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Abstract: In this paper, we consider robust estimation of the dispersion parameter

in discretely observed diffusion processes. To construct a robust estimator, we first

approximate the transition density of the diffusion process to the Gaussian density

by using Kessler (1997) approach and then employ Basu et al. (1998) minimum

density power divergence (MDPD) estimation method. It is shown that, under

regularity conditions, the MDPD estimator is strongly consistent and asymptoti-

cally normal. Through a simulation study, we compared the performances of the

MDPD estimator and the quasi-maximum likelihood (QML) estimator based on

the approximated transition density. Numerical results demonstrate that the pro-

posed estimator has strong robust properties with little loss in asymptotic efficiency

relative to the QML estimator.
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1. Introduction

Diffusion processes are popular in such fields as the physical and biologi-

cal sciences, finance, and engineering. In particular, they are widely used in

finance for pricing options and other derivatives. During the past decades, many

articles have been devoted to statistical inference for diffusion processes. Espe-

cially, estimation in discretely observed diffusion processes has received a great

deal of attention. Authors such as Dacunha-Castelle and Florens-Zmirou (1986),

Yoshida (1992), Kessler (1997), and Aı̈t-Sahalia (2002, 2008) approximated dif-

fusion models or transition densities to estimate the models. Shephard and Pitt

(1997), Liesenfeld and Richard (2006), and Richard and Zhang (2007) proposed

various importance sampling methods. Simulation-based estimation methods

were also developed by Pedersen (1995), Durham and Gallant (2002), and Beskos,

Papaspiliopoulos and Roberts (2009). Recently, Kleppe, Yu and Skaug (2014)

combined the closed form approach of Aı̈t-Sahalia (2008) and the importance

sampling technique of Richard and Zhang (2007). The statistical inference and

some basic results for diffusion processes are well summarized in Prakasa Rao

(1999), Kutoyants (2004), and Phillips and Yu (2009).

As is well known, estimators based on likelihood, especially Gaussian like-

lihood, are strongly influenced by outliers or extreme values. To overcome this
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problem, various robust estimation methods have been developed. However, to

the best of our knowledge, few works have addressed the problem of estimating

diffusion models in the presence of outliers. Recently, Lee and Song (2013) stud-

ied this problem on the Ornstein-Uhlenbeck type processes. Recall that many

estimation methods for diffusion processes rely on the maximum likelihood (ML)

approach based on an approximated transition density. Since the transition dis-

tributions approach the normal distribution when the sampling interval is short,

as in high-frequency sampling cases, it can be easily surmised that a similar

problem is likely to occur in the estimation procedures of the diffusion processes.

Actually, our simulation study shows that the quasi-ML estimator of Kessler

(1997) is severely damaged by outliers.

The purpose of this paper is to propose a robust estimator for the dispersion

parameter in discretely observed diffusion processes. For this task, we consider

the estimation method based on divergence that evaluates the discrepancy be-

tween any two probability distributions. The divergence-based estimation meth-

ods have been used successfully in constructing robust estimators. For a review,

we refer to Pardo (2006), Cichocki and Amari (2010), and the references therein.

In this paper, we employ Basu et al. (1998) (henceforth, BHHJ) density power

divergence

dα(g, f) =




∫ {
f1+α(z)− (1 +

1

α
) g(z) fα(z) +

1

α
g1+α(z)

}
dz , α > 0,

∫
g(z) {log g(z)− log f(z)} dz , α = 0,

(1.1)

where f and g are probability densities. This divergence includes Kullback-

Leibler divergence and L2-distance as special cases. BHHJ proposed the mini-

mum density power divergence (MDPD) estimator by minimizing the empirical

version of the density power divergence:

θ̂α,n = argmin
θ∈Θ

1

n

n∑
i=1

Hα(θ;Xi) ,

where

Hα(θ;Xi) =




∫
f1+α
θ (z)dz −

(
1 +

1

α

)
fα
θ (Xi) , α > 0,

− log fθ(Xi) , α = 0,

and X1, . . . , Xn are i.i.d. random variables from an unknown density g. BHHJ

showed that θ̂α,n is weakly consistent for Tα(g) := argmin θ∈Θ dα(g, fθ), which is

the essential target parameter, and asymptotically normal. Further, they demon-

strated that the estimator possesses strong robust properties with little loss in

asymptotic efficiency relative to the ML estimator. Indeed, α controls the trade-

off between robustness and asymptotic efficiency in the estimation procedure.
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Compared to other robust methods, such as minimum Hellinger distance esti-

mation, BHHJ’s method does not require any smoothing methods. Hence, it

can avoid such difficulties as bandwidth selection for the nonparametric density

estimation. For this reason, the method can be conveniently applied to any

parametric models (see, e.g., Juárez and Schucany (2004), Fujisawa and Eguchi

(2006), and Kim and Lee (2013)).

