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Abstract: A relevant feature of networks is community structure. Detecting commu-
nities is of great importance in understanding, analyzing, and organizing networks,
as well as in making informed decisions. Many approaches have been proposed for
detecting community structure in networks, but few methods have been proposed
for testing the statistical significance of detected community structures. In this
paper, we describe a statistical framework for modularity-based network commu-
nity detection. Under this framework, a hypothesis testing procedure is developed
to determine the significance of an identified community structure. The proposed
modularity is shown to be consistent under a degree-corrected stochastic block
model framework. Several synthetic and real networks are used to demonstrate the
effectiveness of our method.
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1. Introduction

Networks have been the focus of much recent attention since they describe a
multitude of complex systems found in such fields as biology, social science, in-
formation technology, finance, and many others. Networks are built upon nodes
and the edges (or interactions) between them. For example, social networks
consist of individuals and such interactions between them as friendship, collab-
oration, or similar personal interest. The World Wide Web describes the web
pages and their linking patterns. A stock market network models the stocks and
their synchronized price fluctuations over time.

Existing networks often display a high level of local inhomogeneity, with
high edge density within certain groups of nodes and low edge density between
these groups. This feature is often referred to as “community structure” (For-
tunato (2010)). Communities occur in many network systems in social science,
biology, political science, economics, computer science, and other areas. In the
protein-protein network, communities are groups of proteins that carry specific
functions in the cell (Chen and Yuan (2006)); in the World Wide Web, commu-
nities correspond to groups of pages that are related to the same or similar topics
(Dourisboure, Geraci and Pellegrini (2007)).
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Studying community structures can help us better understand networks,

since nodes in the same community usually share common properties. For ex-

ample, the members in a Facebook friendship community usually share simi-

lar demographic attributes or personal interests (Yang, McAuley and Leskovec

(2013)), while different communities can exhibit significantly different network

properties, which makes studying them at the level of the entire network in-

appropriate (Newman (2006b)). Community detection has applications. Thus

identifying communities of customers with similar interests in the purchase re-

lationship network of an online retail store can help in setting up more efficient

recommendation systems (Reddy et al. (2002)).

Due to the importance of finding community structures in networks, there

has been work on this topic in such fields as computer science, physics, statistics,

and sociology (Agrawal and Kempe (2008); Reichardt and Bornholdt (2006);

Newman and Girvan (2004); Snijders and Nowicki (1997)). Detecting commu-

nities in a network is not a trivial task. The number of possible partitions of

the network is usually very large, especially when the number and the sizes of

the communities are in general unknown. In this paper, community detection

refers to partitioning the network into several non-overlapping subnetworks. The

terms community detection and network partition will be used interchangeably.

See Fortunato (2010) for a review of the techniques for detecting overlapping

communities.

Community detection approaches can be loosely divided into two classes.

One involves maximizing a quality function over all possible partitions of the

network. This includes the well-studied cut models (Flake, Lawrence and Giles

(2000)), spectral clustering (Shi and Malik (2000)), and modularity maximization

(Newman and Girvan (2004)). Another class of techniques are model-based, fit-

ting probabilistic models to the networks with community structures. This class

includes the stochastic block model (Nowicki and Snijders (2001); Bickel and

Chen (2009)), the degree-corrected stochastic block model (Karrer and Newman

(2011); Jin (2015)), the mixed membership model (Airoldi et al. (2008)), and

the multivariate latent variable model (Handcock, Raftery and Tantrum (2007)).

From an algorithmic perspective, many model-based approaches lead to maxi-

mizing certain criteria, such as maximizing the profile likelihood over all possible

partitions (Bickel and Chen (2009); Zhao, Levina and Zhu (2012)).

Formally defining community in a network is difficult, similar to defining

cluster in multivariate analysis (Zhao, Levina and Zhu (2012)). Several ways to

define a community have been proposed. One requires that two nodes in the

same community are stochastically equivalent in the sense that exchanging the

labels of these two nodes does not affect the probability of any event pertaining to

the network (Fienberg, Meyer and Wasserman (1985)). This definition is used in
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most of the model-based approaches, such as the stochastic block model, degree

corrected stochastic block model, and mixed membership model. A community,

as adopted in this paper, has more edges between the nodes within a community

and fewer edges between a community and the rest of the network. This defi-

nition is widely used in such algorithm-based community detection methods as

modularity maximization algorithms, spectral clustering, and minimum-cut ap-

proaches. See Fortunato (2010) for a comprehensive review of other definitions

of communities.

Among community detection approaches, modularity maximization is one of

the most popular (Fortunato (2010)). In Newman and Girvan (2004), a quality

function called modularity was proposed to measure the quality of a network par-

tition. Subsequent work has shown empirically that partitions that maximize the

modularity function often identify interesting community structures (Newman

(2004, 2006a,b); Clauset, Newman and Moore (2004); Chen and Yuan (2006)).

However, the Newman-Girvan modularity function can be misleading. It has

been shown that some random graphs with no community structures have par-

titions with large modularity values (Guimera, Sales-Pardo and Amaral (2004);

Reichardt and Bornholdt (2006)). Since the null model in the Newman-Girvan

modularity function lacks a solid statistical basis, it is difficult to determine the

statistical significance of the community structure obtained from maximizing the

modularity function.

In this paper, we re-examine the null model in the Newman-Girvan modular-

ity function and provide a statistical framework for modularity-based community

detection. Based on it, we introduce a hypothesis testing procedure to determine

the significance of the partitions obtained from maximizing the modularity func-

tion. We show that the modularity formulated under our framework is consistent

under a degree-corrected stochastic block model framework.

