A.

Proof of Theorem 2

First we need to prove that the map A — ®(A, P) has a second derivative. The function

®(-, ) defined in (6) can be equivalently expressed as

(A, P) = /Zqﬁk(x,y)[(Bk)P(dx,dy)

=S / 0%, 9) [T 1(Gri(x, ) > 0)P(dx, dy).
k=1

J7#k



Use a 2K d dimensional vector
A(A7 P) = {<A/31(A7 P)a A/le(Aa P))a ) (AIBK(A7 P)? AHK(Aa P))}

to denote the first derivative of ®(A, P) over A such that

Ag (A, P) = 02AP) _ / 1(B) 2258 p gy ay),

9By 9B
0(A, P )
Apr(A, P) = éT’k) = /1(3 )%}Cy)P(dx,dy).

Now take the second derivative with respect to 3, we have

(A P) 524 (x, y)
BB, / 1B)5, pr P )

—Z (aqbkxy 0or(x,y)  flx,y) )
W\ToB, 98T mw(xy)])

82(1)(‘47 P) - o 8¢k(xa y) 8¢] (X? y) f(xa y)
08,08 U\ 08 98T lmuy(x.y)l

where f(x,y) is the density function of the distribution P(x,y) and oy, is the inte-
gration over the boundary surface between B), and B;. Similarly, we have the second

derivative with respect to p

IPP(A,P) 02 Pr(x,y)
—aﬂkaﬂk = /I(Bk)—(?uka,@T P(dx, dy)

Yo, (&ék x,y) 0dn(x,y) f(z,y) )
o O, Opy |mi(x,9)1 )
82(1)(A’P) = —0op (a(bk(xvy) a¢j<x7 y) f(il:,y) )
Opy,Opa, N o ow Imi(xy)|)
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The cross term is

aQCI)(A’P) — —COus (a¢k(x7y) a¢j<xu y) f(ﬁ,y) )
08,01, Y\ 9B, oul Imiyxy)l)

According to Condition 6, all the integrations exist. This completes the proof that
the map A — ®(A, P) has a second derivative. For empirical measure P,, we can

decompose

(A, P)) = ®(An, P)+ ®(A,, Py — P). (S9)

Denote 7, = |[v(A,) — v(A)||, where v(A,) and v(A) are vectorized A, and A.

According to the differentiability of ®(A, P), the first term of (S9) can be written as

®(A,, P) = ®(A P)+ (v(A,) —v(A)TA(A, P)

L0 VAT V) o) 10

n

The second term in (S10) vanishes because A minimizes ®(A, P). Here T is a 2Kd x
2K d matrix representing the second order derivative of ®(A, P) over A evaluated at
A. Define X,, = n'/?(P, — P) as the empirical process associated with the empirical

measure P,,. The second term of (S9) can be written as

®(A,, P, — P)
= n V2P(A,, X,)

= n VHD(A, X,) + (v(An) —v(A)TA(A, X,,) + o(ry)]. (S11)
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Define vector Z™ = —A(A, X,,) which has an asymptotic normal distribution with

mean vector

and variance matrix V is
V =P{A(A,)A(A, )"} (S12)
Substitute (S9), (5S10) and (S11) into (8), we have

W(A,, P,) = W(A,P,)—n2:ZM"(v(A,) — v(A4))

1 " _ " _

+5(v(An) = v(A)'T(v(4,) = v(4))
K d 1A

i Z Z A, |ﬁ | | Bk + Op(n—%rn) + Op(TZ)
k=1 j=1 ij |

< W(A,P,) (S13)
From Theorem 1, we have v(A,) — v(A) = o(1) and r,, = o(1). Therefore
(n)
Op(n727,) + Op(r2) + 0p(n721,) + 0,(r2) + > A 19 = 15 <0

(k,j)eB |/6 |

which leads to

Op(n”27,) + Op(12) + Op(Anrs) < 0.
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From the fact that n%)\n — 0, we have r,, = Op(n*%). For (k,j) € B¢, Bkj =0,

B,Ef;) — 0,(n"z), we have B’}g) = O(n2),). Assume B,Ef;) # 0, taking the derivative

kj

over B,EZ) on both side of (S13) gives

OW (A, P, 1(n Am) = M . A 1

% = -n 2Z,£j) + ij(ﬁ,gj) — Brj) + %mgn(ﬁéj)) + 0,(n"2)
ﬁkj ﬁkj

(0(1) + O,(1) + Oy (n),)sign(5L))].

= N

N

Since n\,, — o0, the third term is bigger than the first two terms, this is a contradiction
to Karush-Kuhn-Tucker condition, thus B,&?) = 0 for all (k,j) € B¢. This proves the

oracle property of the estimator.
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