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Abstract: The Akaike Criterion, which is based on maximum likelihood estima-

tion and cannot be applied directly to the situations when likelihood functions are

not available, has been modified for variable selection in longitudinal data with

generalized estimating equations via a working independence model. This paper

proposes another modification to AIC, the difference between the quasi-likelihood

functions of a candidate model and of a narrow model plus a penalty term. Such a

difference avoids calculating complex integration from quasi-likelihood, but inherits

theoretical asymptotic properties from AIC. We also propose a focused information

criterion for variable selection on the basis of the quasi-score function. Further,

this paper develops a frequentist model average estimator for longitudinal data

with generalized estimating equations. Simulation studies provide evidence of the

superiority of the proposed procedures. The procedures are further applied to a

data example.
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1. Introduction

Longitudinal data, in the form of repeated measurements on the same unit

over time or space, arise in a broad range of fields including medical and public

health research. An example is an AIDS clinical study A5055, that aimed to

predict the long-term antiviral treatment responses of HIV-1 infected patients

by considering pharmacokinetics (PK), drug adherence, and susceptibility. In

this study, each patient was visited multiple times over 24 weeks after entry; the

observations’ correlations within each patient were expected and had to be taken

into account during the analysis.

Mixed-effects models, introduced by Laird andWare (1982), have been widely

used for analyzing longitudinal data. As a likelihood-based approach, it relies

on the assumption that data are drawn from some distributions of known form,

which may be unknown in reality. Even if the distributions are specified, it
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can still be challenging to derive the full likelihood, especially for non-Gaussian

data. Instead of specifying the full joint distribution of responses, Liang and

Zeger (1986) developed generalized estimating equations (GEE) approach that

provides consistent estimates by only specifying the first two marginal moments

and a working correlation matrix; when the specified correlation is the true cor-

relation, the estimates are most efficient.

Since no assumption is made about the distributions of the longitudinal data

in GEE-based methods, such traditional likelihood-based model selection criteria,

as Akaike’s (1974) Information Criterion (AIC), Schwarz’s (1978) Bayes Infor-

mation Criterion (BIC), and Mallows’ (1973) Cp, cannot be applied directly for

model selection incorporating the GEE approach. As a remedy, Pan (2001a)

developed a quasi-likelihood-based AIC-type information criterion, known as

QIC, by replacing the likelihood component in AIC with the quasi-likelihood

under a working independence model. Such a replacement, along with the in-

dependence setup, makes implementation simpler with a acceptable loss. As a

consequence, QIC can be easily computed using some well-developed statistical

packages such as S-plus/R and SAS. The negligence of significant part in its

derivation and its reliance on working independence make QIC lack theoreti-

cal asymptotic properties. Cantoni, Flemming and Ronchetti (2005) proposed a

generalized Cp criterion by using weighted quadratic predictive risk as a measure

of model’s adequacy for prediction. This requires bootstrap sampling or Monte

Carlo simulation, which can be computationally expensive. Another extended

cross-validation approach based on expected predictive bias was suggested by

Pan (2001b). Fu (2003) proposed penalized generalized estimating equations for

variable selection, and Wang and Qu (2009) proposed a BIC-type model selection

criterion based on a quadratic inference function. They both require an extra

searching algorithm for the tuning parameter.

This article proposes a quasi-likelihood-based AIC-type variable selection

criterion for longitudinal data incorporating the GEE approach. We choose a

narrow model as a benchmark and consider the quasi-likelihood difference be-

tween a candidate model and the narrow model; this can avoid the complicated

calculation of the full quasi-likelihood and make the implementation feasible and

simpier. The idea was inspired by the local misspecification framework setting in

Hjort and Claeskens (2003). Under certain regularity conditions, the proposed

criterion is shown to have similar asymptotic properties as AIC.

The criteria mentioned are data-oriented and select the model with the best

overall fit, regardless of the different estimation interests. However, as Hansen

(2005) pointed out, “models should be evaluated based on their purpose”, differ-

ent parameters of interest may result in different models. From this perspective,

Claeskens and Hjort (2003) proposed a focused information criterion (FIC) that
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leads to the model with the smallest estimated mean square error of a focus pa-

rameter’s estimation, and developed the corresponding large sample properties.

Following Claeskens and Hjort (2003), we propose the quasi-likelihood based fo-

cused information criterion (QFIC) for longitudinal data, incorporating the GEE

approach.

One concern about a model selection procedure is over-optimistic confidence

intervals. Inference based on a single final model ignores the uncertainty intro-

duced by the model selection process and underestimates the variability. The

corresponding confidence intervals are either too narrow or their shift from the

correct location, as shown in Danilov and Magnus (2004b), Shen, Huang and Ye

(2004). Instead of relying on one model, model averaging procedure combines

the estimates from different models in the form of a certain weighting mean.

By avoiding the model selection process, the corresponding inference reduces the

risk of ending up with the bad model and improves coverage probability. This

strategy has been studied by such as Draper (1995), Buckland, Burnham and

Augustin (1997), Burnham and Anderson (1998), Danilov and Magnus (2004a),

and Leeb and Pötscher (2006). Hjort and Claeskens (2003) also considered a

frequentist model averaging (FMA) procedure using the weights obtained based

on certain model selection criteria, and derived nice asymptotic properties of it.

Another purpose of our article is to develop the quasi-likelihood based frequen-

tist model averaging procedure (QFMA) for longitudinal data incorporating the

GEE approach which will inherit some good asymptotic properties due to the

similarity of quasi-likelihood and likelihood.

This paper is organized as follows. In Section 2, we give a brief review on

generalized estimation equations and QIC. Section 3 proposes a new variable

selection criterion, ∆AIC, and provides the corresponding theoretical insights.

Section 4 introduces the QFIC procedure. Section 5 considers the QFMA proce-

dure and constructs the modified confidence intervals based on QFMA estima-

tion. Simulation studies and the A5055 data analysis are reported in Sections 6

and 7, respectively. In the final section, we conclude with some remarks. The

proofs of results are contained in the online Supplemental Material.

2. Generalized Estimating Equations and QIC

2.1. Generalized estimating equations

Consider a longitudinal study with n subjects and mi visits for the ith sub-

ject: yij and xij are the response and a set of the covariates (fixed) for the ith

subject at the jth visit; the mean of yij , denoted by µij , can be connected to xij

through a link function g(·):
E(yij) = µij and g(µij) = x�

ijβ,
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where β = (β1, . . . , βk)
� is a vector of unknown parameters; the variance of yij

can be expressed as a known function ν(·) of µij , with a nuisance parameter φ,

Var (yij) = φν(µij). Starting from these basic assumptions, Wedderburn (1974)

defined the log quasi-likelihood function K(µij , φ, yij) through the relationship

∂K(µij , φ; yij)

∂µij
=

yij − µij

φν(µij)
.

Let yi = (yi1 · · · , yimi)
� and xi = (xi1, . . . ,ximi)

�. In the context of longitudinal

data incorporating the GEE approach, the log quasi-likelihood function can be

defined similarly as

∂Q(β,Ri(α), φ;yi)

∂β
= D�

i V
−1
i (yi − µi),

where µi = E(yi), Di = Di(β) = ∂µi/∂β
�, Vi = φA1/2

i Ri(α)A1/2

i , Ri(α) is an

mi ×mi working correlation matrix, and Ai is an mi ×mi diagonal matrix with

the jth diagonal element ν(µij). If D = {(y1,x1), . . . , (yn,xn)}, the estimation

of β can be reached by solving the corresponding quasi-score equations, known

as generalized estimating equations (GEE),

U(β,R(α), φ;D) =

n∑
i=1

D�
i V

−1
i (yi − µi) = 0.

The main advantage of the GEE estimator β̂gee is consistency under the mild

regularity conditions, regardless of the misspecified working correlation matrix.

It has also been shown that
√
n(β̂gee − β) is asymptotically normal with mean

zero and variance-covariance matrix Vgee, where

Vgee = lim
n→∞

n

( n∑
i=1

D�
i V

−1
i Di

)−1{ n∑
i=1

D�
i V

−1
i Cov (yi)V

−1
i Di

}

×
( n∑

i=1

D�
i V

−1
i Di

)−1

.

By replacing Cov (yi) with {yi−µi(β̂)}{yi−µi(β̂)}�, and substituting α, β and

φ by their
√
n-consistent estimators, Vgee can be estimated consistently, where the

estimator is known as the sandwich estimator or the robust variance-covariance

estimator (White (1980)).

Liang and Zeger (1986) suggested several commonly used working correlation

matrices: the independent working correlation matrix (IN) with Ri = Imi , the

exchangeable working correlation matrix (EX) with [Ri]jk = α (j �= k), the

first-order autoregressive working correlation matrix (AR) with [Ri]jk = α|j−k|

(j �= k), and the unstructured working correlation matrix (UN) with [Ri]jk = αjk

VARIABLE SELECTION AND MODEL AVERAGING 5

(j �= k). Although the GEE approach provides robust estimates regardless of

the choice of Ri, choosing one that is close to the true correlation can increase

efficiency.

2.2. Akaike information criterion in generalized estimating equations

For longitudinal data incorporating the GEE approach, no assumption is

made about the distributions of the responses, so the likelihood-based Akaike

Information Criterion (AIC), cannot be applied directly. Fortunately, Wedder-

burn has shown some similar properties in using the quasi-likelihood function.

Accordingly, one might replace the log likelihood component in AIC with the log

quasi-likelihood (assuming its existence) as

QAIC = −2Q(β̂gee,R(α̂), φ̂;D) + 2k. (2.1)

As the correlation structure of longitudinal data is usually complex, it is

hard to calculate the log quasi-likelihood component in (2.1), especially for large

mi. To simplify the calculation, Pan (2001a) proposed using the quasi-likelihood

under the independence model criterion

QIC(R) = −2Q(β̂gee(R), I, φ̂;D) + 2trace(Ω̂IV̂gee).

Here, β̂gee(R) and the sandwich estimator V̂gee are obtained with the working

correlation R, while Q(β̂gee(R), I, φ̂;D) is reached with working independence,

likewise Ω̂I, the inverse of the sandwich estimator of β̂gee(I). Then QIC picks the

model with the smallest QIC value.

By using the independent working correlation and ignoring its complex,

though significant, role in the expected K-L distance during its derivation, QIC

becomes feasible. This simplification lacks of asymptotic properties in theory.

We propose another quasi-likelihood-based model selection criterion for longitu-

dinal data incorporating the GEE approach that is theoretically well-behaved

in large sample contexts and numerically superior to its competitors even in

moderate-size samples.