The rest of the paper is organized as follows. Section 2 discusses the Newman-

Girvan modularity function and its connection to the community structure in

networks. Section 3 introduces the statistical framework for modularity-based

community detection. A hypothesis testing procedure is then proposed for test-

ing the significance of an identified community structure. Section 4 gives the

connection between the proposed statistical framework and the degree-corrected

stochastic block model. We show the consistency of the modularity function un-

der the degree-corrected stochastic block model. Section 5 uses synthetic and

real networks to demonstrate the effectiveness of our method. Section 6 provides

some concluding remarks.
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2. Modularity and Community Structure

A network (or graph) G(V,E) with a set of n nodes V and a set of edges E

can be represented by its adjacency matrix A, where Aij = 1 if there is a link

from node i to node j and 0 otherwise. The node degree di is the number of edges

connected to node i. We are mainly concerned with simple graphs (undirected

graphs with no self-loops or multiple edges). For simple graphs, the adjacency

matrix A is a symmetric 0-1 matrix with a zero diagonal. The column sums of

A are the same as the degree sequence d = (d1, . . . , dn) of G(V,E). Moreover,

the total number of edges in G is m =
∑

i<j Aij .

Newman and Girvan (2004) proposed a hierarchical algorithm, in which edges

with the highest betweenness are removed recursively until the network breaks

down from one community of n nodes into n communities of one node. This whole

process can be represented by a dendrogram showing various possible partitions

of the network.

To determine which partition is optimal, Newman and Girvan (2004) defined

a quality measure Q referred to as the modularity. Given a graph G(V,E) with

n nodes and community assignment e = (e1, . . . , en), where ei ∈ {1, . . . ,K} is

the community that node i belongs to, the Newman-Girvan modularity QNG is

defined as

QNG(e, G) =
1

2m

∑
i,j

[Aij − E(Aij)] δ(ei, ej), (2.1)

where δ(r, s) = 1 if r = s and 0 otherwise. Here E(Aij) is the expected number

of edges between node i and node j under some null model with no community

structure. The modularity function measures the “discrepancy” between the

observed number of edges and the expected number of edges within the commu-

nities under the null model. If the number of edges in the communities is close

to the expected value, QNG is close to 0. When QNG approaches 1, it indicates

strong community structure. In Newman and Girvan (2004), the partition in

the dendrogram that has the largest QNG value is outputted as the community

structure.

Such a measure QNG of network partitions leads to a new class of approaches

in community detection. Rather than just using QNG as a measure of the quality

of a partition, one can instead directly try to find the partition that maximizes it.

Brandes et al. (2008) showed that finding the partition that maximizes the modu-

larity function for a given graph is NP-complete. Numerous heuristic approaches

have been proposed to find partitions that maximize the Newman-Girvan mod-

ularity function (Newman (2006a); Agrawal and Kempe (2008); Reichardt and

Bornholdt (2006); Clauset, Newman and Moore (2004); Massen and Doye (2005);

Wang, Shen and Ouyang (2008)). This is still an active research topic.

HYPOTHESIS TESTING FOR NETWORK COMMUNITY DETECTION 5

After the partition that maximizes QNG is obtained, the interpretation

of the result is important. Newman and Girvan (2004) suggested that net-

works with strong community structure typically have maximum modularity

value maxeQNG(e, G) ∈ [0.3, 0.7]. This is widely used as a rule of thumb

in subsequent work. However, in general, a large Newman-Girvan modularity

value does not necessarily indicate a community structure. Random graphs from

the Erdös-Rényi model can have partitions with large Newman-Girvan modular-

ity values (Guimera, Sales-Pardo and Amaral (2004); Reichardt and Bornholdt

(2006)), although such graphs are not supposed to have community structures,

because the probability of having an edge between any pair of nodes is the same

and every node is treated equally.

Based on the definition of modularity, a network should only be considered to

have community structure if its maximized modularity value is significantly larger

than the maximized modularity value of graphs from the null model. Testing the

significance of a community structure in a network requires a well-defined null

model. The null model in the Newman-Girvan modularity is, however, not clearly

defined. Newman (2006b) discussed the importance of preserving the observed

degree sequence in the null model and proposed setting the expected node degree

E(di) equal to the observed node degree di in the null model,

∑
j

E(Aij) = di. (2.2)

He also proposed that the edges be placed entirely at random in the null model.

The probability that two nodes are placed at the ends of an edge should only

depend on the degrees of the nodes,

E(Aij) = f(di)f(dj), (2.3)

for some function f(·) (Newman (2006b)). It is easy to show that constraints

(2.2) and (2.3) imply

E(Aij) =
didj
2m

. (2.4)

Thus the expectation E(Aij) in the Newman-Girvan modularity is calculated

without clearly specifying the null model. Here the expected number of edges

E(Aij) in (2.4) can be larger than one and the expected number of self links

E(Aii) can be larger than zero, as multiple edges and self-loops are allowed in

this formulation.

As a null model in the Newman-Girvan modularity is not clearly specified,

we describe a statistical framework, that includes a well-defined null model for

modularity-based community detection.
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3. Significance Testing in Modularity Based Community Detection

Given a graph G(V,E) with n nodes and degree sequence d = (d1, . . . , dn),

the null model for the modularity measure is a random graph model with no

community structure, and the null model should specify a distribution over the

space of such.

The graphs in the null space should share some basic structural properties

with G. Often, the distribution of the edges is highly inhomogeneous with global

inhomogeneity, many vertices with low degrees and a few vertices with high

degrees, and local inhomogeneity, a high concentration of edges within certain

groups of nodes and a low concentration of edges between these groups (Fortunato

(2010)). To study local inhomogeneity, it is desirable to preserve the observed

degree sequence in the null model. We fix the degree sequence of graphs from the

null model at d, and suppose they do not contain self-loops or multiple edges.

