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S1 Proof of Theorem 1

We first state a theorem from McKay (1985) on the asymptotic number of simple graphs with restricted edges.
Consider a simple graph G(V, E) with m edges and degree sequence d = (d1,...,dr). Let D be an n X n symmetric
zero-one matrix with a zero diagonal that specifies the set of edges that are not allowed, i.e., D;; = Dj; = 1 if

an edge between node ¢ and node j is forbidden, and D;; = Dj; = 0 otherwise. Let A = > di(di — 1)/(4m),

v = ZK].YD”_:l déi’ , dmar = max; d;, and d=2+ dmaz(1.5dmaz + Tmaz + 1), Where Timqy is the maximum column

sum of D. Then we have the following theorem.

Theorem. (McKay, 1985) Suppose dmaez > 1 and d< exm, where €1 < 2/3. Then the number of simple graphs with

degree sequence d and none of the forbidden edges specified in D is uniformly

(2m)!

e [ 4 oA =X ol m) (51.1)

as n — o0.

This conclusion is uniform over all possibilities for d satisfying the constraints as n — oo. We use this theorem
to approximate |Zq| and [Xg)a,;=ol, which will then lead to an approximation of P;;. For the set £4, the matrix D
has 0 for all entries. Therefore e = 0 and v = 0. Since the condition of Theorem 1 requires dmaz = 0(m1/4), we

immediately have dmqe., > 1 and d < exm for €1 < 2/3, i.e., the conditions for McKay’s theorem are satisfied. Also
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O(d? /m) becomes o(1). Applying McKay’s theorem, we have |Z4| is uniformly

(2m)!

e T exp{—A — A\’ +o(1)} (S1.2)

as n — oo.
For the set \Ed|Aij:0|, the matrix D has D;; = Dj; = 1 and 0 elsewhere. In this case, maz = 1 and v = d;d; /2m.

Based on the same argument, we have that the conditions for McKay’s theorem are satisfied and O(CZZ/m) becomes

o(1). Therefore, Applying McKay’s theorem, we have |¥4j4,,=0| is uniformly

(2m)!

. lem) didj
(m) 2 1, di!

) W
exp{ 2

+o(1)} (S1.3)

as n — oo.
From (3.4), we know P;; = 1 — |Sg)a,,=0|/|Z4|. Plugging in the approximations in (S1.2) and (S1.3), we have
)

P;; is uniformly 1 —e™ as m — 00.

S2 Proof of Theorem 2

We follow the structure in Zhao et al. (2012) for the proof. However, the consistency results under the logit link is
not a trivial extension of the results under a log link. First we formalize the notations that will be used in the proof.

For any label e = (e1,...,en), define the K x K matrix O(e) by

Okl(e) = ZAij[{ei = k,ej = l},
ij

and define
Ok(e) = Oule).
l
For k # I, O is the number of edges between block k and block | (we shall often suppress the argument e for

brevity).

Define the arrays Sk xrxxnm, Vixikxm and g xar as

Stanle) = 3 Hei=hoei= a6 =),
=1

Vi ( ) - Zy:l [(61 - k’ci = a70i = .T)u)
kaul€ - Z?:l I(Cl = a, 01 = mu) )

1 n
E;I(Ci =a,0; = z,).

=
g
Il
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Roughly speaking, S can be thought of as the empirical joint distribution of e, ¢ and 8, V' can be thought of as the
conditional distribution of e given ¢ and 6, and II is the empirical joint distribution of ¢ and 6.

Before we proceed to the proof, we first state a lemma.

Lemma 1. Let Pxxx and SkxixxnN be two matrices, and Skxxxn has nonnegative entries. Define the K X K
matriz S* as Sj; = Siju. Assume that

a) P is symmetric;

b) P does not have two identical columns;

c) there exist at least one nonzero entry in each column of ij:l S

d) for 1 <a,bk,l <K and 1 <u,v < N, Py = Pu, whenever SkauSipw > 0.

Then S*, uw = 1,..., N, are all diagonal matrices or permutations of a diagonal matriz by the same permutation

matriz.