3. AIC-Type Variable Selection Criterion Incorporating GEE

Approach

Claeskens and Hjort (2008) pointed out that among all the candidate models,

when the true model is at a fixed distance from the narrow model, with a large

sample size the dominating bias always suggests the full model. We propose a

variable selection criterion for longitudinal data incorporating the GEE approach

in a local misspecification framework, as in Hjort and Claeskens (2003).
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3.1. Local misspecification framework

Consider the longitudinal data introduced in Section 2.1. We start with the

full model where the covariates can be grouped into two categories: p certain

covariates that will be included in the final model, and q uncertain ones that we

are not sure about. The corresponding unknown coefficients are therefore com-

posed of the certain coefficients θ = (θ1, . . . , θp)
� and the uncertain coefficients

γ = (γ1, . . . , γq)
�, denoted as β = (θ,γ). Any submodel S can be written as a

special case of the full model: βS = (θ,γS,0Sc), where γS is a qS×1 subvector of γ

and 0Sc is a qSc ×1 subvector of q×1 vector 0 with S ⊂ {1, . . . , q}. Let N denote

the empty set. When S = N , the narrow model, βN = (θ,0), includes only the

certain covariates. The true model is defined under the local misspecification

framework as in Hjort and Claeskens (2003):

β0 = (θ0,γ0) =
(
θ0,

δ√
n

)
.

Here γ0 = 0 and δ = (δ1, . . . , δq)
� measures how far the true model is from the

narrow model in directions 1, . . . , q of order O (1/
√
n); some δi’s can be 0. Under

this scenario, the size of the squared model biases and the model variances can

reach O(1/n), the highest possible large sample approximation.

In data analysis, we need to choose a narrow model, which should include

highly significant covariates and other covariates of interest. This could be done

on theoretical grounds or based on a pre-fit of the full model, with interests

and experience included, theoretical and numerical evidences suggest that the

particular choice of the narrow model only slightly influences the results.

To simplify the discussion in the context of the GEE approach, we ignore

the treatment of the nuisance parameters α and φ and assume the consistency

of α̂ (β, φ) and φ̂ (β), and the boundedness of ∂α̂ (β, φ) /∂φ as in Liang and

Zeger (1986). Thus, the quasi-score of the full model, evaluated at (θ0,0), can

be written as

U =

[
U1

U2

]
=

[ ∂Q(θ,γ;D)
∂θ

∂Q(θ,γ;D)
∂γ

]

θ=θ0,γ=0

.

The corresponding (p+q)×(p+q) quasi-likelihood information matrix is denoted

by

Σ = Var N(U) =

[
Σ00 Σ01

Σ10 Σ11

]
and Σ−1 =

[
Σ00 Σ01

Σ10 Σ11

]
,

where Σ11 = (Σ11 − Σ10Σ
−1
00 Σ01)

−1. Let πS be the qS × q projection matrix

mapping γ to γS with qS the size of S, πSγ = γS; here πS = (IqS : 0) or a column
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permutation thereof. The quasi-score of the submodel S, evaluated at (θ0,0),
can be written as

US =

[
U1

U2,S

]
=

[
U1

πSU2

]
.

The corresponding quasi-likelihood information matrix has a (p+ qS)× (p+ qS)
dimension

ΣS =

[
Σ00 Σ01π

�
S

πSΣ10 πSΣ11π
�
S

]
and

(
Σ11

S

)−1
= πS

(
Σ11

)−1
π�

S
.

3.2. Quasi-likelihood-based ∆AIC

Let (θ̂S, γ̂S

)
be the GEE estimates under the submodel S. The AIC value of

the submodel S is

−2

n∑
i=1

logf(yi, θ̂S, γ̂S) + 2|S|,

where |S| is the number of parameters in the submodel S. Similarly, the quasi-
likelihood-based AIC value of the submodel S can be calculated as

QAICn,S = −2

n∑
i=1

Q(θ̂S, γ̂S;yi) + 2|S|.

Here, QAIC is generally difficult to implement, due to the complex correlation
structure of longitudinal data, especially the part with integration involving the
inverse of working covariance matrix in the quasi-likelihood component. Never-
theless, every submodel includes the certain parameter θ, of which the narrow
model is composed. By subtracting QAIC value of the narrow model from QAIC
value of every submodel, we can avoid calculating log quasi-likelihood directly.
We propose the AIC-type quasi-likelihood-based model selection criterion for
longitudinal data incorporating the GEE approach as

∆AICn,S = QAICn,S −QAICn,N .

Result gives the specific form and the large sample behavior of ∆AICn,S, with
d
=

denoting equality in distribution and
d→ denoting convergence in distribution.

Theorem 1. Under the Assumptions given in the Appendix, as n goes to infinity,

∆AICn,S
d
= −nγ̂�(Σ11

)−1
π�

S
Σ11

S
πS

(
Σ11

)−1
γ̂ + 2

∣∣∣ SN
∣∣∣

d→ −χ2
|S/N|(λS) + 2

∣∣∣ SN
∣∣∣

with the non-centrality parameter λS = nγ�
0

(
Σ11

)−1
π�

S
Σ11

S
πS

(
Σ11

)−1
γ0. The

number of degrees of freedom, |S/N|, is the number of covariates in the candidate
model S not in the narrow model.
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posed of the certain coefficients θ = (θ1, . . . , θp)
� and the uncertain coefficients

γ = (γ1, . . . , γq)
�, denoted as β = (θ,γ). Any submodel S can be written as a

special case of the full model: βS = (θ,γS,0Sc), where γS is a qS×1 subvector of γ

and 0Sc is a qSc ×1 subvector of q×1 vector 0 with S ⊂ {1, . . . , q}. Let N denote

the empty set. When S = N , the narrow model, βN = (θ,0), includes only the

certain covariates. The true model is defined under the local misspecification

framework as in Hjort and Claeskens (2003):

β0 = (θ0,γ0) =
(
θ0,

δ√
n

)
.

Here γ0 = 0 and δ = (δ1, . . . , δq)
� measures how far the true model is from the

narrow model in directions 1, . . . , q of order O (1/
√
n); some δi’s can be 0. Under

this scenario, the size of the squared model biases and the model variances can

reach O(1/n), the highest possible large sample approximation.

In data analysis, we need to choose a narrow model, which should include

highly significant covariates and other covariates of interest. This could be done

on theoretical grounds or based on a pre-fit of the full model, with interests

and experience included, theoretical and numerical evidences suggest that the

particular choice of the narrow model only slightly influences the results.

To simplify the discussion in the context of the GEE approach, we ignore

the treatment of the nuisance parameters α and φ and assume the consistency

of α̂ (β, φ) and φ̂ (β), and the boundedness of ∂α̂ (β, φ) /∂φ as in Liang and

Zeger (1986). Thus, the quasi-score of the full model, evaluated at (θ0,0), can

be written as

U =

[
U1

U2

]
=

[ ∂Q(θ,γ;D)
∂θ

∂Q(θ,γ;D)
∂γ

]

θ=θ0,γ=0

.

The corresponding (p+q)×(p+q) quasi-likelihood information matrix is denoted

by

Σ = Var N(U) =

[
Σ00 Σ01

Σ10 Σ11

]
and Σ−1 =

[
Σ00 Σ01

Σ10 Σ11

]
,

where Σ11 = (Σ11 − Σ10Σ
−1
00 Σ01)

−1. Let πS be the qS × q projection matrix

mapping γ to γS with qS the size of S, πSγ = γS; here πS = (IqS : 0) or a column
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permutation thereof. The quasi-score of the submodel S, evaluated at (θ0,0),
can be written as

US =

[
U1

U2,S

]
=

[
U1

πSU2

]
.

The corresponding quasi-likelihood information matrix has a (p+ qS)× (p+ qS)
dimension

ΣS =

[
Σ00 Σ01π

�
S

πSΣ10 πSΣ11π
�
S

]
and

(
Σ11

S

)−1
= πS

(
Σ11

)−1
π�

S
.

3.2. Quasi-likelihood-based ∆AIC

Let (θ̂S, γ̂S

)
be the GEE estimates under the submodel S. The AIC value of

the submodel S is

−2

n∑
i=1

logf(yi, θ̂S, γ̂S) + 2|S|,

where |S| is the number of parameters in the submodel S. Similarly, the quasi-
likelihood-based AIC value of the submodel S can be calculated as

QAICn,S = −2

n∑
i=1

Q(θ̂S, γ̂S;yi) + 2|S|.

Here, QAIC is generally difficult to implement, due to the complex correlation
structure of longitudinal data, especially the part with integration involving the
inverse of working covariance matrix in the quasi-likelihood component. Never-
theless, every submodel includes the certain parameter θ, of which the narrow
model is composed. By subtracting QAIC value of the narrow model from QAIC
value of every submodel, we can avoid calculating log quasi-likelihood directly.
We propose the AIC-type quasi-likelihood-based model selection criterion for
longitudinal data incorporating the GEE approach as

∆AICn,S = QAICn,S −QAICn,N .

Result gives the specific form and the large sample behavior of ∆AICn,S, with
d
=

denoting equality in distribution and
d→ denoting convergence in distribution.

Theorem 1. Under the Assumptions given in the Appendix, as n goes to infinity,

∆AICn,S
d
= −nγ̂�(Σ11

)−1
π�

S
Σ11

S
πS

(
Σ11

)−1
γ̂ + 2

∣∣∣ SN
∣∣∣

d→ −χ2
|S/N|(λS) + 2

∣∣∣ SN
∣∣∣

with the non-centrality parameter λS = nγ�
0

(
Σ11

)−1
π�

S
Σ11

S
πS

(
Σ11

)−1
γ0. The

number of degrees of freedom, |S/N|, is the number of covariates in the candidate
model S not in the narrow model.
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In the large sample context, the behavior of ∆AICn,S is fully dictated by
the full model’s GEE estimator γ̂, and the limiting behaviors of all ∆AICn,S in
principle determine the limits of all model selection probabilities through

P(∆AIC selects submodel S | γ̂) → P(∆AIC selects submodel S | γ0).

As shown in the proof of Theorem 1, in the Appendix, by subtracting, the com-
plex component in QAIC is canceled out and the remaining terms involve only
the uncertain parameters and the quasi-likelihood information matrix, both of
which can be consistently estimated by the GEE approach. In particular, the
estimators of Σ11 and Σ11

S
=

{
πS

(
Σ11

)−1
π�

S

}−1
can be obtained based on the

sandwich estimator Σ̂gee. Similar to the traditional AIC, the model with the
smallest ∆AIC value is selected as the final model.

Remark 1. There is no likelihood ratio tests available incorporating GEE ap-
proach for hypothesis testing Lipsitz and Fitzmaurice (2009, p.55). Nevertheless,
the availability of quasi-likelihood suggests quasi-likelihood ratio tests. Consider
the hypotheses:

H0 : γ = 0 vs Ha : γ �= 0.

The null model can be viewed as a narrow model with only the certain parameter
vector θ, while the alternative model is the full model. The quasi-likelihood ratio
test statistic between the alternative and null models can be written as

QLRn = 2
[
Q(θ̂, γ̂;D)−Q(θ̂N , γ̂N ;D)

]

= −QAICn,F + 2|F|+QAICn,N − 2|N |

= −∆AICn,F + 2
∣∣∣ FN

∣∣∣
d
= nγ̂�(Σ11

)−1
γ̂.

This shares the same form of quadratic type as the Wald test statistic.