In the following, our null space Σd is the set of all simple graphs with degree

sequence d = (d1, . . . , dn).

We assume that there is no preference for any graph in the null space Σd

and take
p(g) =

1

|Σd|
, g ∈ Σd, (3.1)

where |Σd| is the total number of graphs in Σd. Section 4 discusses another

motivation for the null model.

The proposed null model has some connection to, and several advantages

over, the configuration model (Bender and Canfield (1978); Bollobás (1980)).

In the configuration model, one assigns half edges to the vertices according to

the degree sequence (d1, . . . , dn), and then performs a random matching of the

2m half edges. The outcomes of the configuration model are guaranteed to

have the prescribed degree sequence (d1, . . . , dn). But, since the half-edges are

matched randomly, the graphs produced may contain self-loops and multiple

edges. Although removing graphs with multiple edges and self-loops leads to the

uniform distribution over simple graphs, it deviates from the configuration model

and the probability of having multiple edges and self-loops increases rapidly when

the degrees increase (Cafieri, Hansen and Liberti (2010); Chung and Lu (2002)).

Under the null model (3.1),
n∑

j=1

E(Aij) = di, i = 1, . . . , n, (3.2)

which means (2.2) is satisfied in our null model. Based on the null distribution

(3.1), we revise Newman-Girvan modularity function as

Q(e, G) =
1

2m

∑
i,j

[Aij − Ep,Σd
(Ai,j)] δ(ei, ej), (3.3)

HYPOTHESIS TESTING FOR NETWORK COMMUNITY DETECTION 7

where the expectation Ep,Σd
(·) is taken with respect to p(·) on Σd given in (3.1).

To calculate Pij = Ep,Σd
(Aij), we notice that

Pij =
|Σd|Aij=1|

|Σd|
= 1−

|Σd|Aij=0|
|Σd|

, (3.4)

where |Σd|Aij=k| is the total number of simple graphs with degree sequence d

and Aij = k, k = 0, 1. Calculating |Σd|Aij=k| and |Σd| is a difficult problem.

Bender and Canfield (1978) derived an asymptotic formula for |Σd|Aij=0| and
|Σd| as m → ∞ under uniformly bounded maxi di. McKay (1985) improved the

asymptotic formula for |Σd|Aij=0| and |Σd| and allow maxi di to increase with n.

We use McKay’s (1985) asymptotic formula for |Σd| to derive an approximation

to Pij .

Theorem 1. Let G(V,E) be a simple graph with degree sequence d = (d1, . . . , dn)

with m = (1/2)
∑n

i=1 di the total number of edges in G(V,E). If maxi di =

o(m1/4), as n → ∞, Pij is uniformly

1− e−didj/2m+o(1). (3.5)

We refer to the supplementary material for the proof. In the theorem, since

maxi di ≥ 2m/n, the condition maxi di = o(m1/4) implies that maxi di = o(n1/3),

which describes the maximum degree of the graph. Moreover, it also implies that

maxi,j didj/2m → 0, which leads to

1− e−didj/2m =
didj
2m

+ o
(didj
2m

)
.

Corollary 1. Under the conditions of Theorem 1 we have, as n → ∞, Pij is

uniformly didj
2m

+ o(1). (3.6)

Newman-Grivan modularity also uses didj/2m to approximate E(Aij) (see

(2.4)). One major difference is that our approximation is based on a well-defined

null hypothesis, while (2.4) in Newman-Grivan modularity is based on a set of

constraints based on expected degrees.

Approximating the linking probability Pij = Ep,Σd
(Aij) based on (3.5) or

(3.6) may not be satisfactory when the condition in Theorem 1 is not satisfied,

or when the graph is of moderate size. In that case, Monte Carlo methods can be

used to estimate Pij . The null distribution (3.1) is the uniform distribution over

graphs with fixed degree sequence. If we generate N random samples g1, . . . , gN
from the null distribution specified in (3.1), then Pij can be estimated by

Pij =

N∑
l=1

A
(l)
ij

N
, (3.7)
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where the expectation Ep,Σd
(·) is taken with respect to p(·) on Σd given in (3.1).
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|Σd|

, (3.4)
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didj
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(didj
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Corollary 1. Under the conditions of Theorem 1 we have, as n → ∞, Pij is
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2m

+ o(1). (3.6)

Newman-Grivan modularity also uses didj/2m to approximate E(Aij) (see

(2.4)). One major difference is that our approximation is based on a well-defined
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Approximating the linking probability Pij = Ep,Σd
(Aij) based on (3.5) or

(3.6) may not be satisfactory when the condition in Theorem 1 is not satisfied,

or when the graph is of moderate size. In that case, Monte Carlo methods can be

used to estimate Pij . The null distribution (3.1) is the uniform distribution over

graphs with fixed degree sequence. If we generate N random samples g1, . . . , gN
from the null distribution specified in (3.1), then Pij can be estimated by

Pij =

N∑
l=1

A
(l)
ij

N
, (3.7)
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where A
(l)
ij is the (i, j)-th entry of the adjacency matrix of gl.

One way to generate graphs with fixed degree sequence uses the configura-

tion model, but the graphs generated may contain self-loops and multiple edges.

Discarding the graphs with self-loops and multiple edges can waste a lot of sam-

ples since the probability of having multiple edges and loops increases quickly

when the degrees increase (Cafieri, Hansen and Liberti (2010); Chung and Lu

(2002)).

A Markov chain Monte Carlo (MCMC) algorithm, often referred to as the

“rewiring” method, provides an easy way to sample from the null distribution

(Blitzstein and Diaconis (2010)). Other more sophisticated schemes for estimat-

ing Pij , such as sequential importance sampling, can be found in Blitzstein and

Diaconis (2010) and Zhang and Chen (2013).