See Section S3 for the proof of the lemma. Define p,, = n?p,, we will show Theorem 2 in four steps:

O(e)
Hn

Step 1: Show that the modularity function in (4.9) can be written in the form of F( ), for some function F'(-).

Step 2: Show that F(Olf:)) is uniformly close to its population version.

Step 3: Show the weak consistency by showing that there exist §,, — 0, such that

P( max F <7O(e)) < F (O(C))> — 1, as A, = 0.
e: |[[V(e)=V(c)ll1=6n Hn Mn

Here ||S]]1 = X100 |Skaul-

Step 4: Show that

P(maxF<%) <F(%>>—>l, when )\—"—>oo,

e: e#c Hn Hn IOg n

which implies the strong consistency.

Details of Step 1: The modularity in (4.9) can also be written as

Q=3 (- 2).

since it is true that

O _ (Cidil(ei =k))* > did;I(ei = k,e; = k)

2m 2m 2m

ij
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Moreover, define

- (2 - (22

g (%) N g (% - (2?712)2> ' (S2.4)

Details of Step 2: Define Hyi(R) =3 1.0 logitfl(mu + Zv + Zab) RiauRivw, we have

We have

44—13((7k1|c,0)

n

= ?ZZE Aijl(e; = k,ci = a,0; =xy)I(ej =1,¢; =b,0; = xy)|c, 0)

ij abuv

= —ZZP(n)I e; =k,ci=a,0; =x,)(ej =1,¢c; =b,0; = x)
ij abuv

= —Zanxloglt (xuw + 2o+ Zav)I(ei = k,ci = a,0; = xu)I(e; =1,¢j = b,0; = x,)
ij abuv

= — Z Pn X 10g1t xu —+ xy + Zab) X n X S’kau(e) X n X S’lbv(e)

71
abuv

= Z logit ™ (2w + Zv 4 Zab)Skau(€) S (€)

abuv

= Hkl(S(e))

Here we used the fact that Pi(jn) = pn X logitfl(mu + Xy + Zab). Define

n

Tia(e) = %E(Okl(eﬂc, 9).

We have
Tkl(e) = Z loglt xu + 2y + Zab)Skau( )glbv(e)
abuv
= Z loglt -ru + Ty + Zab)vkau( ) au lb’u(e)Hb’b“
abuv

Replacing IT by II, we define

Ti(e) = > logit™ (zu + T + Zab) Vieau (€)lau Vie (€) Ty, (S2.5)

abuv

To show F (O‘fe)) is uniformly close to its population version, we show that there exist €, — 0, such that

P (max

e

F <%) - F(T(e))‘ < en) —1 as A\, = 0. (S2.6)

Since

7 (%) - paren| < |r (22) - reren| + |Frie) - Ferte)).
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we can bound the two terms on the right hand side. Since F'(-) is Lipschitz in all its arguments, we have

[F(1(e) = F(T(e))| < My[T(e) ~ T(e)]]x- (s2.7)
Here || X||co = maxy; | Xwi|. Further,

Thi(e) — Tu(e)] =

Z 1Ogit71(iﬂu + 1z, + Zab)vkau(e)‘/lbv (e)(ﬁauﬂbv - Haquv)

abuv

S Z logitil(-fru + Ty + Zub)‘ﬂauﬂbv - H(lqu’U|' (828)

abuv
Since f[au —p gy for all a,u, we have the left hand side of (S2.7) converges to 0 in probability uniformly over all e
as A\p, — 00. Next, we have

7 (%) - pren| < 31 22 ~ 7 (52.9)

To continue the proof, we need to use Bernstein’s inequality (Bernstein, 1924).

Bernstein’s inequality: Let Xi,..., X, be independent variables. Suppose that |X;| < M for all i. Then, for all

.