4. Focused Information Criterion Incorporating GEE Approach

The criterion ∆AIC selects a model as an overall good fit on the basis of the
observation data only; it may not necessarily be a good choice for estimating a
special parameter. Hjort and Claeskens (2003) proposed a focused information
criterion to minimize the limiting risk of the focus parameter’s estimator. Here
we consider a similar idea. Assume a focus parameter can be written as the
function of the model parameters, denoted by ζ = ζ (θ,γ), which has continuous
partial derivatives in the neighborhood of (θ0,0). Denote the corresponding GEE
estimator under the submodel S by ζ̂S, and let

ω = Σ10Σ
−1
00

∂ζ

∂θ
− ∂ζ

∂γ
, τ 2

0
=

(
∂ζ

∂θ

)�
Σ−1

00

(
∂ζ

∂θ

)
and DS = π�

S
Σ11

S
πS

(
Σ11

)−1
,

where the derivatives are evaluated at (θ0,0).

VARIABLE SELECTION AND MODEL AVERAGING 9

Theorem 2. Under the assumptions given in the Appendix, as n goes to infinity,
√
n(ζ̂S − ζ0)

d→ ΩS = Ω0 + ω�δ − ω�DS ∆,

where ζ0 = ζ (θ0,γ0).

[
M1

M2

]
∼ Np+q(0,Σ), Ω0 =

(
∂ζ

∂θ

)�
Σ−1

00 M1 ∼ Np(0, τ
2
0
),

and ∆ = δ +Σ11(M2 −Σ10Σ
−1
00 M1) ∼ Nq

(
δ,Σ11

)
.

The limiting variable ΩS is normal with mean ω�(Iq − DS) δ and variance
τ 2

0
+ ω�π�

S
Σ11

S
πSω.

The limiting mean square errors therefore can be achieved by Theorem 2 as

mse(ΩS) = τ 2
0
+ ω�π�

S
Σ11

S
πSω +

[
ω� (Iq −DS) δ

]2
,

where the parameters τ0, ω, Σ11
S
, DS and δ can be estimated incorporating the

GEE approach under the full model. We propose the quasi-likelihood-based fo-
cused information criterion for longitudinal data incorporating the GEE approach
as

QFICn,S = 2ω̂�π�
S
Σ̂11

S
πSω̂ + n

[
ω̂�(Iq − D̂S)γ̂

]2
. (4.1)

In the large sample context, the behavior of QFIC is not only related to the
uncertain parameter γ, but is also influenced by ω, which is determined by the
focus parameter ζ. Therefore QFIC chooses a different model depending on the
different focus parameters. The one with the smallest QFIC value, therefore
the smallest estimated mean square error of the focus parameter’s estimator, is
selected.

5. Frequentist Model Averaging Incorporating GEE Approach

5.1. Frequentist model averaging

Our model selection procedure aims to select a single final model that has
the properties we need, either catching the overall information from the data
with ∆AIC, or minimizing the mean square error for the focus parameter’s esti-
mator with QFIC. The inference based on the final model, however, ignores the
uncertainty introduced by the selection procedure and results in a too-optimistic
confidence interval. Frequentist model averaging, introduced in Claeskens and
Hjort (2003), is an alternative to model selection that can address this problem
and provide relatively robust statistical inference.

The quasi-likelihood-based model averaging (QFMA) estimator of the focus
parameter ζ is defined as the weighted average among the estimators based on
all the candidate models incorporating the GEE approach,

ζ̂(γ̂) =
∑

S

c(S|γ̂)ζ̂S,

where c(·|·) is a weight function satisfying
∑

S
c(S|γ̂) = 1 with each term in [0, 1].
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In the large sample context, the behavior of ∆AICn,S is fully dictated by
the full model’s GEE estimator γ̂, and the limiting behaviors of all ∆AICn,S in
principle determine the limits of all model selection probabilities through

P(∆AIC selects submodel S | γ̂) → P(∆AIC selects submodel S | γ0).

As shown in the proof of Theorem 1, in the Appendix, by subtracting, the com-
plex component in QAIC is canceled out and the remaining terms involve only
the uncertain parameters and the quasi-likelihood information matrix, both of
which can be consistently estimated by the GEE approach. In particular, the
estimators of Σ11 and Σ11

S
=

{
πS

(
Σ11

)−1
π�

S

}−1
can be obtained based on the

sandwich estimator Σ̂gee. Similar to the traditional AIC, the model with the
smallest ∆AIC value is selected as the final model.

Remark 1. There is no likelihood ratio tests available incorporating GEE ap-
proach for hypothesis testing Lipsitz and Fitzmaurice (2009, p.55). Nevertheless,
the availability of quasi-likelihood suggests quasi-likelihood ratio tests. Consider
the hypotheses:

H0 : γ = 0 vs Ha : γ �= 0.

The null model can be viewed as a narrow model with only the certain parameter
vector θ, while the alternative model is the full model. The quasi-likelihood ratio
test statistic between the alternative and null models can be written as

QLRn = 2
[
Q(θ̂, γ̂;D)−Q(θ̂N , γ̂N ;D)

]

= −QAICn,F + 2|F|+QAICn,N − 2|N |

= −∆AICn,F + 2
∣∣∣ FN

∣∣∣
d
= nγ̂�(Σ11

)−1
γ̂.

This shares the same form of quadratic type as the Wald test statistic.

4. Focused Information Criterion Incorporating GEE Approach

The criterion ∆AIC selects a model as an overall good fit on the basis of the
observation data only; it may not necessarily be a good choice for estimating a
special parameter. Hjort and Claeskens (2003) proposed a focused information
criterion to minimize the limiting risk of the focus parameter’s estimator. Here
we consider a similar idea. Assume a focus parameter can be written as the
function of the model parameters, denoted by ζ = ζ (θ,γ), which has continuous
partial derivatives in the neighborhood of (θ0,0). Denote the corresponding GEE
estimator under the submodel S by ζ̂S, and let

ω = Σ10Σ
−1
00

∂ζ

∂θ
− ∂ζ

∂γ
, τ 2

0
=

(
∂ζ

∂θ

)�
Σ−1

00

(
∂ζ

∂θ

)
and DS = π�

S
Σ11

S
πS

(
Σ11

)−1
,

where the derivatives are evaluated at (θ0,0).
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Theorem 2. Under the assumptions given in the Appendix, as n goes to infinity,
√
n(ζ̂S − ζ0)

d→ ΩS = Ω0 + ω�δ − ω�DS ∆,

where ζ0 = ζ (θ0,γ0).

[
M1

M2

]
∼ Np+q(0,Σ), Ω0 =

(
∂ζ

∂θ

)�
Σ−1

00 M1 ∼ Np(0, τ
2
0
),

and ∆ = δ +Σ11(M2 −Σ10Σ
−1
00 M1) ∼ Nq

(
δ,Σ11

)
.

The limiting variable ΩS is normal with mean ω�(Iq − DS) δ and variance
τ 2

0
+ ω�π�

S
Σ11

S
πSω.

The limiting mean square errors therefore can be achieved by Theorem 2 as

mse(ΩS) = τ 2
0
+ ω�π�

S
Σ11

S
πSω +

[
ω� (Iq −DS) δ

]2
,

where the parameters τ0, ω, Σ11
S
, DS and δ can be estimated incorporating the

GEE approach under the full model. We propose the quasi-likelihood-based fo-
cused information criterion for longitudinal data incorporating the GEE approach
as

QFICn,S = 2ω̂�π�
S
Σ̂11

S
πSω̂ + n

[
ω̂�(Iq − D̂S)γ̂

]2
. (4.1)

In the large sample context, the behavior of QFIC is not only related to the
uncertain parameter γ, but is also influenced by ω, which is determined by the
focus parameter ζ. Therefore QFIC chooses a different model depending on the
different focus parameters. The one with the smallest QFIC value, therefore
the smallest estimated mean square error of the focus parameter’s estimator, is
selected.

5. Frequentist Model Averaging Incorporating GEE Approach

5.1. Frequentist model averaging

Our model selection procedure aims to select a single final model that has
the properties we need, either catching the overall information from the data
with ∆AIC, or minimizing the mean square error for the focus parameter’s esti-
mator with QFIC. The inference based on the final model, however, ignores the
uncertainty introduced by the selection procedure and results in a too-optimistic
confidence interval. Frequentist model averaging, introduced in Claeskens and
Hjort (2003), is an alternative to model selection that can address this problem
and provide relatively robust statistical inference.

The quasi-likelihood-based model averaging (QFMA) estimator of the focus
parameter ζ is defined as the weighted average among the estimators based on
all the candidate models incorporating the GEE approach,

ζ̂(γ̂) =
∑

S

c(S|γ̂)ζ̂S,

where c(·|·) is a weight function satisfying
∑

S
c(S|γ̂) = 1 with each term in [0, 1].
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Theorem 3. Under the assumptions given in the Appendix, as n goes to infinity,
√
n(ζ̂ − ζ0)

d→ Ω = Ω0 + ω�δ − ω�δ̂(∆),

where δ̂(∆) =
∑

S
c(S|∆)DS∆. The mean and variance of the limiting variable Ω

are E(Ω) = ω�δ−ω�E
[
δ̂(∆)

]
and Var (Ω) = τ 2

0
+ω�var

[
δ̂(∆)

]
ω, respectively.

Motivated by Theorem 3 and Hjort and Claeskens (2003), we modify the

traditional confidence interval for the focus parameter ζ based on the model

averaging estimator ζ̂ as

lown = ζ̂ − ω̂�[γ̂ − 1√
n
δ̂(γ̂)

]
− zkτ̂√

n
,

upn = ζ̂ − ω̂�[γ̂ − 1√
n
δ̂(γ̂)

]
+

zkτ̂√
n
,

where zk is the kth standard normal quantile and τ̂/
√
n is the consistent esti-

mator of the standard deviation for ζ̂ under the full model that can be written

as τ/
√
n = n−1/2

(
τ 2
0 + ω�Σ11ω

)1/2
. By shifting the center of CI from ζ̂ by the

amount ω̂�[γ̂ − δ̂(γ̂)/
√
n
]
and widening CI as τ/

√
n instead of τS/

√
n, thereby

respecting the uncertainty of the selection process, the coverage probability is

consistent with the nominal level.

Theorem 4. Under the assumptions given in the Appendix, as n goes to infinity,

Pr(lown ≤ ζ0 ≤ upn)
d→ 2Φ(zk)− 1,

where Φ(·) is the standard normal distribution function.

Theorem 4 can be easily proven by simultaneous convergence in distribution:
{√

n
(
ζ̂ − ζ0

)
, γ̂

} d→
{
Ω0 + ω�δ − ω�δ̂(∆),∆

}
.

5.2. The choice of weight functions

The model averaging estimator can be connected to the model selection es-

timators by taking specific weight functions. Thus the submodel S∆AIC, selected

by ∆AIC, corresponds to an indicator function as its weight function, the hard

core weight function,

ζ̂∆AIC =
∑

S

I(S = S∆AIC)ζ̂S = ζ̂S∆AIC
.