With a well-defined null hypothesis (3.1), we are able to introduce a hypoth-

esis testing procedure that can test the significance of an identified structure.

As discussed earlier, a network should only be considered to have community

structure if its maximized modularity value is significantly larger than the max-

imized modularity value of graphs from the null model. Given a graph G(V,E)

and a community assignment e∗ = (e∗1, . . . , e
∗
n), the statistical significance of

the partition is the probability that Q(e∗, G) is smaller than the the maximized

modularity value of graphs from the null model,

P [Q(e∗, G) ≤ max
e

Q(e, g)], (3.8)

where g follows the null distribution in (3.1). Our test statistic, the maximized

modularity, tends to be large under the alternative of community structure.

Therefore when the null is rejected, it indicates that the data favors the al-

ternative of community structure.

A straightforward way to estimate the p-value in (3.8) is to generate samples

g1, . . . , gN from the uniform distribution over Σd using the MCMC algorithm,

and then approximate (3.8) by

1

N

N∑
i=1

I
(
Q(e∗, G) ≤ max

e
Q(e, gi)

)
. (3.9)

The sequential importance sampling algorithms proposed in Blitzstein and Dia-

conis (2010) and Zhang and Chen (2013) can be used to approximate the p-value

as well.

4. Connection to Degree-Corrected Stochastic Block Model

In this section, we use the degree-corrected stochastic block model (DCSBM)

to provide another motivation for the proposed null model (3.1). We also show

that the proposed modularity is consistent under the DCSBM.
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The stochastic block model (SBM) is a widely used models for networks with

communities. Consider a graph G(V,E) with n nodes and adjacency matrix A.

Under the stochastic block model, there are K classes (or blocks) such that each

node belongs to only one of the classes. Let c = (c1, . . . , cn) denote the true

community labels, where ci is the community to which node i belongs. Under

the SBM, each Aij is an independent Bernoulli random variable with

E[Aij |c] = Wcicj , (4.1)

where Wrs is the probability that a node in block r is linked to a node in block

s.

When fitted to an observed network, the SBM can uncover the underlying

block (or community) structure, but it has limitations in its application. For

every block in the model, within the same block all nodes are considered to be

equivalent. Thus the model does not allow the hub nodes (nodes that have signif-

icantly more links than the others) that are frequently observed in real networks.

Fitting a SBM to networks that have highly inhomogeneous degree distributions

can lead to inaccurate results (Karrer and Newman (2011)). To address this prob-

lem, Karrer and Newman (2011) proposed the DCSBM, which adds parameters

to account for the degree correction in the SBM. They showed empirically that

when there is heterogeneity in the degree distribution, the DCSBM fits better

than the standard SBM.

A generalized DCSBM with K blocks can be written as (Peng and Carvalho

(2013))
Aij ∼ Bernoulli(q−1(θi + θj + Zcicj )), (4.2)

where q(·) is a link function, Zcicj reflects the linking probability between block

ci and block cj , and θ = (θ1, . . . , θn) is a vector of node specific parameters.

With a logit link, the likelihood of the DCSBM can be written as

P (G|θ, Z) =
∏
i<j

[logit−1(θi+θj+Zcicj )]
Aij [1−logit−1(θi+θj+Zcicj )]

1−Aij . (4.3)

If we choose the DCSBM as the underlying model for the network, the null

model is naturally taken to be the DCSBM with only one block. We then have

Aij ∼ Bernoulli(logit−1(θi + θj + Z)) (4.4)

under the null model, where the Z matrix degenerates to a single parameter

since there is only one block. This is essentially the well-studied logistic linear

model (or β-model) for network data (Holland and Leinhardt (1981); Chatterjee,

Diaconis and Sly (2011); Perry and Wolfe (2012); Park and Newman (2004);

Blitzstein and Diaconis (2010)). Under the null model, the likelihood in (4.3)

can be simplified to

444



8 JINGFEI ZHANG AND YUGUO CHEN
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If we choose the DCSBM as the underlying model for the network, the null

model is naturally taken to be the DCSBM with only one block. We then have
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P (G|θ, Z) =
e
∑

i Zdi/2+
∑

i θidi∏
i<j(1 + eθi+θj+Z)

. (4.5)

Here (4.5) has the nuisance parameters θ = (θ1, . . . , θn) and Z. In hypothesis

testing, one way to remove the effect of the nuisance parameters is to condition

on the sufficient statistics (Lehmann (1986)), which are the degree sequence d =

(d1, . . . , dn) in model (4.5). Notice that conditioning on d, the null model (4.5)

becomes the uniform distribution over Σd, the same as the null model proposed

in (3.1).

4.1. Consistency under the degree-corrected stochastic block model

According to Bickel and Chen (2009), a community detection criterion Q is

strongly consistent if ĉ = argmaxeQ(e, G) satisfies

P (ĉ = c) → 1 as n → ∞, (4.6)

where c is the true community labels for the nodes. Zhao, Levina and Zhu (2012)

defined weak consistency for a community detection criterion Q as

∀ϵ > 0, P

[( 1

n

n∑
i=1

I(ĉi ̸= ci)
)
< ϵ

]
→ 1 as n → ∞. (4.7)

When the community detection criteria are invariant under permutations of the

community labels, there are identifiability issues with these definitions. Zhao,

Levina and Zhu (2012) suggested replacing ĉ = c with ĉ and c belonging to

the same equivalent class under permutation. In both types of consistency, the

number of communities K is assumed to be known. Therefore, all modularity

consistency properties are shown for

ĉ = arg max
e=(e1,...,en)
ei∈{1,...,K}

Q(e, G). (4.8)

Under the proposed framework, assuming the graph satisfies the sparsity

condition in Corollary 1, we detect communities by finding the maximizer of the

modularity function

ĉ = arg max
e=(e1,...,en)
ei∈{1,...,K}

1

2m

∑
i,j

(
Aij −

didj
2m

)
δ(ei, ej). (4.9)

In Section 4, we use the DCSBM with a logit link to provide another motivation

for the uniform null model (3.1). In this section, we show that (4.9) is consistent

under the framework of the DCSBM with a logit link.