The remainder of the paper is organized as follows. In Section 2, we construct

the MDPD estimator for diffusion process and present the asymptotic properties

of the proposed estimator. In Section 3, we report on a simulation study that

compared the performance of the MDPD estimator and the quasi-ML estimator.

Section 4 concludes the paper. Proofs of the main results in Section 2 are provided

in the online supplementary.

2. Main Result

Consider the univariate time-homogeneous diffusion process {Xt : t ≥ 0}
defined by

dXt = a(Xt)dt+ b(Xt, σ)dWt, X0 = x0, (2.1)

where σ ∈ Θ, a compact subset of R, and {Wt : t ≥ 0} is a standard Wiener

process. The real valued functions a and b are assumed known apart from σ and

smooth enough to admit a unique solution. We assume that a sample {Xtni
: 0 ≤

i ≤ n} is discretely observed, where tni = ihn and {hn} is a sequence of positive

numbers with hn → 0 and nhn → ∞.

To construct the MDPD estimator for (2.1), we consider the density power

divergence for a time-homogeneous Markov chain similar to the analogue for re-

gression models (see page 555 in Basu et al. (1998)). Let {Xt} be a Markov chain

with a transition density of p(y|x) and assume that one intend to approximate

the transition density with certain parametric conditional density of pθ(y|x).
Then, substituting g(z) and fθ(z) in (1.1) with p(y|x) and pθ(y|x), respectively,
one can obtain the divergence for the Markov chain {Xt}. Based on this, given

observations X0, X1, . . . , Xn, the MDPD estimator for the Markov chain is

θ̂α,n = argmin
θ∈Θ




n∑
t=1

∫
p1+α
θ (y|Xt−1)dy −

(
1 +

1

α

) n∑
t=1

pαθ (Xt|Xt−1) , α > 0,

−
n∑

t=1

log pθ(Xt|Xt−1) , α = 0.

(2.2)

We use this estimator for the parameter estimation in (2.1). To define a

contrast function, we consider the approximation technique of Kessler (1997)

in which he proposed an asymptotically efficient estimator based on the Gaus-

sian approximation of the transition density. More specifically, we approximate
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the conditional distribution of Xtni
|Xtni−1

to the conditional normal with mean

m(Xtni−1
, σ) = E

(
Xtni

|Xtni−1

)
and variance v(Xtni−1

, σ) = E
(
(Xtni

−m(Xtni−1
, σ))2|

Xtni−1

)
, which results in the contrast function for (2.1) given by




n∑
i=1

1

v(Xtni−1
, σ)α/2

{
1√
1+α

−
(
1+

1

α

)
exp

(
− α

2

(Xtni
−m(Xtni−1

, σ)2

v(Xtni−1
, σ)

)}
, α>0,

n∑
i=1

{
(Xtni

−m(Xtni−1
, σ))2

v(Xtni−1
, σ)

+ log v(Xtni−1
, σ)

}
, α = 0.

(2.3)
We replace m and v with the closed-form approximations as in Kessler (1997).
Let Lσ denote the generator of the diffusion process

Lσg(x) = a(x)
∂g

∂x
(x) +

1

2
b(x, σ)2

∂2g

∂x2
(x) , for g ∈ C2(R), (2.4)

where a(x) and b(x, σ) are assumed to be differentiable with respect to x up to
order 2k. Hereafter, we denote ∂r/∂σr (resp. ∂r/∂xr) by ∂r