Likewise, for the model selected by QIC, ζ̂QIC =
∑

S
I(S = SQIC)ζ̂S = ζ̂SQFIC

, and

for the model selected by QFIC, ζ̂QFIC =
∑

S
I(S = SQFIC)ζ̂S = ζ̂SQFIC

. Buckland,

Burnham and Augustin (1997) suggest that the choice of the weights in model
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averaging estimators should be proportional to exp(fS − |S|), where fS is the

maximized log-likelihood under the submodel S. Thus weights are proportional

to exp(QS − |S|) with QS the quasi-likelihood of the submodel S for longitudi-

nal data incorporating the GEE approach and |S| the number of parameters in

the submodel S. A direct calculation (Buckland, Burnham and Augustin (1997))

indicates that the corresponding smoothed ∆AIC and QIC weights can be rep-

resented as
exp

(
−∆AICn,S/2

)
∑

T
exp

(
−∆AICn,T/2

) and
exp

(
−QICn,S/2

)
∑

T
exp

(
−QICn,T/2

) .

It can also be beneficial to consider the information carried by QFIC by using

the smoothed QFIC weights, similar to that suggested in Claeskens and Hjort

(2003) and Claeskens and Hjort (2008):

exp
(
−(κ/2)[(QFICn,S)/(ω̂

�Σ̂11ω̂)]
)

∑
T
exp

(
−(κ/2)[(QFICn,T)/(ω̂

�Σ̂11ω̂)]
) , for some κ ≥ 0, (5.1)

with κ bridging the weights from the uniform (κ close to 0) to the hard-core

(large κ).

6. Simulation Studies

We investigated the performance of the proposed quasi-likelihood-based ∆AIC,

QFIC, and QFMA for longitudinal data incorporating the GEE approach. We

compared ∆AIC and the traditional QIC in terms of frequency in selecting the

true model. The post-model selection procedures using QFIC, ∆AIC, and QIC,

denoted as P-QFIC, P-∆AIC, and P-QIC, were compared with their smoothed

versions, denoted as S-QFIC, S-∆AIC, and S-QIC, in terms of the coverage proba-

bilities (CPs) of the estimated 95% confidence intervals and the estimated mean

square errors (MSEs) for the focus parameters. As a reference, the inference

based on the full model (Full) is reported as well.

We considered discrete and continuous responses with n = 50 and/or n = 100

subjects where each had m = 3 visits.

Example 1. To compare the performance of ∆AIC and QIC in selecting the true

model, we used the same model setting as in Pan (2001a). We did not include

QFIC in this as it depends on the focus parameter of interest.

We took binary response withE(yij |x1,ij , x2,ij , x3,ij , x4,ij) = µij and logit(µij)

= β0+β1x1,ij+β2x2,ij+β3x3,ij+β4x4,ij , where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and

covariates generated from x1,ij
i.i.d.∼ Bernoulli(1/2), x2,ij = j−1 and x3,ij , x4,ij

i.i.d.∼
Uniform(−1, 1), where x3,ij and x4,ij were also independent of x1,ij . The coeffi-

cients were β0 = 0.25 = −β1 = −β2 and β3 = β4 = 0. The model with intercept,
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Theorem 3. Under the assumptions given in the Appendix, as n goes to infinity,
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ω, respectively.
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n
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+
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n
,
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√
n is the consistent esti-

mator of the standard deviation for ζ̂ under the full model that can be written

as τ/
√
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(
τ 2
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)1/2
. By shifting the center of CI from ζ̂ by the

amount ω̂�[γ̂ − δ̂(γ̂)/
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]
and widening CI as τ/
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n instead of τS/
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n, thereby

respecting the uncertainty of the selection process, the coverage probability is

consistent with the nominal level.

Theorem 4. Under the assumptions given in the Appendix, as n goes to infinity,
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d→ 2Φ(zk)− 1,

where Φ(·) is the standard normal distribution function.

Theorem 4 can be easily proven by simultaneous convergence in distribution:
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(
ζ̂ − ζ0

)
, γ̂

} d→
{
Ω0 + ω�δ − ω�δ̂(∆),∆

}
.

5.2. The choice of weight functions

The model averaging estimator can be connected to the model selection es-

timators by taking specific weight functions. Thus the submodel S∆AIC, selected

by ∆AIC, corresponds to an indicator function as its weight function, the hard

core weight function,

ζ̂∆AIC =
∑

S

I(S = S∆AIC)ζ̂S = ζ̂S∆AIC
.

Likewise, for the model selected by QIC, ζ̂QIC =
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I(S = SQIC)ζ̂S = ζ̂SQFIC

, and

for the model selected by QFIC, ζ̂QFIC =
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S
I(S = SQFIC)ζ̂S = ζ̂SQFIC

. Buckland,

Burnham and Augustin (1997) suggest that the choice of the weights in model
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averaging estimators should be proportional to exp(fS − |S|), where fS is the

maximized log-likelihood under the submodel S. Thus weights are proportional

to exp(QS − |S|) with QS the quasi-likelihood of the submodel S for longitudi-

nal data incorporating the GEE approach and |S| the number of parameters in

the submodel S. A direct calculation (Buckland, Burnham and Augustin (1997))

indicates that the corresponding smoothed ∆AIC and QIC weights can be rep-

resented as
exp

(
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)
∑
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exp

(
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) and
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(
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It can also be beneficial to consider the information carried by QFIC by using
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)
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) , for some κ ≥ 0, (5.1)
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6. Simulation Studies

We investigated the performance of the proposed quasi-likelihood-based ∆AIC,

QFIC, and QFMA for longitudinal data incorporating the GEE approach. We

compared ∆AIC and the traditional QIC in terms of frequency in selecting the

true model. The post-model selection procedures using QFIC, ∆AIC, and QIC,

denoted as P-QFIC, P-∆AIC, and P-QIC, were compared with their smoothed

versions, denoted as S-QFIC, S-∆AIC, and S-QIC, in terms of the coverage proba-

bilities (CPs) of the estimated 95% confidence intervals and the estimated mean

square errors (MSEs) for the focus parameters. As a reference, the inference

based on the full model (Full) is reported as well.

We considered discrete and continuous responses with n = 50 and/or n = 100

subjects where each had m = 3 visits.

Example 1. To compare the performance of ∆AIC and QIC in selecting the true

model, we used the same model setting as in Pan (2001a). We did not include

QFIC in this as it depends on the focus parameter of interest.

We took binary response withE(yij |x1,ij , x2,ij , x3,ij , x4,ij) = µij and logit(µij)

= β0+β1x1,ij+β2x2,ij+β3x3,ij+β4x4,ij , where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and

covariates generated from x1,ij
i.i.d.∼ Bernoulli(1/2), x2,ij = j−1 and x3,ij , x4,ij

i.i.d.∼
Uniform(−1, 1), where x3,ij and x4,ij were also independent of x1,ij . The coeffi-

cients were β0 = 0.25 = −β1 = −β2 and β3 = β4 = 0. The model with intercept,
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Table 1. Simulation studies — candidate models.

Model Covariates Model Covariates

M1 - Full Intercept, x1, x2, x3, x4 M5 Intercept, x1, x3, x4

M2 Intercept, x1, x2, x3 M6 Intercept, x1, x3

M3 Intercept, x1, x2, x4 M5 Intercept, x1, x4

M4 - True Intercept, x1, x2 M8 - Narrow Intercept, x1

x1 and x2 was the true model and the narrow model included the intercept and
x1 only. The final model was selected from the candidate models listed in Table
1.

We used the Copulas package, developed by Yan (2007), to generate two
types of correlation structure within each response: exchangeable and autore-
gressive with a correlation coefficient ρ = 0.5, denoted by EX(0.5) and AR(0.5).
Under these two scenarios, based on 1,000 simulation replicates, the frequen-
cies of the candidate models selected by ∆AIC and QIC incorporating the GEE
approach, with correlation structures IN, EX and AR, are listed in Table 2.

Generally, Table 2 shows better performance of ∆AIC than QIC in terms of
higher frequencies of selecting the true model. In particular, under the correct
working correlation EX for the EX(0.5) scenario and AR for the AR(0.5) scenario,
∆AIC works observably better than QIC. Under the independent working cor-
relation, QIC turns out to be comparable with ∆AIC. These patterns also show
the bias of QIC, introduced by simplifying with working independence model and
ignoring the complex part in the deriving process. The narrow model contains
only the intercept and x1 with (β0, β1) = (2, 1), while the coefficients of the two
nonzero covariates are (β2, β3) = (2,−2)/

√
mn. With m = 3 and n = 50 or 100,

β2 is about 0.16 or 0.12, indicating that the signals of x2 and x3 are weaker, and
resulting in the narrow model being selected with a high proportion.

The first simulation study assumed a simple correlation among the observa-
tions. While in many longitudinal studies, it is impossible to know its structure.
We generated longitudinal data, 30% of which was from EX(0.5), 30% from
AR(0.5), and the rest of which had the correlation structure,

R(α) =




1 0.4 0.1

0.4 1 0.7

0.1 0.7 1


 .

Again, ∆AIC and QIC were applied to this scenario and the results of 1,000
simulation replicates are shown in Table 3.

Table 3 with n = 50 shows that QIC works better under IN, while ∆AIC
works better under EX and AR. For n=100, ∆AIC works better although it is
close to QIC under IN.
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Table 2. Simulation I - frequency of model selected by ∆AIC and QIC.

True Correlation EX(0.5)

n Criteria R Full M2 M3 True M5 M6 M7 Narrow
50 ∆AIC IN 19 80 81 375 10 72 75 288

EX 17 86 80 371 11 85 77 273
AR 23 88 78 367 11 75 81 277

QIC IN 20 77 80 364 10 73 74 302
EX 28 83 91 343 13 80 80 282
AR 20 81 88 354 14 75 78 290

100 ∆AIC IN 21 101 108 542 7 29 31 161
EX 17 107 105 544 8 27 25 167
AR 15 105 110 540 8 34 22 166

QIC IN 20 102 111 541 6 31 31 158
EX 24 117 119 515 9 32 28 156
AR 19 107 113 535 9 33 27 157

True Correlation AR(0.5)

Full M2 M3 True M5 M6 M7 Narrow
50 ∆AIC IN 17 68 66 335 14 69 67 364

EX 17 80 70 322 17 77 78 339
AR 15 83 64 323 18 80 84 333

QIC IN 19 66 69 333 14 75 68 356
EX 23 76 70 322 16 74 76 343
AR 20 76 73 315 20 80 78 338

100 ∆AIC IN 17 100 113 473 12 38 35 212
EX 14 101 107 480 7 48 37 206
AR 20 87 113 486 12 50 35 197

QIC IN 16 98 115 475 11 41 35 209
EX 20 109 123 452 13 44 35 204
AR 20 101 121 462 14 43 33 206

Example 2. We compared model selection and model averaging approaches

with continuous and binary responses. Here the continuous response variables

are yi = β0+β1x1,i+β2x2,i+β3x3,i+εi, with i = 1, . . . , n. The covariates x1,i =

(x1,i1, x1,i2, x1,i3)
�, x2,i = (x2,i1, x2,i2, x2,i3)

� and x3,i = (x3,i1, x3,i2, x3,i3)
� were

independently generated from a multivariate normal distribution with mean

(1, 1, 1)� and identity covariance matrix. The error term εi = (εi1, εi2, εi3)
�

was generated independently of the covariates from a three-dimensional normal

distribution with mean 0, marginal variance 1, and three correlation matrices:

EX(0.5), AR(0.5), and MIX as in Example 1. The narrow model here contains

only the intercept and x1 with (β0, β1) = (2, 1), while the coefficients of the other

covariates were (β2, β3) = (2,−2)/
√
mn. Submodels are given in Table 4.