Bickel and Chen (2009) showed that the Newman-Girvan modularity is

strongly consistent under the standard SBM with some constraints on the param-

eters. This result was extended by Zhao, Levina and Zhu (2012) to the DCSBM
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with a log link. To consider the consistency of (4.9) under the DCSBM with a

logit link, we first give a slightly different formulation of the DCSBM with a logit

link, following Zhao, Levina and Zhu (2012).

1. Each node i is associated with a pair of latent variables (ci, θi), where ci ∈
{1, . . . ,K} and θi takes values in x1 ≤ · · · ≤ xN .

2. The marginal distribution of c = (c1, . . . , cn) follows a multinomial distribu-

tion with parameters (π1, . . . , πK).

3. Given c and θ, the edges Aij are independent Bernoulli random variables with

logit(E[Aij |c,θ]) = θi + θj + Zcicj ,

where Z is a symmetric K ×K matrix.

The parameter Zij captures the within and between community linking prob-

abilities. Self loops are allowed in the model for simplicity. This makes no dif-

ference in the results compared to the setting where diagonal items are forced to

be zero, but allowing self loops makes the notation much simpler. If we set all θi
to zero, the above DCSBM with a logit link is the standard SBM.

Define ΠK×N to be the joint distribution of (ci, θi), P (ci = a, θi = xu) = Πau.

Here we do not assume that θ and c are independent, since it is possible that the

community labels and the node specific random variables are not independent in

the model.

To ensure sparsity, we need to have Pij scale with n, or else the graph is

going to become unrealistically dense as n → ∞ (Zhao, Levina and Zhu (2012)).

Following Bickel and Chen (2009), we reparameterize Pij as P
(n)
ij = ρnPij , where

ρn ≡ P (Edge) → 0 and Pij is fixed as n → ∞. We define the expected degree

λn ≡ E(Degree) = nρn. This reparameterization allows us to separate ρn ∝
E(Degree) from the inhomogeneity structure of the graph. See Bickel and Chen

(2009) for a more detailed explanation of the reparameterization.

Theorem 2. Under the degree-corrected stochastic block model with a logit link,

if for all a ̸= b, the parameters satisfy

logit−1(xu + xv + Zab) <
1

H0

(∑
b′v′

logit−1(xu + xv′ + Zab′)Πb′v′

)

×
(∑

a′u′

logit−1(xu′ + xv + Za′b)Πa′u′

)
, (4.10)

logit−1(xu + xv + Zaa) >
1

H0

(∑
b′v′

logit−1(xu + xv′ + Zab′)Πb′v′

)2
, (4.11)

where H0 =
∑

abuv logit
−1(xu + xv +Zab)ΠauΠbv, then the modularity in (4.9) is

strongly consistent when λn/logn → ∞, and weakly consistent when λn → ∞.
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strongly consistent if ĉ = argmaxeQ(e, G) satisfies
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See the supplementary material for the proof. The constraints (4.10) and

(4.11) on the parameters in Theorem 2 essentially require that links are more

likely to be established within communities than between communities. In the

simplest case with K = 2 and there is no degree correction (θi = 0), conditions

(4.10) and (4.11) can be simplified to

logit−1(Z11)logit
−1(Z22) >

[
logit−1(Z12)

]2
. (4.12)

From the model specification, we have P (Aij = 1|ci = a, cj = b) = logit−1(Zab),

where ci is the community to which node i belongs. Then (4.12) can be expressed

as

P (Aij=1|ci=1, cj=1)P (Aij=1|ci=2, cj=2) > [P (Aij=1|ci=1, cj=2)]2 .

(4.13)

A DCSBM with the following constraints on the parameters will satisfy condition

(4.13):

P (Aij = 1|ci = 1, cj = 1) > P (Aij = 1|ci = 1, cj = 2), (4.14)

P (Aij = 1|ci = 2, cj = 2) > P (Aij = 1|ci = 1, cj = 2). (4.15)

Constraints (4.14) and (4.15) correspond to the motivation that links are more

likely to be established within communities than between communities.

The consistency result suggests that if the graphs are from a DCSBM with

K communities, then the community labels obtained from maximizing the mod-

ularity function Q will be close to the true community labels as the number of

nodes goes to infinity. By setting θ to zero in Theorem 2, we obtain similar

results for the SBM.

Corollary 2. Under the stochastic block model with a logit link, if the parameters

satisfy

logit−1(Zab) <
1

H0

(∑
b′

logit−1(Zab′)πb′
)(∑

a′

logit−1(Za′b)πa′
)
, (4.16)

logit−1(Zaa) >
1

H0

(∑
b′

logit−1(Zab′)πb′
)2

, (4.17)

where H0 =
∑

ab logit
−1(Zab)πaπb, then the modularity in (4.9) is strongly con-

sistent when λn/logn → ∞, and weakly consistent when λn → ∞.

5. Numerical Examples

In this section, we denote the Newman-Girvan modularity function (2.1)

by QNG. Our modularity function (3.3) calculated using the approximation

(3.5) is referred to as the asymptotically approximated modularity, denoted by
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Qasym, and the modularity (3.3) calculated using the approximation (3.7) based

on MCMC algorithms is referred to as the MCMC approximated modularity,

denoted by QMCMC .