σ (resp. ∂r
x). For any

k0 ∈ {1, . . . , k}, we substitute m and v in (2.3) with

rk0(hn, Xtni−1
, σ) := Xtni−1

+

k0∑
i=1

hin
i!
Li
σ Xtni−1

,

b(Xtni−1
, σ)2

{
1 + Γ̄k0+1(hn, Xtni−1

, σ)
}
,

respectively. For the explicit form of Γ̄l, refer to Kessler (1997), pages 214-

215. To avoid technical difficulties, the Taylor expansions of
(
1+ Γ̄k0+1

)−1
,
(
1+

Γ̄k0+1

)−α/2
, and log

(
1 + Γ̄k0+1

)
are considered, and we denote the coefficient of

hjn in each expansion by dj , d
α
j , and ej , respectively. Then, the MDPD estimator

for the dispersion parameter in (2.1) is

σ̂α,n(k0, k1) = argmin
σ∈Θ

1

n

n∑
i=1

V α
n,i(σ; k0, k1), (2.5)

where k0 ∈ {1, . . . , k}, k1 ∈ {0} ∪ N, and
V α
n,i(σ; k0, k1)

=




1

b(Xtni−1
, σ)α

{
1 +

k1∑
j=1

hj
nd

α
j (Xtni−1

, σ)
}[ 1√

1 + α

−
(
1 +

1

α

)
exp

(
− α

2

(Xtni
− rk0(hn, Xtni−1

, σ))2

b(Xtni−1
, σ)2hn

{
1 +

k1∑
j=1

hj
ndj(Xtni−1

, σ)
})]

, α > 0,

(Xtni
− rk0(hn, Xtni−1

, σ))2

b(Xtni−1
, σ)2hn

{
1 +

k1∑
j=1

hj
ndj(Xtni−1

, σ)
}

+ log b(Xtni−1
, σ)2 +

k1∑
i=1

hj
nej(Xtni−1

, σ), α = 0.
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Remark 1. By letting k0 = k1 = k, the MDPD estimator with α = 0 is the esti-

mator of Kessler (1997). In the case of k0 = 1 and k0 = 0, the weak consistency

of the estimator was examined in Song et al. (2007).

Remark 2. According to our simulation study, the estimator with large k1
produces more precise estimation results when the sampling interval is not suffi-

ciently short, as in low-frequency sampling cases (see Section 3).

To establish the consistency and asymptotic normality of the MDPD esti-

mator in (2.5), we need some conditions.

A1. There exists a constant C such that, for any x and y,

|a(x)− a(y)|+ |b(x, σ0)− b(y, σ0)| ≤ C|x− y|,

where σ0 denotes the true parameter of σ.

A2. The process X from (2.1) is ergodic with invariant measure µ0 such that∫
xkdµ0(x) < ∞ for all k ≥ 0.

A3. suptE|Xt|k < ∞ for all k ≥ 0.

A4. infx,σ b(x, σ)
2 > 0.

A5. If µ0{x : b(x, σ)2 = b(x, σ0)
2} = 1, then σ = σ0.

A6. For a positive integer k, the functions a and b are continuously differentiable

with respect to x up to order k, and all those derivatives belong to P := {f :

|f | ≤ C(1+ |x|)C for some C} , where C does not depend on the parameter.

(i) The function b is differentiable with respect to σ and its derivative

belongs to P.

(ii) All the x-derivatives of b up to order k are twice differentiable with

respect to σ; b is three times differentiable with respect to σ. Moreover,

all those derivatives belong to P.

Theorem 1. Suppose that A1−A6(i) with 2k hold, and nhpn → 0 for some

p > 1. Then, for any k0 ∈ {1, . . . , k} and k1 ∈ {0} ∪ N, σ̂α,n(k0, k1) converges

almost surely to σ0 for each α ≥ 0.

Theorem 2. Suppose that A1−A5 and A6(ii) with 2k hold, and σ is in the

interior of Θ. For any k0 ∈ {1, . . . , k}, k1 ∈ {0}∪N and each α ≥ 0, if nh2n → 0,

then

√
n(σ̂α,n(k0, k1)− σ0) −→ N(0,Σα) in distribution ,

where
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Σα = K(α)

∫
(∂σb(x, σ0))

2

b(x, σ0)2α+2
dµ0(x)

{∫
(∂σb(x, σ0))

2

b(x, σ0)α+2
dµ0(x)

}−2
,

K(α) =
(1 + α)3

(2 + α2)2

{
2
(1 + α)2(1 + 2α2)

(1 + 2α)2
√
1 + 2α

− α2

1 + α

}
.