A focus parameter, ζ = −2β0 + 2β1 − 0.5β2 + 0.5β3, was considered in this

study. The models were fitted incorporating the GEE approach. The simulation
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Table 1. Simulation studies — candidate models.

Model Covariates Model Covariates

M1 - Full Intercept, x1, x2, x3, x4 M5 Intercept, x1, x3, x4

M2 Intercept, x1, x2, x3 M6 Intercept, x1, x3

M3 Intercept, x1, x2, x4 M5 Intercept, x1, x4

M4 - True Intercept, x1, x2 M8 - Narrow Intercept, x1

x1 and x2 was the true model and the narrow model included the intercept and
x1 only. The final model was selected from the candidate models listed in Table
1.

We used the Copulas package, developed by Yan (2007), to generate two
types of correlation structure within each response: exchangeable and autore-
gressive with a correlation coefficient ρ = 0.5, denoted by EX(0.5) and AR(0.5).
Under these two scenarios, based on 1,000 simulation replicates, the frequen-
cies of the candidate models selected by ∆AIC and QIC incorporating the GEE
approach, with correlation structures IN, EX and AR, are listed in Table 2.

Generally, Table 2 shows better performance of ∆AIC than QIC in terms of
higher frequencies of selecting the true model. In particular, under the correct
working correlation EX for the EX(0.5) scenario and AR for the AR(0.5) scenario,
∆AIC works observably better than QIC. Under the independent working cor-
relation, QIC turns out to be comparable with ∆AIC. These patterns also show
the bias of QIC, introduced by simplifying with working independence model and
ignoring the complex part in the deriving process. The narrow model contains
only the intercept and x1 with (β0, β1) = (2, 1), while the coefficients of the two
nonzero covariates are (β2, β3) = (2,−2)/

√
mn. With m = 3 and n = 50 or 100,

β2 is about 0.16 or 0.12, indicating that the signals of x2 and x3 are weaker, and
resulting in the narrow model being selected with a high proportion.

The first simulation study assumed a simple correlation among the observa-
tions. While in many longitudinal studies, it is impossible to know its structure.
We generated longitudinal data, 30% of which was from EX(0.5), 30% from
AR(0.5), and the rest of which had the correlation structure,

R(α) =




1 0.4 0.1

0.4 1 0.7

0.1 0.7 1


 .

Again, ∆AIC and QIC were applied to this scenario and the results of 1,000
simulation replicates are shown in Table 3.

Table 3 with n = 50 shows that QIC works better under IN, while ∆AIC
works better under EX and AR. For n=100, ∆AIC works better although it is
close to QIC under IN.
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Table 2. Simulation I - frequency of model selected by ∆AIC and QIC.

True Correlation EX(0.5)

n Criteria R Full M2 M3 True M5 M6 M7 Narrow
50 ∆AIC IN 19 80 81 375 10 72 75 288

EX 17 86 80 371 11 85 77 273
AR 23 88 78 367 11 75 81 277

QIC IN 20 77 80 364 10 73 74 302
EX 28 83 91 343 13 80 80 282
AR 20 81 88 354 14 75 78 290

100 ∆AIC IN 21 101 108 542 7 29 31 161
EX 17 107 105 544 8 27 25 167
AR 15 105 110 540 8 34 22 166

QIC IN 20 102 111 541 6 31 31 158
EX 24 117 119 515 9 32 28 156
AR 19 107 113 535 9 33 27 157

True Correlation AR(0.5)

Full M2 M3 True M5 M6 M7 Narrow
50 ∆AIC IN 17 68 66 335 14 69 67 364

EX 17 80 70 322 17 77 78 339
AR 15 83 64 323 18 80 84 333

QIC IN 19 66 69 333 14 75 68 356
EX 23 76 70 322 16 74 76 343
AR 20 76 73 315 20 80 78 338

100 ∆AIC IN 17 100 113 473 12 38 35 212
EX 14 101 107 480 7 48 37 206
AR 20 87 113 486 12 50 35 197

QIC IN 16 98 115 475 11 41 35 209
EX 20 109 123 452 13 44 35 204
AR 20 101 121 462 14 43 33 206

Example 2. We compared model selection and model averaging approaches

with continuous and binary responses. Here the continuous response variables

are yi = β0+β1x1,i+β2x2,i+β3x3,i+εi, with i = 1, . . . , n. The covariates x1,i =

(x1,i1, x1,i2, x1,i3)
�, x2,i = (x2,i1, x2,i2, x2,i3)

� and x3,i = (x3,i1, x3,i2, x3,i3)
� were

independently generated from a multivariate normal distribution with mean

(1, 1, 1)� and identity covariance matrix. The error term εi = (εi1, εi2, εi3)
�

was generated independently of the covariates from a three-dimensional normal

distribution with mean 0, marginal variance 1, and three correlation matrices:

EX(0.5), AR(0.5), and MIX as in Example 1. The narrow model here contains

only the intercept and x1 with (β0, β1) = (2, 1), while the coefficients of the other

covariates were (β2, β3) = (2,−2)/
√
mn. Submodels are given in Table 4.

A focus parameter, ζ = −2β0 + 2β1 − 0.5β2 + 0.5β3, was considered in this

study. The models were fitted incorporating the GEE approach. The simulation
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Table 3. Simulation II — frequency of model selected by ∆AIC and QIC -
mixed true correlation.

n Criteria R Full M2 M3 True M5 M6 M7 Narrow

50 ∆AIC IN 20 73 67 308 14 81 75 362
EX 13 71 70 316 16 87 61 366
AR 19 70 69 313 11 89 70 359

QIC IN 21 68 68 317 19 87 68 352
EX 26 76 76 303 24 92 68 335
AR 23 76 72 305 24 89 72 339

100 ∆AIC IN 12 94 92 497 9 56 36 204
EX 15 90 98 496 8 58 35 200
AR 15 83 95 506 8 54 32 207

QIC IN 14 91 93 496 10 54 36 206
EX 27 92 94 478 14 58 37 200
AR 24 100 94 476 15 57 33 201

Table 4. Candidate models — when Y is continuous.

Model Covariates Model Covariates

Full Model Inte., x1, x2, x3 Submodel 2 Inte., x1, x3

Submodel 1 Inte., x1, x2 Narrow Model Inte., x1

Figure 1. Simulation results (continuous response) for three scenarios: ex-
changeable, autoregressive and mixture with six selection criterion. Upper
panel: MSE; lower panel: coverage probability. (Solid line: independent;
broken line: exchangeable; dot-broken line: autoregressive.)

results, based on 1,000 replications, are presented in Figure 1.

With the influence of uncertain coefficients, regardless of working correlation
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structures, MSE plots in the upper panel of Figure 1 consistently show the better

performance, in term of relatively smaller MSE values, of model averaging, and

also the better performance of the model selection criterion QFIC. The S-∆AIC

behavior was similar to that of S-QIC, while P-∆AIC worked better than P-QIC.

The full model provides unbiased estimates at the cost of increased variability,

therefore relatively larger MSE. GEE estimates under the correct working cor-

relation structures of EX and AR always have the smallest MSE values for all

model selection or model averaging procedures. This is consistent with the true

correlation’s efficiency pointed out in Liang and Zeger (1986) under MIX, AR

gives the smallest MSE value, which may be due to the relatively closer correla-

tion structure of EX to the true correlation. In all three scenarios, IN results in

the largest MSE.

The three CP plots in the bottom panel of Figure 1 indicate the better

performance of modified CIs based on the model averaging procedure compared

with traditional CIs.

In practice, the number of visits of each subject can vary, especially in clinical

studies. The model selection and model averaging approaches we have proposed

can be applied to these situation. We conducted a simulation study to illustrate

their application to the situation of unequal number of visits.

We generated 100 samples, 30 samples with 4 visits, 30 samples with 2 visits,

and 40 samples with 3 visits. The rest of the model was the same with continuous

response variables y generated from the linear combination of x1, x2 and x3 and

a focus parameter, ζ = −2β0+2β1−0.5β2+0.5β3. For this MIX case, 30 samples

with 4 visits were generated with AR correlation, 30 samples with 2 visits were

generated with EX correlation, and 40 samples with 4 visits with UN correlation.

The result are shown in Figure 2. The trend in Figures 1 and 2 are very similar in

terms of mean square error and coverage probability for the six selection criteria.

To implement ∆AIC, QFIC and QFMA, we need a narrow model containing

”important” covariates. For possible misspecification assessment, we conducted

a simulation study. We used the simulation parameters and scenarios of Example

2, except for intercept and x2 in the narrow model instead of intercept and x1.

The focus parameter stays the same. The estimations of mean square error and

coverage probability of the six approaches are shown in Figure 3.

There we can see that, even when misspecified, the trends do not change

very much. So the simulation suggests that the choice of the narrow model only

slightly influences the results.

Example 3. We considered binary responses generated as in Example 1 with

coefficients combinations (β0, β1) = (3,−3) and (β2, β3, β4) = (1, 1,−1)/
√
mn.

The narrow model therefore contains the intercept and x1, and the candidate

models are listed in Table 5.
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Table 3. Simulation II — frequency of model selected by ∆AIC and QIC -
mixed true correlation.

n Criteria R Full M2 M3 True M5 M6 M7 Narrow

50 ∆AIC IN 20 73 67 308 14 81 75 362
EX 13 71 70 316 16 87 61 366
AR 19 70 69 313 11 89 70 359

QIC IN 21 68 68 317 19 87 68 352
EX 26 76 76 303 24 92 68 335
AR 23 76 72 305 24 89 72 339

100 ∆AIC IN 12 94 92 497 9 56 36 204
EX 15 90 98 496 8 58 35 200
AR 15 83 95 506 8 54 32 207

QIC IN 14 91 93 496 10 54 36 206
EX 27 92 94 478 14 58 37 200
AR 24 100 94 476 15 57 33 201

Table 4. Candidate models — when Y is continuous.

Model Covariates Model Covariates

Full Model Inte., x1, x2, x3 Submodel 2 Inte., x1, x3

Submodel 1 Inte., x1, x2 Narrow Model Inte., x1

Figure 1. Simulation results (continuous response) for three scenarios: ex-
changeable, autoregressive and mixture with six selection criterion. Upper
panel: MSE; lower panel: coverage probability. (Solid line: independent;
broken line: exchangeable; dot-broken line: autoregressive.)

results, based on 1,000 replications, are presented in Figure 1.