We consider two modularity maximization approaches. For small graphs

with no more than a hundred nodes, we use the linear programming approach

proposed in Agrawal and Kempe (2008). For graphs of moderate size, the algo-

rithm runs fairly fast and has more accurate results compared to the approaches

designed for large graphs. For large graphs, we propose a fast spectral clustering

algorithm, a simplification of the algorithm discussed in Newman (2006b). We

refer to the online supplementary material for the proposed spectral clustering

method.

Our approach is not tied to the proposed spectral clustering method, and

most existing modularity maximization methods can be used under our frame-

work without modification. For example, the well-known Louvain method (Blon-

del et al. (2008)) can be used when the network is large. See Fortunato (2010) for

a comprehensive review on modularity maximization methods and software/code

sources. To sample from the null hypothesis, one can use the “rewire” function

from the R package “igraph” (http://igraph.org/r/). In our simulation stud-

ies, 1,000,000 rewiring steps on a network with 1,000,000 nodes and 3,000,000

edges took about 8 seconds on an iMac desktop with 3.2 GHz quad-core proces-

sor.

The linear programming algorithm in Agrawal and Kempe (2008) is coded

in C++ and implemented in a CPLEX environment. The fast modularity max-

imization algorithm in the online supplementary material is coded and imple-

mented in R. All examples were run on a MacBook Pro with 2.26 GHz Intel

Core 2 Duo processor.

5.1. Erdös-Rényi random graphs

For many networks, a high modularity value indicates a strong community

structure, but this is not true in general. It has been shown that random graphs

can have partitions with large modularity values (Guimera, Sales-Pardo and

Amaral (2004); Reichardt and Bornholdt (2006)). To interpret the results from

modularity-based community detection, it is necessary to test the significance

of the maximized modularity value. In this section, we look at the maximized

modularity function of Erdös-Rényi random graphs and demonstrate the use of

our hypothesis testing procedure.

In an Erdös-Rényi graph, edges are established independently between each

pair of nodes with equal probability p, thus they have no community structures.

Graphs generated from the Erdös-Rényi model can have large modularity values.

Figure 1 is the histogram of maxeQNG(e, G) of 100 Erdös-Rényi graphs with n =
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See the supplementary material for the proof. The constraints (4.10) and
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H0
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b′
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)(∑

a′
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)
, (4.16)
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(∑
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)2

, (4.17)
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5. Numerical Examples

In this section, we denote the Newman-Girvan modularity function (2.1)

by QNG. Our modularity function (3.3) calculated using the approximation

(3.5) is referred to as the asymptotically approximated modularity, denoted by

HYPOTHESIS TESTING FOR NETWORK COMMUNITY DETECTION 13

Qasym, and the modularity (3.3) calculated using the approximation (3.7) based

on MCMC algorithms is referred to as the MCMC approximated modularity,

denoted by QMCMC .

We consider two modularity maximization approaches. For small graphs

with no more than a hundred nodes, we use the linear programming approach

proposed in Agrawal and Kempe (2008). For graphs of moderate size, the algo-

rithm runs fairly fast and has more accurate results compared to the approaches

designed for large graphs. For large graphs, we propose a fast spectral clustering

algorithm, a simplification of the algorithm discussed in Newman (2006b). We

refer to the online supplementary material for the proposed spectral clustering

method.

Our approach is not tied to the proposed spectral clustering method, and
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For many networks, a high modularity value indicates a strong community

structure, but this is not true in general. It has been shown that random graphs

can have partitions with large modularity values (Guimera, Sales-Pardo and

Amaral (2004); Reichardt and Bornholdt (2006)). To interpret the results from

modularity-based community detection, it is necessary to test the significance

of the maximized modularity value. In this section, we look at the maximized

modularity function of Erdös-Rényi random graphs and demonstrate the use of

our hypothesis testing procedure.

In an Erdös-Rényi graph, edges are established independently between each

pair of nodes with equal probability p, thus they have no community structures.

Graphs generated from the Erdös-Rényi model can have large modularity values.
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Figure 1. Histogram of maxe QNG(e) for 100 Erdös-Rényi graphs.

100 and p = 0.05. The average, minimum, and maximum of the 100 maximum

modularity maxeQNG(e, G) are 0.399, 0.350, and 0.451, respectively. Based

on the general rule of thumb of Newman and Girvan (2004), all 100 Erdös-

Rényi graphs are considered to have strong community structure since they have

maxeQNG(e, G) ∈ [0.3, 0.7].

To better understand the community detection results, it is useful to per-

form our test of hypothesis. Consider randomly generated Erdös-Rényi graphs

G1, . . . , G100 with n = 100 and p = 0.05. For each graph Gi, we calculated its

maximized modularity maxeQasym(e, Gi) and maxeQMCMC(e, Gi). To perform

hypothesis testing on each graph Gi, we generated 1,000 samples g
(i)
1 , . . . , g

(i)
1,000

uniformly from the set of simple graphs with the same degree sequence as Gi

using MCMC. Then we estimated the p-value using

p
(i)
1 =

1

1, 000

1,000∑
j=1

I
(
max
e

Qasym(e, Gi) ≤ max
e

Qasym(e, g
(i)
j )

)
, (5.1)

p
(i)
2 =

1

1, 000

1,000∑
j=1

I
(
max
e

QMCMC(e, Gi) ≤ max
e

QMCMC(e, g
(i)
j )

)
, (5.2)

for maxeQasym(e, Gi) and maxeQMCMC(e, Gi).