> X Z E(X;)

positive t,

> t) < Zexp <_ D var(;;/)QJr Mt/3> '

Since the A;; in Ogi(e) are independent and |A;;| < 2, according to Bernstein’s inequality, we have

P(|0w(€) — pnTi(e)| > wle, 8) < 2exp (*var(okl\i, g - 2w/3) . (S2.10)

Notice that var(Ogi|c, 0) < 2n2 max;; var(Aij|e, 0) < 2n2pn maxuwb(logitfl(acu—l—:cv—i—Zab)). Define 7 = maxumb(logitfl(ru—i—

Zy + Zab)). Let w = enQpn. For € < 37, we have

> 6\c70>

IN

2exp | — w’/2
P var(Oypi|c, 0) + 2w/3
2,4 2
“n'ph
9 —
exp( 8n2pm>
2
€ lin
exp( » >

We have the left hand side of (52.9) converges to 0 in probability uniformly if A, — oo. Hence, we have shown that

IN

(S2.6) holds.

Details of Step 3: We show that there exists d,, — 0, such that

P( max F(%><F(%))—>l7 as Ap — 00.
e: [[V(e)=V(c)||12dn Mn Hn
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We first show that F(H(S)) is uniquely maximized over {S : S > 0, >, Skau = au} by S = D, where Dyau =
Il FEre. Here Siau = Viaullaw is the limit of S and E is any row permutation of the K x K identity matrix. The
matrix F is for the case with permutation equivalence class. For simplicity, in the following proof, we assume FE is

the identity matrix.

If Q(e) is maximized by the true label ¢, then F'(H(S)) should be maximized by the true assignment S = ID. Since
>k Skau(€) = gy, the limit S must satisfy > % Skau = Hau. Therefore, we only need to consider the maximizer of

F(H(S)) under the constraint {S:S >0, >, Skau = Hau}

Define Ho(S) = >, Hri(S) and Hp(S) = >, Hri(S). For simplicity of the notations, we leave out the dependence

of H on S. Then we have

Fon =30 (% - )

Define

1 for k=1,
Dp =

—1 for k#IL

Using the equality that

Hkk H;z Hkl HkHl _
(%) 2 () -

k#l
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we have

F(H(S)) 2H Z Akl Z 1Og1t (xu + 2y + Zab)SkauSlbv

kil abuv
HQ Z JAVS) {Z logit™ (2w + v + Zap) Hvak:au:| [Z logit ™ (2w + Zv + Zab) HauSibe
abuv abuv

H Z Z YANY) Z logit™ 1 (Tw + o + Zab) SkauSive

uv

1 . .-
- 2H02 Z Z VARY Z logit 1(acu + Ty + Zab)logit 1(.Tu/ + xy + Za’b’)Hvaa’u/SkauSlb/u/

kl a’b ab/uu’vo’

2H0 Z Z Z Akt SkauSiprv [1og1t (Tu + o + Zap)

kl ab’ wv’

1
e Z logitfl(wu + oy + Zab)logitfl(xu/ + Ty + Zarpy )y sy

a’bu’v

< ﬁ Z Z Z A ab! Skau Sy v |:1ogit1(xu + Ty + Zav)

kl ab’ wv’

1
“He Z logitfl(xu + xy + Zab)logitfl(rur + x + Za’b’)Hvaa’u’
0
a’bu’v
H Z Nap Z logit™ 1(Iu + X + Zap ) aullyry
ab’ uv

H2 ZAab/ Z Z logit™ 1(:ru + Xy + Zap)logit™ 1(:cu + ot + Zaryy )My Iy a0 Il

ab’ a’uv bu'v’
= F(H(D)).

The inequality is true because of conditions (4.10) and (4.11). Now we need to show that D is the unique maximizer of
F(H(S)). The inequality F(H(S)) < F(H(D)) holds only if Ax; = Ay when SiauSiy s > 0. Since A is symmetric,
does not have two identical columns and « Skau has at least one non-zero entry in each column, following the result
in Lemma 1, we have S* are all diagonal matrices or permutations of the diagonal matrix by the same permutation
matrix. With the constraint {S:5 >0, >, Skau = au}, we have F(H(S)) = F(H(D)) holds only when S = D.