With the influence of uncertain coefficients, regardless of working correlation

VARIABLE SELECTION AND MODEL AVERAGING 15

structures, MSE plots in the upper panel of Figure 1 consistently show the better

performance, in term of relatively smaller MSE values, of model averaging, and

also the better performance of the model selection criterion QFIC. The S-∆AIC

behavior was similar to that of S-QIC, while P-∆AIC worked better than P-QIC.

The full model provides unbiased estimates at the cost of increased variability,

therefore relatively larger MSE. GEE estimates under the correct working cor-

relation structures of EX and AR always have the smallest MSE values for all

model selection or model averaging procedures. This is consistent with the true

correlation’s efficiency pointed out in Liang and Zeger (1986) under MIX, AR

gives the smallest MSE value, which may be due to the relatively closer correla-

tion structure of EX to the true correlation. In all three scenarios, IN results in

the largest MSE.

The three CP plots in the bottom panel of Figure 1 indicate the better

performance of modified CIs based on the model averaging procedure compared

with traditional CIs.

In practice, the number of visits of each subject can vary, especially in clinical

studies. The model selection and model averaging approaches we have proposed

can be applied to these situation. We conducted a simulation study to illustrate

their application to the situation of unequal number of visits.

We generated 100 samples, 30 samples with 4 visits, 30 samples with 2 visits,

and 40 samples with 3 visits. The rest of the model was the same with continuous

response variables y generated from the linear combination of x1, x2 and x3 and

a focus parameter, ζ = −2β0+2β1−0.5β2+0.5β3. For this MIX case, 30 samples

with 4 visits were generated with AR correlation, 30 samples with 2 visits were

generated with EX correlation, and 40 samples with 4 visits with UN correlation.

The result are shown in Figure 2. The trend in Figures 1 and 2 are very similar in

terms of mean square error and coverage probability for the six selection criteria.

To implement ∆AIC, QFIC and QFMA, we need a narrow model containing

”important” covariates. For possible misspecification assessment, we conducted

a simulation study. We used the simulation parameters and scenarios of Example

2, except for intercept and x2 in the narrow model instead of intercept and x1.

The focus parameter stays the same. The estimations of mean square error and

coverage probability of the six approaches are shown in Figure 3.

There we can see that, even when misspecified, the trends do not change

very much. So the simulation suggests that the choice of the narrow model only

slightly influences the results.

Example 3. We considered binary responses generated as in Example 1 with

coefficients combinations (β0, β1) = (3,−3) and (β2, β3, β4) = (1, 1,−1)/
√
mn.

The narrow model therefore contains the intercept and x1, and the candidate

models are listed in Table 5.
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Figure 2. Simulation results (continuous response with different number of
visits ) for three scenarios: exchangeable, autoregressive and mixture with
six selection criterion. Upper panel: MSE; lower panel: coverage probability.

Figure 3. Simulation results (continuous response with misspecified narrow
model) for three scenarios: exchangeable, autoregressive and mixture with
six selection criterion. Upper panel: MSE; lower panel: coverage probability.

Table 5. Candidate models – when Y is binary.

Covariates Covariates Covariates Covariates

1 Inte, x1, x2, x3, x4 3 Inte, x1, x2, x4 5 Inte, x1, x3, x4 7 Inte, x1, x4

2 Inte, x1, x2, x3 4 Inte, x1, x2 6 Inte, x1, x3 8 Inte., x1

We focused on ζ = 2β1+2β2+0.5β3+0.5β4+0.5β5. The simulation results,

based on 1,000 replications, are presented in Figure 4. The patterns of binary

longitudinal data there are similar to those in the continuous case.
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Figure 4. Simulation results (binary response) for three scenarios: exchange-
able, autoregressive and mixture with six selection criterion. Upper panel:
MSE; lower panel: coverage probability.

In our data example in Section 7, we have 12 candidate covariates and we

identify 4 significant covariates. Instead of an exhaustive search, Claeskens,

Croux and van Kerckhoven (2006) introduced the backward elimination approach

that can significantly reduce the number of candidate models we need to consider.

The detail of this approach are introduced in Section 7. Here we just mimic the

situation of Section 7’s data example.

We generated 100 samples with m = 3. The binary response data was gener-

ated through the linear combination of 15 candidate covariates, with coefficients

β = 2,−2, 2,−2, (1,−1, 0.5,−0.5, 0.1,−0.1)/
√

(mn), 0, 0, 0, 0, 0. We focus on the

parameter estimation of ζ = −2 × cd4 + 2 × cd8 − 2 × age + 2. We only con-

sidered the using independent working correlation structure and the backward

elimination approach The results are shown in Figure 5.

Similar trends were observed. Model averaging version of the estimates have

smaller MSEs than the model selection version and QFIC have smaller MSE than

∆AIC and QIC. The modified CIs have closer to 95% coverage probability than

did the traditional CIs. We found that our proposed methods could work well

incorporating the backward elimination approach for large numbers of covariates.

In summary, for both binary and continuous longitudinal data studies, the

MSE and CP plots consistently show the advantage of QFMA, compared with

∆AIC and QFIC.
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Figure 2. Simulation results (continuous response with different number of
visits ) for three scenarios: exchangeable, autoregressive and mixture with
six selection criterion. Upper panel: MSE; lower panel: coverage probability.

Figure 3. Simulation results (continuous response with misspecified narrow
model) for three scenarios: exchangeable, autoregressive and mixture with
six selection criterion. Upper panel: MSE; lower panel: coverage probability.

Table 5. Candidate models – when Y is binary.

Covariates Covariates Covariates Covariates

1 Inte, x1, x2, x3, x4 3 Inte, x1, x2, x4 5 Inte, x1, x3, x4 7 Inte, x1, x4

2 Inte, x1, x2, x3 4 Inte, x1, x2 6 Inte, x1, x3 8 Inte., x1

We focused on ζ = 2β1+2β2+0.5β3+0.5β4+0.5β5. The simulation results,

based on 1,000 replications, are presented in Figure 4. The patterns of binary

longitudinal data there are similar to those in the continuous case.
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Figure 4. Simulation results (binary response) for three scenarios: exchange-
able, autoregressive and mixture with six selection criterion. Upper panel:
MSE; lower panel: coverage probability.

In our data example in Section 7, we have 12 candidate covariates and we

identify 4 significant covariates. Instead of an exhaustive search, Claeskens,

Croux and van Kerckhoven (2006) introduced the backward elimination approach

that can significantly reduce the number of candidate models we need to consider.

The detail of this approach are introduced in Section 7. Here we just mimic the

situation of Section 7’s data example.

We generated 100 samples with m = 3. The binary response data was gener-

ated through the linear combination of 15 candidate covariates, with coefficients

β = 2,−2, 2,−2, (1,−1, 0.5,−0.5, 0.1,−0.1)/
√

(mn), 0, 0, 0, 0, 0. We focus on the

parameter estimation of ζ = −2 × cd4 + 2 × cd8 − 2 × age + 2. We only con-

sidered the using independent working correlation structure and the backward

elimination approach The results are shown in Figure 5.

Similar trends were observed. Model averaging version of the estimates have

smaller MSEs than the model selection version and QFIC have smaller MSE than

∆AIC and QIC. The modified CIs have closer to 95% coverage probability than

did the traditional CIs. We found that our proposed methods could work well

incorporating the backward elimination approach for large numbers of covariates.

In summary, for both binary and continuous longitudinal data studies, the

MSE and CP plots consistently show the advantage of QFMA, compared with

∆AIC and QFIC.
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Figure 5. Simulation results (binary response with 12 candidate covariates)
for three scenarios: exchangeable, autoregressive and mixture with six selec-
tion criterion. Upper panel: MSE; lower panel: coverage probability.

7. An Example

We applied our model selection criteria ∆AIC and QFIC, and the model av-

eraging procedure QFMA incorporating the GEE approach, to the AIDS Clinical

Trials Group protocol A5055 longitudinal study. A5055 was a Phase I/II, ran-

domized, open-label, 24-week comparative study of the PK, tolerability, safety

and antiretroviral effects of two regimens of indinavir (IDV), ritonavir (RTV),

and two nucleoside analogue reverse transcriptase inhibitors on HIV-1-infected

patients who failed protease inhibitor containing antiretroviral therapies.

In this study, 42 patients were randomized to one of two regimens and were

visited at entry, weeks 1, 2 and 4 and every 4 weeks thereafter through week 24

of follow-up. Plasma for HIV-1 RNA testing was conducted at each visit, pro-

viding a binary response (rna: 0=negative and 1=positive). A series of potential

explanatory variables were collected at the same time, including age, CD4 cell

counts (cd4), CD8 cell counts (cd8), Phenotypic determination of antiretroviral

drug resistance (ic50), the trough level of IDV and RTV concentration in plasma

(icmin, rcmin), the IDV and RTV concentration in plasma measured after 12h

from dose taken (ic12h, rc12h), the maximum IDV and RTV concentration in

plasma (icmax, rcmax), the area under the plasma concentration-time curve for

IDV and RTV (iauc, rauc) and pill counts for monitoring adherence (iadh, radh).

A more detailed description and some analysis is in Wu et al. (2005), Huang,

Liang and Wu (2008), and Acosta et al. (2004). We aim to identify pertinent

covariates in order to better predict the antiretroviral treatment response for a

new patient.
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Table 6. Data example- Full model estimation under IN, EX and AR working
correlations.

IN EX AR
Factor Estimate p-value Estimate p-value Estimate p-value

int. 3.95e+01 0.0124 3.92e+01 0.0144 3.70e+01 0.0226
cd4 1.04e-02 0.0011 1.06e-02 0.0011 1.06e-02 0.0013
cd8 -1.73e+00 0.0043 -1.75e+00 0.0037 -1.70e+00 0.0032
age -8.07e-02 0.0064 -8.00e-02 0.0071 -7.77 e-02 0.0087

icmax -2.30e+00 0.0384 -2.29e+00 0.0410 -2.23e+00 0.0373
iauc 9.19e-02 0.0796 9.12e-02 0.0851 8.51e-02 0.0917
ic50 2.13e-01 0.0908 2.08e-01 0.0975 1.89e-01 0.0919

rcmin 1.75e-01 0.1076 1.77e-01 0.1097 1.85e-01 0.1091
rc12h 7.88e-01 0.1278 8.09e-01 0.1223 7.99e-01 0.1392
ic12h -6.34e-04 0.2284 -6.49e-04 0.2220 -6.13e-04 0.2423
rcmax -0.71e+00 0.2632 -1.55e+00 0.2826 -1.36e+00 0.3715
iadh -4.80e+00 0.2914 -4.68e+00 0.3037 -3.91e+00 0.3424
radh 2.24e+00 0.6473 2.07e+00 0.6736 1.25e+00 0.7865
icmin 7.55e-05 0.7900 8.33e-05 0.7704 12.70e-05 0.6463
rauc -3.28e-03 0.8530 -3.92e-03 0.8277 -6.69e-03 0.7248

We first fit the full model by considering all 14 possible covariates with the

full model

logit(µij) =β0 + β1cd4ij + β2cd8ij + β3ageij + β4ic50ij + β5radhij + β6iadhij

+ β13raucij + β14iaucij + β7rcminij + β8icminij + β9rcmaxij

+ β10icmaxij + β11rc12hij + β12ic12hij ,

with i = 1, . . . , 42, j = 1, . . . , ti and µij the conditional expectation of rnaij . Due

to the complicated correlation structure within each patient’s serial observations,

the marginal logistic regression model was fit incorporating the GEE approach

under three different working correlation structures: IN, EX and AR. By the

order of the covariates’ significance, the results are listed in Table 6 in terms

of the corresponding coefficients’ estimates and p-values. In particular, under

the EX working correlation structure, the estimate of nuisance parameter α was

0.01, while under the AR working correlation structure, the estimate of nuisance

parameter α was 0.15.