Figure 2 shows the histograms for the 100 p-values for the two cases. Under

the null model, the p-values are roughly uniformly distributed. If we set the sig-

nificance level at 0.05, Type I error is estimated to be 0.03 and 0.07, respectively,

for the two cases. This example shows that the test of hypothesis is needed in

order to decide the significance of an identified community structure.

We also ran the above simulation for Erdös-Rényi graphs with different

choices of the number of nodes n and connection probability p. The Type I

error for our test is estimated based on maxeQasym with significance level set at

0.05. The results summarized in Table 1 further demonstrate that the level of

our proposed hypothesis testing procedure is well controlled.
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Figure 2. Histograms of 100 p1-values (left) and 100 p2-values (right).

Table 1. Type I error for Erdös-Rényi model with n nodes and edge probability p.

n = 100 n = 500 n = 1, 000
p Type I error p Type I error p Type I error

0.05 7% 0.05 4% 0.05 2%

0.1 6% 0.1 4% 0.1 7%

0.25 3% 0.25 4% 0.25 5%

0.5 7% 0.5 5% 0.5 6%

5.2. Synthetic modular networks

We tested our community detection procedure on networks known to have

community structures. We generated 100 graphs from the standard stochastic

block model with n = 1, 000 nodes and three blocks with sizes 200, 300, and

500. The linking probability matrix for the stochastic block model was set to

B =




0.5 0.1 0.1

0.1 0.3 0.1

0.1 0.1 0.2


. Here links are more likely to be established within the

blocks and less likely to be established between the blocks, and graphs generated

from this model should have community structure.

Figure 3 is the histogram of maxeQNG(e, G) for the 100 graphs generated

from the model. As the maximum of the 100 values of maxeQNG(e, G) is 0.263,

the general rule of thumb of Newman and Girvan (2004) suggests that none of the

100 graphs have strong community structures. Again the general rule of thumb

can lead to false conclusions.

Consider the same set of 100 graphs G1, . . . , G100. Since the graph is large,

we only computed Qasym. For each graph Gi, we calculated maxeQasym(e, Gi).

To perform hypothesis testing on each graph Gi, we generated 1,000 samples
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nificance level at 0.05, Type I error is estimated to be 0.03 and 0.07, respectively,

for the two cases. This example shows that the test of hypothesis is needed in

order to decide the significance of an identified community structure.

We also ran the above simulation for Erdös-Rényi graphs with different

choices of the number of nodes n and connection probability p. The Type I

error for our test is estimated based on maxeQasym with significance level set at

0.05. The results summarized in Table 1 further demonstrate that the level of

our proposed hypothesis testing procedure is well controlled.
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Table 1. Type I error for Erdös-Rényi model with n nodes and edge probability p.

n = 100 n = 500 n = 1, 000
p Type I error p Type I error p Type I error

0.05 7% 0.05 4% 0.05 2%

0.1 6% 0.1 4% 0.1 7%

0.25 3% 0.25 4% 0.25 5%

0.5 7% 0.5 5% 0.5 6%
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We tested our community detection procedure on networks known to have

community structures. We generated 100 graphs from the standard stochastic

block model with n = 1, 000 nodes and three blocks with sizes 200, 300, and

500. The linking probability matrix for the stochastic block model was set to

B =




0.5 0.1 0.1

0.1 0.3 0.1

0.1 0.1 0.2


. Here links are more likely to be established within the

blocks and less likely to be established between the blocks, and graphs generated

from this model should have community structure.

Figure 3 is the histogram of maxeQNG(e, G) for the 100 graphs generated

from the model. As the maximum of the 100 values of maxeQNG(e, G) is 0.263,

the general rule of thumb of Newman and Girvan (2004) suggests that none of the

100 graphs have strong community structures. Again the general rule of thumb

can lead to false conclusions.

Consider the same set of 100 graphs G1, . . . , G100. Since the graph is large,

we only computed Qasym. For each graph Gi, we calculated maxeQasym(e, Gi).

To perform hypothesis testing on each graph Gi, we generated 1,000 samples
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Figure 3. Histogram of the maximized modularity maxe QNG(e) for 100
graphs generated from a stochastic block model with community structure.

g
(i)
1 , . . . , g

(i)
1,000 from (3.1) using MCMC and estimated the p-value. Here we took

a sample after every 20,000 (roughly a quarter of the total number of edges in

the graph) MCMC steps to reduce the dependence between the samples.

For all 100 graphs, the p-values of the identified community structure were

estimated to be 0, which suggests that all 100 graphs be considered to have strong

community structures. This indicates that the proposed hypothesis testing pro-

cedure has good power in detecting communities. Moreover, for all 100 graphs,

the community assignment has a misclassification rate of 0.

To further explore the power of our test, we did simulation studies on graphs

generated from degree corrected stochastic blockmodels with 1,000 nodes and

two communities. Node labels were generated independently with P (ci = 1) = π

and P (ci = 2) = 1 − π. By varying π, we can investigate the robustness of

our method to unbalanced community sizes. The linking parameters matrix

Z =

(
1.5 −1.5

−1.5 1.5

)
and the degree correction θ was generated from a power law

distribution with the exponent equal to 2.5. We generated edges with probability

P (Aij = 1) = ρ× logit−1(Zcicj + θi + θj). (5.3)

By varying ρ, we controlled the densities of the graph. Through π = 0.5, 0.25

and 0.1 and ρ = 0.05, 0.1, 0.25 and 0.5, we found no Type II errors (significance

level set at 0.05).

5.3. Krebs’ network of books on American politics

The Krebs’ network of books on American politics (available at http://www.

orgnet.com/) has 105 vertices and 441 edges. Each node represents a book on

US politics that is sold by the online bookseller Amazon.com. Each edge between

a pair of nodes represents the frequent co-purchasing of the two books by the

same buyers, which is indicated by the “customers who bought this book also
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bought these other books” feature on Amazon.com. Newman (2006a) provided

a classification of these 105 books as liberal, conservative, or neutral, based on a

reading of the descriptions and reviews of the books posted on Amazon.com.