Remark 3. In case α = 0 and k0 = k1 = k, this asymptotic normality also holds

when nh2k+1
n → 0. For more details, we refer to Theorem 1 in Kessler (1997).

Remark 4. Choosing an optimal α is an important issue. Several studies of

the problem have been made (see, e.g., Warwick (2005), Fujisawa and Eguchi

(2006), and Durio and Isaia (2011)). Conventionally, a small α is recommended

because a large α may lead to a big loss in efficiency when the portion of outliers

is not as large as speculated. It is also noteworthy that the ML estimator and

the MDPD estimator are likely to produce similar values in estimates when data

are not contaminated or the extent of the contamination is not severe. As a rule

of thumb, a small α may be preferred when the MDPD estimates are similar to

the ML estimate, whereas a relatively large α should be selected in the cases

where the differences are large. In this regard, Durio and Isaia (2011) defined a

similarity measure and implemented the idea by using a bootstrap test on the

similarity.

We can also consider a robust estimator for diffusion processes with an un-

known drift parameter, dXt = a(Xt, θ)dt+b(Xt, σ)dWt. In this case, the contrast

function can be defined by replacing m(Xtni−1
, σ) and v(Xtni−1

, σ) in (2.3) with

rk0(hn, Xtni−1
, θ, σ) := x+

k0∑
i=1

hin
i!
Li
θ,σ Xtni−1

,

b(Xtni−1
, σ)2

{
1 + Γ̄k0+1(hn, Xtni−1

, θ, σ)
}
,

respectively, where

Lθ,σg(x) = a(x, θ)∂xg(x) +
1

2
b(x, σ)2∂2

xg(x) for g ∈ C2(R)

and Γ̄k0+1(hn, Xtni−1
, θ, σ), say Γ̄k0+1, is the one given in Kessler (1997). Let

V α
n,i(θ, σ; k0, k1) be the counterpart of V α

n,i(σ; k0, k1) in (2.5) by substituting dj ,

dαj , and ej with the coefficients of hjn in the Taylor expansions of
(
1 + Γ̄k0+1

)−1
,(

1 + Γ̄k0+1

)−α/2
, and log

(
1 + Γ̄k0+1

)
, respectively. Then, the MDPD estimator

is (
θ̂α,n(k0, k1)

σ̂α,n(k0, k1)

)
= argmin

(θ,σ)∈Θ

1

n

n∑
i=1

V α
n,i(θ, σ; k0, k1) . (2.6)

To establish the consistency of this estimator, the assumptions A1 and A6(i)

need replacement by the following.
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A1′. There exists a constant C such that for any x, y,

|a(x, θ0)− a(y, θ0)|+ |b(x, σ0)− b(y, σ0)| ≤ C|x− y| .

A6′(i). The functions a and b are differentiable with respect to θ and σ, respec-

tively, and their derivatives belong to P.

Theorem 3. Suppose that A1′–A6′(i) with 2k hold, and nhpn → 0 for some

p > 1. Then, for any k0 ∈ {1, . . . , k} and k1 ∈ {0} ∪ N, σ̂α,n(k0, k1) at (2.6)

converges almost surely to σ0 for each α ≥ 0.

Remark 5. For the consistency of θ̂α,n(k0, k1), we follow the arguments on pages

217-218 of Kessler (1997). Since Θ is compact and σ̂α,n(k0, k1) converges to σ0,

we can take a subsequence {(θ̂α,nk
, σ̂α,nk

)} converging to (θ∞, σ0) for some θ∞.