From Table 6, IN and EX give similar coefficients’ estimates and p-values,

and quite different from those under AR, but all the results indicate the same

highly significant covariates: int., cd4, cd8 and age. We took these as certain

and we ran the selection and averaging procedures among the 11 uncertain ones.

The backward elimination approach was used. It starts with the full model,

deletes one covariate at each step based on certain model selection criterion, and
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Figure 5. Simulation results (binary response with 12 candidate covariates)
for three scenarios: exchangeable, autoregressive and mixture with six selec-
tion criterion. Upper panel: MSE; lower panel: coverage probability.

7. An Example

We applied our model selection criteria ∆AIC and QFIC, and the model av-

eraging procedure QFMA incorporating the GEE approach, to the AIDS Clinical

Trials Group protocol A5055 longitudinal study. A5055 was a Phase I/II, ran-

domized, open-label, 24-week comparative study of the PK, tolerability, safety

and antiretroviral effects of two regimens of indinavir (IDV), ritonavir (RTV),

and two nucleoside analogue reverse transcriptase inhibitors on HIV-1-infected

patients who failed protease inhibitor containing antiretroviral therapies.

In this study, 42 patients were randomized to one of two regimens and were

visited at entry, weeks 1, 2 and 4 and every 4 weeks thereafter through week 24

of follow-up. Plasma for HIV-1 RNA testing was conducted at each visit, pro-

viding a binary response (rna: 0=negative and 1=positive). A series of potential

explanatory variables were collected at the same time, including age, CD4 cell

counts (cd4), CD8 cell counts (cd8), Phenotypic determination of antiretroviral

drug resistance (ic50), the trough level of IDV and RTV concentration in plasma

(icmin, rcmin), the IDV and RTV concentration in plasma measured after 12h

from dose taken (ic12h, rc12h), the maximum IDV and RTV concentration in

plasma (icmax, rcmax), the area under the plasma concentration-time curve for

IDV and RTV (iauc, rauc) and pill counts for monitoring adherence (iadh, radh).

A more detailed description and some analysis is in Wu et al. (2005), Huang,

Liang and Wu (2008), and Acosta et al. (2004). We aim to identify pertinent

covariates in order to better predict the antiretroviral treatment response for a

new patient.
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Table 6. Data example- Full model estimation under IN, EX and AR working
correlations.

IN EX AR
Factor Estimate p-value Estimate p-value Estimate p-value

int. 3.95e+01 0.0124 3.92e+01 0.0144 3.70e+01 0.0226
cd4 1.04e-02 0.0011 1.06e-02 0.0011 1.06e-02 0.0013
cd8 -1.73e+00 0.0043 -1.75e+00 0.0037 -1.70e+00 0.0032
age -8.07e-02 0.0064 -8.00e-02 0.0071 -7.77 e-02 0.0087

icmax -2.30e+00 0.0384 -2.29e+00 0.0410 -2.23e+00 0.0373
iauc 9.19e-02 0.0796 9.12e-02 0.0851 8.51e-02 0.0917
ic50 2.13e-01 0.0908 2.08e-01 0.0975 1.89e-01 0.0919

rcmin 1.75e-01 0.1076 1.77e-01 0.1097 1.85e-01 0.1091
rc12h 7.88e-01 0.1278 8.09e-01 0.1223 7.99e-01 0.1392
ic12h -6.34e-04 0.2284 -6.49e-04 0.2220 -6.13e-04 0.2423
rcmax -0.71e+00 0.2632 -1.55e+00 0.2826 -1.36e+00 0.3715
iadh -4.80e+00 0.2914 -4.68e+00 0.3037 -3.91e+00 0.3424
radh 2.24e+00 0.6473 2.07e+00 0.6736 1.25e+00 0.7865
icmin 7.55e-05 0.7900 8.33e-05 0.7704 12.70e-05 0.6463
rauc -3.28e-03 0.8530 -3.92e-03 0.8277 -6.69e-03 0.7248

We first fit the full model by considering all 14 possible covariates with the

full model

logit(µij) =β0 + β1cd4ij + β2cd8ij + β3ageij + β4ic50ij + β5radhij + β6iadhij

+ β13raucij + β14iaucij + β7rcminij + β8icminij + β9rcmaxij

+ β10icmaxij + β11rc12hij + β12ic12hij ,

with i = 1, . . . , 42, j = 1, . . . , ti and µij the conditional expectation of rnaij . Due

to the complicated correlation structure within each patient’s serial observations,

the marginal logistic regression model was fit incorporating the GEE approach

under three different working correlation structures: IN, EX and AR. By the

order of the covariates’ significance, the results are listed in Table 6 in terms

of the corresponding coefficients’ estimates and p-values. In particular, under

the EX working correlation structure, the estimate of nuisance parameter α was

0.01, while under the AR working correlation structure, the estimate of nuisance

parameter α was 0.15.

From Table 6, IN and EX give similar coefficients’ estimates and p-values,

and quite different from those under AR, but all the results indicate the same

highly significant covariates: int., cd4, cd8 and age. We took these as certain

and we ran the selection and averaging procedures among the 11 uncertain ones.

The backward elimination approach was used. It starts with the full model,

deletes one covariate at each step based on certain model selection criterion, and
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Figure 6. Prediction errors for the data example using the backward elimi-
nation approach.

ends up with 12 nested candidate models, among which the model selection and

averaging procedures are processed.

We examined six model selection and averaging procedures’ predictive pow-

ers by using cross-validation experiment: S-QFIC, S-∆AIC, S-QIC, P-QFIC,

P-∆AIC, and P-QIC. With the correlation structures of patients observations,

the leave-one-patient-out was chosen over of the leave-one-observation-out. The

prediction error rates were evaluated by the percentage of wrong predictions

among 1,000 replicates; these are plotted in Figure 6.

The parameter κ bridges the QFIC-based weights from uniform to hard-

core. The left panel in Figure 6 gives the prediction error rates of S-QFIC using

κ values ranging from 0 to 10. When κ = 0, the estimate is the arithmetic mean

of 12 estimates from the candidate models and results in the largest error rate.

The dashed line gives the error rate obtained by using QFIC selection procedure,

equivalent to S-QFIC that assigns weight 1 to the best model in the sense of QFIC

and 0 to other models. Here the prediction error rate of S-QFIC dramatically

decreases as κ takes values from 0 to 1, is less than that of P-QFIC when κ = 2,

reaches a minimum when κ is about 5, and converges to the error rate of P-QFIC

when κ → ∞.

The right panel in Figure 6 plots the prediction error rates based on S-QFIC

with κ = 5, S-∆AIC, S-QIC, P-QFIC, P-∆AIC, and P-QIC incorporating the

GEE approach with IN, EX and AR working correlation structures.

One could also use the forward selection approach. Starting from the null

model, it adds the variable that yields the lowest value for the model selection

criterion, to the currently “best” model, repeated until the full model is obtained.

It also ends up with 12 nested candidate models. We examined six model selection
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Figure 7. Prediction errors for the data example using forward selection
approach.

and averaging procedures’ predictive powers (S-QFIC, S-∆AIC, S-QIC, P-QFIC,

P-∆AIC, and P-QIC) by using cross-validation. The prediction error rate is

plotted in Figure 7, based on 1,000 replicates. Here, we took the weight parameter

ω = 5 that gave the smaller prediction error rate using the backward approach.

We also plotted prediction error rates from the backward elimination approach

with ω = 5, using only the IN working correlation structure.

From the graph, the backward approach did provide a slightly smaller error

rate than forward approach, which may due to the selection of ω = 5. The

general trend is similar regarding the six prediction error rates.

To demonstrate the final models selected by QFIC for different estimation

interests, we chose as focus parameters the coefficients of three significant co-

variates cd4 , cd8 and age. The backward elimination selection was processed

incorporating the GEE approach using the IN working correlation structure based

on ∆AIC, QIC, and QFIC. The 12 nested candidate models are listed in Tables 7

and 8 along with the values of model selection criterion and the focus parameters’

estimates.

Regardless of the focus parameters, ∆AIC and QIC resulted in the same best

model among the same 12 nested models. The model selection criterion QFIC,

selected three different final models among the 12 nested models based on the

different focus parameters.

We need a narrow model to include highly significant covariates and other

covariates of interest. However, theoretical and numerical evidence suggests that

the choice of the narrow model only slightly influences the results.

8. Conclusion and Remarks

408



20 HUI YANG, PENG LIN, GUOHUA ZOU AND HUA LIANG

Figure 6. Prediction errors for the data example using the backward elimi-
nation approach.

ends up with 12 nested candidate models, among which the model selection and

averaging procedures are processed.

We examined six model selection and averaging procedures’ predictive pow-

ers by using cross-validation experiment: S-QFIC, S-∆AIC, S-QIC, P-QFIC,

P-∆AIC, and P-QIC. With the correlation structures of patients observations,

the leave-one-patient-out was chosen over of the leave-one-observation-out. The

prediction error rates were evaluated by the percentage of wrong predictions

among 1,000 replicates; these are plotted in Figure 6.

The parameter κ bridges the QFIC-based weights from uniform to hard-

core. The left panel in Figure 6 gives the prediction error rates of S-QFIC using

κ values ranging from 0 to 10. When κ = 0, the estimate is the arithmetic mean

of 12 estimates from the candidate models and results in the largest error rate.

The dashed line gives the error rate obtained by using QFIC selection procedure,

equivalent to S-QFIC that assigns weight 1 to the best model in the sense of QFIC

and 0 to other models. Here the prediction error rate of S-QFIC dramatically

decreases as κ takes values from 0 to 1, is less than that of P-QFIC when κ = 2,

reaches a minimum when κ is about 5, and converges to the error rate of P-QFIC

when κ → ∞.

The right panel in Figure 6 plots the prediction error rates based on S-QFIC

with κ = 5, S-∆AIC, S-QIC, P-QFIC, P-∆AIC, and P-QIC incorporating the

GEE approach with IN, EX and AR working correlation structures.