From (S2.5), the definition of Hy;(S) and D, it is straightforward that Hg(S) = Tki(e) and Hy (D) = Tr(ce).
Since F'(H(S)) is uniquely maximized by D, by the continuity of F(-) in the neighborhood of D, there exists d, — 0
such that

F(T(c)) — F(T(e)) > 2e, for ||[V(e)—V(c)|l1 > n. (S2.11)

Here we used the fact that

HS - DHI = Z |Vkau(e)Hau — Vkau (C)Hau| IIllIl Hau Z ‘Vkau Vkau(c)|

kaw kau

= (minTla) x |[V(e) = V(©)ll-

\Y
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Thus, with (S2.6), we have

P <e: HV(E)IE%)((C)IMZ% r (%) < <%>)

o o

max ( ) — max
e: [[V(e)=V(e)][12dn Hn e: [[V(e)=V(e)|[12dn

’F (%) _ F(T(c))‘ < en> S

F(T(e))| < en,

This implies that

P(IV(&) = V(e)lls <6n) = 1,

O(e)
K

where ¢é = arg maxe F' ( ) is the estimator. Since

He—cl= 23 I Ae) = Y Ml = Van(e))

IN
Pﬁ
[
I
=

8
2
—
o)
NS
=

we have established the weak consistency of the estimator.

Details of Step 4: In order to show

P(max F(%) <F(%)) — 1, as An — 00,
e: e#c Hn Hn lOg’I’L

we only need to show that there exists d,, — 0, such that

P( max F (%) <F (%)) —1, as An_ — 00, (S2.12)
e: 0<||V(e)=V(e)|[1<én Un Un logn

since the results in Step 3 implies that there exists §, — 0, such that

P( max F<%)<F(%))—>L as An — 00
e: [[V(e)=V(e)|[1>6n Hn Pn logn

Following equation (A.11) in Zhao et al. (2012), we have

F (%) -F (%) = F(T(e)) — F(T(c)) + A(e, c). (S2.13)

fin, Hn

By the continuity of the derivatives of F' in ||V (e) — V(c)||1 < n, we have

F(T(e)) = F(T(c)) < =Cl[V(e) = V(e)|lr + o|[V(e) = V(e)[[1).
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Since the derivative of F' is continuous with respect to V'(e) in ||V (e) — V(c)||1 < dn, there exists a 6 such that

F(T(e)) — F(T(e)) < *%HV(E) = V()i +o(l[V(e) = V(e)llh), (52.14)

for ||IT — ||~ < 6*. Based on (S2.13) and (S2.14), we can see that in order to show (S2.12), it is sufficient to show

P({I{Iﬂl;i,é |A(e,0)| <C||V(e) —V(c)||1/4) — 1. (S2.15)

The conclusion (S2.15) is true following the results in Bickel et al. (2015). Therefore we have established the strong

consistency.

S3 Proof of Lemma 1

Define S = 0 | S". We have

N N
SkaSip >0 = (Z Sga> (Z Sﬁ,) >0 - 34,7 such that Skm-Slbj >0
u=1 u=1

—  Pro = Pi.

Following Lemma 3.2 in Bickel and Chen (2009), we have S is diagonal or a permutation of the diagonal matrix,
since there exists at least one non-zero entry in each column of S. Since all entries in S are non-negative, we have

S* uw=1,...,N are all diagonal matrices or permutations of the diagonal matrix by the same permutation matrix.

S4 Modularity Maximization

We discuss modularity maximization techniques for finding the partition that maximizes the modularity function,

i.e., finding
é = arg _(max Qe,G), (S4.16)
6»76 {lly,'.....,7 nn}

where Q(e,G) is defined in (3.3). Modularity based community detection techniques are among the most popular
approaches in detecting communities in networks (Fortunato, 2010). Existing approaches for maximizing the mod-
ulation function come from various fields, including computer science, physics, sociology and statistics. Some are
fast techniques that can be applied to large graphs, but may not find good approximations to the optimum of the

modularity function (Clauset et al., 2004; Newman, 2004). Some are accurate methods that find good approximations
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to the optimum but are limited to graphs of moderate sizes (Massen and Doye, 2005; Guimera et al, 2004; Agrawal
and Kempe, 2008). Some algorithms achieve a good balance between accuracy and complexity (Newman, 2006a;
Wang et al., 2008). See Chapter VI of Fortunato (2010) for a review.