This network is of moderate size and we only use the MCMC approximated

modularity function QMCMC . Here QMCMC was calculated based on 1,000

MCMC samples, each taken after 1,000 MCMC moves. Using the modularity

maximization algorithm of Agrawal and Kempe (2008), QMCMC is maximized

at K = 5 with maxQMCMC = 0.535. When our test of hypothesis to decide

the significance of the partition was run using the maximized QMCMC of the

1,000 MCMC samples from the null model (3.1) of no community structure, the

largest value seen was < 0.3, which indicates the identified community structure

is significant.

Among the five identified communities in Figure 4, two large communities are

obviously the liberal community and the conservative community. Based on the

members in the communities, the three smaller communities are roughly neutral,

neutral conservative and conservative. One interesting observation is that the

smaller conservative community on the rightmost is almost only connected to

the large conservative community, and has almost no connections to the liberal

community and neutral community. This indicates that if customers buy books

from this small conservative community, it is very unlikely that they will buy

books from the liberal community or the neutral community. Some examples

of the books in this more extreme conservative community are “Useful Idiots:

How Liberals Got It Wrong in the Cold War and Still Blame America First” by

Mona Charen, “The Right Man: The Surprise Presidency of George W. Bush” by

David Frum and “The Savage Nation: Saving America from the Liberal Assault

on Our Borders, Language and Culture” by Michael Savage.

6. Discussion

In this paper, we provide a statistical framework for the modularity-based

community detection. The proposed modularity function and statistical testing

procedure perform well with both simulated and existing networks. We also show

that under the degree-corrected stochastic block model, the proposed modularity

function is consistent as a community detection criterion.

The modularity function Q can have negative values, the number of edges

within communities is less than its expected value under the null model. A

partition with large negative modularity suggests the existence of multipartite

structure (Newman (2006b)). To detect the multipartite structure in the network,

one can minimize the modularity function. The statistical framework proposed

in the paper can be used to test the significance of an identified multipartite

structure.
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Figure 3. Histogram of the maximized modularity maxe QNG(e) for 100
graphs generated from a stochastic block model with community structure.
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same buyers, which is indicated by the “customers who bought this book also
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a classification of these 105 books as liberal, conservative, or neutral, based on a

reading of the descriptions and reviews of the books posted on Amazon.com.

This network is of moderate size and we only use the MCMC approximated

modularity function QMCMC . Here QMCMC was calculated based on 1,000

MCMC samples, each taken after 1,000 MCMC moves. Using the modularity

maximization algorithm of Agrawal and Kempe (2008), QMCMC is maximized

at K = 5 with maxQMCMC = 0.535. When our test of hypothesis to decide

the significance of the partition was run using the maximized QMCMC of the

1,000 MCMC samples from the null model (3.1) of no community structure, the

largest value seen was < 0.3, which indicates the identified community structure

is significant.

Among the five identified communities in Figure 4, two large communities are

obviously the liberal community and the conservative community. Based on the

members in the communities, the three smaller communities are roughly neutral,

neutral conservative and conservative. One interesting observation is that the

smaller conservative community on the rightmost is almost only connected to
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from this small conservative community, it is very unlikely that they will buy

books from the liberal community or the neutral community. Some examples
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6. Discussion

In this paper, we provide a statistical framework for the modularity-based

community detection. The proposed modularity function and statistical testing

procedure perform well with both simulated and existing networks. We also show

that under the degree-corrected stochastic block model, the proposed modularity

function is consistent as a community detection criterion.

The modularity function Q can have negative values, the number of edges

within communities is less than its expected value under the null model. A

partition with large negative modularity suggests the existence of multipartite

structure (Newman (2006b)). To detect the multipartite structure in the network,

one can minimize the modularity function. The statistical framework proposed

in the paper can be used to test the significance of an identified multipartite

structure.
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Figure 4. Krebs’ network of books on American politics. Square nodes
denote liberal books, triangle nodes denote conservative books and circle
nodes denote neutral books.

Besides modularity-based community detecting approaches, other methods
have been proposed for detecting communities in networks. However, not much
work has been done to assess the statistical significance or quantify the uncer-
tainty associated with identified community structures. Another work in our
direction is Choi, Wolfe and Airoldi (2011).

Extending our method to directed networks is an interesting research topic.
A few methods have been proposed to look for communities in directed networks
using modified modularity functions, see Fortunato (2010) for a review. To ex-
tend our method to directed networks, we need an appropriate null model and a
modularity function for directed graphs, and new algorithms may be needed for
finding optimal partitions.

Supplementary Material

The online supplementary material includes proofs of the theoretical results
and details of the proposed modularity maximization algorithm.
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Figure 4. Krebs’ network of books on American politics. Square nodes
denote liberal books, triangle nodes denote conservative books and circle
nodes denote neutral books.

Besides modularity-based community detecting approaches, other methods
have been proposed for detecting communities in networks. However, not much
work has been done to assess the statistical significance or quantify the uncer-
tainty associated with identified community structures. Another work in our
direction is Choi, Wolfe and Airoldi (2011).

Extending our method to directed networks is an interesting research topic.
A few methods have been proposed to look for communities in directed networks
using modified modularity functions, see Fortunato (2010) for a review. To ex-
tend our method to directed networks, we need an appropriate null model and a
modularity function for directed graphs, and new algorithms may be needed for
finding optimal partitions.

Supplementary Material

The online supplementary material includes proofs of the theoretical results
and details of the proposed modularity maximization algorithm.
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