One could also use the forward selection approach. Starting from the null

model, it adds the variable that yields the lowest value for the model selection

criterion, to the currently “best” model, repeated until the full model is obtained.

It also ends up with 12 nested candidate models. We examined six model selection
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Figure 7. Prediction errors for the data example using forward selection
approach.

and averaging procedures’ predictive powers (S-QFIC, S-∆AIC, S-QIC, P-QFIC,

P-∆AIC, and P-QIC) by using cross-validation. The prediction error rate is

plotted in Figure 7, based on 1,000 replicates. Here, we took the weight parameter

ω = 5 that gave the smaller prediction error rate using the backward approach.

We also plotted prediction error rates from the backward elimination approach

with ω = 5, using only the IN working correlation structure.

From the graph, the backward approach did provide a slightly smaller error

rate than forward approach, which may due to the selection of ω = 5. The

general trend is similar regarding the six prediction error rates.

To demonstrate the final models selected by QFIC for different estimation

interests, we chose as focus parameters the coefficients of three significant co-

variates cd4 , cd8 and age. The backward elimination selection was processed

incorporating the GEE approach using the IN working correlation structure based

on ∆AIC, QIC, and QFIC. The 12 nested candidate models are listed in Tables 7

and 8 along with the values of model selection criterion and the focus parameters’

estimates.

Regardless of the focus parameters, ∆AIC and QIC resulted in the same best

model among the same 12 nested models. The model selection criterion QFIC,

selected three different final models among the 12 nested models based on the

different focus parameters.

We need a narrow model to include highly significant covariates and other

covariates of interest. However, theoretical and numerical evidence suggests that

the choice of the narrow model only slightly influences the results.

8. Conclusion and Remarks
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Table 7. Data example — 12 nested model selected by ∆AIC.

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � �

iauc � � � � � � � � � � �

ic50 � � � � � � � � � �

rcmin � � � � � �

rc12h � � � � �

ic12h � � � �

rcmax � � � � � � � �

iadh � � � � � � � � �

radh � � �

icmin � �

rauc �

∆AIC(e-00) -45.7 -47.7 -49.6 -51.3 -50.8 -51.1 -48.9 -40.9 -32.2 -18.0 -7.7 0.0

β̂1(e-03) 10.45 10.41 10.42 10.37 9.98 8.63 8.36 9.05 9.29 9.36 9.38 9.47

β̂2(e-00) -1.73 -1.70 -1.66 -1.68 -1.62 -1.39 -1.32 -1.00 -1.12 -1.14 -0.86 -0.87

β̂3(e-02) -8.07 -8.08 -8.16 -8.06 -9.27 -8.43 -9.07 -6.47 -5.39 -5.54 -5.57 -4.44

Based on the quasi-score function, we have proposed two variable selection

criteria, one is the true model-oriented and the other is the parameter of interest-

oriented, and a model averaging procedure for longitudinal data incorporating

the GEE approach, and have derived asymptotic properties for the proposed

procedures. Simulation studies and data analysis have shown their superiorities

in terms of smaller mean square error and closer to 95% coverage probability and

smaller prediction error rate.

The key point of the proposed ∆AIC is to consider the difference between

the candidate model and a narrow model to avoid calculating the integration

involved in the quasi-likelihood by executing the Taylor expansion. The resulting

criterion can be easily implemented by fitting the full model with a penalty

term. Although our criterion is built up under the AIC framework, we can also

analogously define a BIC-type quasi-likelihood-based model selection criterion

(referenced as ∆BIC) for longitudinal data incorporating the GEE approach by

just changing the penalty term.

There are two issues regarding model selection for longitudinal data incorpo-

rating the GEE approach: variable selection and working correlation selection.

However, currently ∆AIC and QFIC are limited to variable selection. More work

needs to do for the selection of working correlation structures.

In the study of weight choice for the model averaging procedure, we have

noted the effect of κ on the weights. When the performances among all candidate

models are quite different, a large value of κ is preferable to stretch the weights’

differences. When all candidate models behave alike, a small κ is chosen to shrink

the weights’ difference. More research is needed for the theoretical properties of κ.
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Table 8. Data example - 12 nested models.

The selected one (shaded) by QFIC for CD4

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � � �
iauc � � � � �
ic50 � � � � � �

rcmin � � � � � � � � � � �
rc12h � � � � � � � � �
ic12h � � � �
rcmax � � � � � � � � � �
iadh � � �
radh �
icmin � � � � � � �
rauc � �

QFIC1(e-04) 2.956 2.847 2.797 2.773 2.700 2.119 2.047 2.048 2.175 6.560 8.500 15.50

β̂cd4(e-03) 10.45 10.41 10.37 10.25 9.96 10.80 10.17 10.35 10.35 9.41 9.87 9.47

The selected one (shaded) by QFIC for CD8

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � �
iauc � � � � � �
ic50 � � � � � � � � � � �

rcmin � � � � � � � � �
rc12h � � � � � � � �
ic12h � � � �
rcmax � � � � � � � � � �
iadh � � � � � � �
radh � �
icmin � � �
rauc �

QFIC(e-00) 2.67 2.23 1.94 1.86 1.85 1.86 1.87 1.98 4.15 6.26 9.00 18.91

β̂cd8(e-00) -1.73 -1.70 -1.73 -1.68 -1.62 -1.50 -1.51 -1.49 -1.16 -1.02 -1.12 -0.87

The selected one (shaded) by QFIC for age

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � � �
iauc � � � � �
ic50 � � � �

rcmin � � � � � � � � �
rc12h � � � � � � �
ic12h � �
rcmax � � �
iadh � � � � � �
radh �
icmin � � � � � � � � � � �
rauc � � � � � � � � � �

QFIC3(e-02) 2.78 2.45 2.32 1.78 1.71 1.52 1.39 0.92 1.42 2.12 5.30 2.25

β̂age(e-02) -8.07 -7.97 -8.94 -7.78 -7.35 -6.28 -6.35 -5.67 -5.55 -6.27 -5.71 -4.44
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Table 7. Data example — 12 nested model selected by ∆AIC.

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � �

iauc � � � � � � � � � � �

ic50 � � � � � � � � � �

rcmin � � � � � �

rc12h � � � � �

ic12h � � � �

rcmax � � � � � � � �

iadh � � � � � � � � �

radh � � �

icmin � �

rauc �

∆AIC(e-00) -45.7 -47.7 -49.6 -51.3 -50.8 -51.1 -48.9 -40.9 -32.2 -18.0 -7.7 0.0

β̂1(e-03) 10.45 10.41 10.42 10.37 9.98 8.63 8.36 9.05 9.29 9.36 9.38 9.47

β̂2(e-00) -1.73 -1.70 -1.66 -1.68 -1.62 -1.39 -1.32 -1.00 -1.12 -1.14 -0.86 -0.87

β̂3(e-02) -8.07 -8.08 -8.16 -8.06 -9.27 -8.43 -9.07 -6.47 -5.39 -5.54 -5.57 -4.44

Based on the quasi-score function, we have proposed two variable selection

criteria, one is the true model-oriented and the other is the parameter of interest-

oriented, and a model averaging procedure for longitudinal data incorporating

the GEE approach, and have derived asymptotic properties for the proposed

procedures. Simulation studies and data analysis have shown their superiorities

in terms of smaller mean square error and closer to 95% coverage probability and

smaller prediction error rate.

The key point of the proposed ∆AIC is to consider the difference between

the candidate model and a narrow model to avoid calculating the integration

involved in the quasi-likelihood by executing the Taylor expansion. The resulting

criterion can be easily implemented by fitting the full model with a penalty

term. Although our criterion is built up under the AIC framework, we can also

analogously define a BIC-type quasi-likelihood-based model selection criterion

(referenced as ∆BIC) for longitudinal data incorporating the GEE approach by

just changing the penalty term.

There are two issues regarding model selection for longitudinal data incorpo-

rating the GEE approach: variable selection and working correlation selection.

However, currently ∆AIC and QFIC are limited to variable selection. More work

needs to do for the selection of working correlation structures.

In the study of weight choice for the model averaging procedure, we have

noted the effect of κ on the weights. When the performances among all candidate

models are quite different, a large value of κ is preferable to stretch the weights’

differences. When all candidate models behave alike, a small κ is chosen to shrink

the weights’ difference. More research is needed for the theoretical properties of κ.
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Table 8. Data example - 12 nested models.

The selected one (shaded) by QFIC for CD4

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � � �
iauc � � � � �
ic50 � � � � � �

rcmin � � � � � � � � � � �
rc12h � � � � � � � � �
ic12h � � � �
rcmax � � � � � � � � � �
iadh � � �
radh �
icmin � � � � � � �
rauc � �

QFIC1(e-04) 2.956 2.847 2.797 2.773 2.700 2.119 2.047 2.048 2.175 6.560 8.500 15.50

β̂cd4(e-03) 10.45 10.41 10.37 10.25 9.96 10.80 10.17 10.35 10.35 9.41 9.87 9.47

The selected one (shaded) by QFIC for CD8

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � �
iauc � � � � � �
ic50 � � � � � � � � � � �

rcmin � � � � � � � � �
rc12h � � � � � � � �
ic12h � � � �
rcmax � � � � � � � � � �
iadh � � � � � � �
radh � �
icmin � � �
rauc �

QFIC(e-00) 2.67 2.23 1.94 1.86 1.85 1.86 1.87 1.98 4.15 6.26 9.00 18.91

β̂cd8(e-00) -1.73 -1.70 -1.73 -1.68 -1.62 -1.50 -1.51 -1.49 -1.16 -1.02 -1.12 -0.87

The selected one (shaded) by QFIC for age

Factors 1 2 3 4 5 6 7 8 9 10 11 12

icmax � � � � � � � �
iauc � � � � �
ic50 � � � �

rcmin � � � � � � � � �
rc12h � � � � � � �
ic12h � �
rcmax � � �
iadh � � � � � �
radh �
icmin � � � � � � � � � � �
rauc � � � � � � � � � �

QFIC3(e-02) 2.78 2.45 2.32 1.78 1.71 1.52 1.39 0.92 1.42 2.12 5.30 2.25

β̂age(e-02) -8.07 -7.97 -8.94 -7.78 -7.35 -6.28 -6.35 -5.67 -5.55 -6.27 -5.71 -4.44
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In high-dimensional settings with a large number of uncertain parameters,

averaging on all possible candidate models is practically infeasible. A backward

or a forward selection procedure is preferable to reduce computational burden.

A further investigation on such procedures is warranted.

Supplementary Material

The supplementary material presents assumptions and the proofs of Theo-

rems 1−4.
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In high-dimensional settings with a large number of uncertain parameters,

averaging on all possible candidate models is practically infeasible. A backward

or a forward selection procedure is preferable to reduce computational burden.

A further investigation on such procedures is warranted.

Supplementary Material

The supplementary material presents assumptions and the proofs of Theo-

rems 1−4.
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