To simplify the notation, we define an assignment matrix B, xx, which is a 0-1 matrix with B;; = 1 if the i-th
node is in the j-th community and B;; = 0 otherwise. Each row of B sums to unity, and the columns by, ...,bx of

B are mutually orthogonal. Maximizing the modularity in (S4.16) can therefore be expressed as
mgx{Trace(BTMB)} such that  Trace(B' B) = n, (S4.17)

where M = A — E, 5, (A) is the modularity matrix. Newman (2006b) pointed out the intimate relationship between
community structures and the eigen-spectrum of the Newman-Girvan modularity matrix. Here we extend that
relationship to the community structure and the eigen-spectrum of the modularity matrix M.

Denote the eigenvalues of M as A1,..., A, and the corresponding normalized pairwise orthogonal eigenvectors as
v1,...,Vn. Without loss of generality, assume A\; > --- > X,. Denote k = > | I(\; > 0) as the number of positive

eigenvalues. We have

n K
Q = Trace(B" MB) = ZZ v} by)?. (S4.18)
i=1 k=1
Maximizing the modularity is equivalent to choosing K — 1 orthogonal columns by, ..., bx_1 such that the summation
in (S4.18) is maximized. Since vi,...,v, form an orthonormal basis of an n-dimensional vector space, we have

bk:Zaki'vi, fOI“ k’zl,...,K7

i=1

where or; = ’vink. Therefore, we have

Q:ZZAi(v?bk)Q _ZAZ( ai> (S4.19)

i=1 k=1 i=1 k=1
This shows that the major contribution to the modularity value comes from the projection of the columns b1, ...,bx
onto the subspace spanned by the leading eigenvectors. For a partition that achieves large @, vectors bi,...,bx

necessarily have large projections onto the leading eigenvectors with positive eigenvalues. Newman (2006b) showed
that if we do not have the binary constraint on the entries in B, then @ will be maximized when by is proportional to
v, k=1,..., K — 1, and the number of orthogonal columns in B is the same as the number of positive eigenvalues,
i.e., K = k+ 1. However, the entries in B are binary. With this constraint, the number of positive eigenvalues k

becomes an upper bound for K — 1.
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When the graph is large, we can drop the terms in (S4.18) that are proportional to the n — K + 1 smallest eigen-

values \; (Newman, 2006b; Ng et al., 2001; Wang et al., 2008). The K — 1 largest positive eigenvalues A1, ..., Ax_1

can be used to form a diagonal matrix A = diag(A1,...,Ax—1), and their corresponding eigenvectors v1,...,Vx—1
can be used to form a matrix V = (v1,...,vx—1). Then we have
n K K-1 K
mng = mBaXZZ)\i(v?bk)Q ~  max Z/\l('vZ bi)’
i=1 k=1 i=1 k=1
= max (Trace(BTVAVTB))
= max ((Trace(A2 VTB)T(A%VTB))>
K
= maxy_||wl®
k=1

where wi = Y, Yl (Bir=1) and y; is the i-th row of matrix VAZ. The modularity maximization is now a problem
of grouping vectors y; into K groups such that the magnitude of the vector wy, is maximized. One simple approach
for this problem is to apply the k-means clustering on the normalized vectors yi,...,yn (Ng et al., 2001).

Here is a summary of our approach for detecting up to K < k + 1 communities in the graph G(V, E).

1. Find the modularity matrix M, its eigenvalues A1,..., A, and their corresponding normalized orthogonal eigen-

vectors vi,...,Un.
2. For each value k, 2 < k < K:
a. Construct the corresponding diagonal matrix A and the eigenvector matrix V. Calculate Y = VAZ.
b. Perform k-means clustering on the normalized rows y; of matrix Y.
c. With the membership output from the k-means clustering, calculate the modularity function Q.
3. Output the k that has the largest Qx and its corresponding community labels.

In step 2(b), more sophisticated clustering methods can be used. This type of problems are referred to as the vector
partitioning problems, i.e., grouping vectors y; into K groups such that the magnitude of the vector wy, is maximized

(Alpert et al., 1999).
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