Then, it can be shown that for α > 0,

1

nkhnk

nk∑
i=1

{
V α
nk,i

(θ̂α,nk
, σ̂α,nk

; k0, k1)− V α
nk,i

(θ0, σ̂α,nk
; k0, k1)

}

a.s.−→ 1

2
√
1 + α

∫
(a(x, θ∞)− a(x, θ0))

2

b(x, σ0)α+2
dµ0(x)−

1

2
√
1 + α

R(θ∞),

where

R(θ∞)

=

∫ {
d1(x, θ∞, σ0)−d1(x, θ0, σ0)

b(x, σ0)α
+

4+α

1 + α

a(x, θ∞)−a(x, θ0)

b(x, σ0)α+2
b(x, σ0)∂xb(x, σ0)

}

dµ0(x)

and d1 is the coefficient of hn in the Taylor expansion of
(
1 + Γ̄k0+1

)−1
. Unlike

the MDPD estimator with α = 0 (see Lemma 3 in Kessler (1997)), the trou-

blesome term R(θ∞) appears in the limit. One of the sufficient conditions for

the consistency of θ̂α,n(k0, k1) is that the integrand in R(θ∞) is zero for µ0-a.s..

For instance, we can choose the case where the expansions of
(
1+ Γ̄k0+1

)−1
and(

1 + Γ̄k0+1

)−α/2
are not under consideration and ∂xb(x, σ) = 0. Such examples

can be found in Lee and Song (2013).

3. Simulation Study

In the present simulation, we compared the performance of the MDPD esti-

mator (MDPDE) with α > 0 and α = 0, the Quasi-ML estimator (QMLE) that

includes Kessler (1997) estimator. Toward this, we considered the stochastic

differential equation

dXt = −Xtdt+

(
1 +

σ

1 +X2
t

)
dWt, X0 = 0, (3.1)

378



6 JUNMO SONG

Σα = K(α)

∫
(∂σb(x, σ0))

2

b(x, σ0)2α+2
dµ0(x)

{∫
(∂σb(x, σ0))

2

b(x, σ0)α+2
dµ0(x)

}−2
,

K(α) =
(1 + α)3

(2 + α2)2

{
2
(1 + α)2(1 + 2α2)

(1 + 2α)2
√
1 + 2α

− α2

1 + α

}
.

Remark 3. In case α = 0 and k0 = k1 = k, this asymptotic normality also holds

when nh2k+1
n → 0. For more details, we refer to Theorem 1 in Kessler (1997).

Remark 4. Choosing an optimal α is an important issue. Several studies of

the problem have been made (see, e.g., Warwick (2005), Fujisawa and Eguchi

(2006), and Durio and Isaia (2011)). Conventionally, a small α is recommended

because a large α may lead to a big loss in efficiency when the portion of outliers

is not as large as speculated. It is also noteworthy that the ML estimator and

the MDPD estimator are likely to produce similar values in estimates when data

are not contaminated or the extent of the contamination is not severe. As a rule

of thumb, a small α may be preferred when the MDPD estimates are similar to

the ML estimate, whereas a relatively large α should be selected in the cases

where the differences are large. In this regard, Durio and Isaia (2011) defined a

similarity measure and implemented the idea by using a bootstrap test on the

similarity.

We can also consider a robust estimator for diffusion processes with an un-

known drift parameter, dXt = a(Xt, θ)dt+b(Xt, σ)dWt. In this case, the contrast

function can be defined by replacing m(Xtni−1
, σ) and v(Xtni−1

, σ) in (2.3) with

rk0(hn, Xtni−1
, θ, σ) := x+

k0∑
i=1

hin
i!
Li
θ,σ Xtni−1

,

b(Xtni−1
, σ)2

{
1 + Γ̄k0+1(hn, Xtni−1

, θ, σ)
}
,

respectively, where

Lθ,σg(x) = a(x, θ)∂xg(x) +
1

2
b(x, σ)2∂2

xg(x) for g ∈ C2(R)

and Γ̄k0+1(hn, Xtni−1
, θ, σ), say Γ̄k0+1, is the one given in Kessler (1997). Let

V α
n,i(θ, σ; k0, k1) be the counterpart of V α

n,i(σ; k0, k1) in (2.5) by substituting dj ,

dαj , and ej with the coefficients of hjn in the Taylor expansions of
(
1 + Γ̄k0+1

)−1
,(

1 + Γ̄k0+1

)−α/2
, and log

(
1 + Γ̄k0+1

)
, respectively. Then, the MDPD estimator

is (
θ̂α,n(k0, k1)

σ̂α,n(k0, k1)

)
= argmin

(θ,σ)∈Θ

1

n

n∑
i=1

V α
n,i(θ, σ; k0, k1) . (2.6)

To establish the consistency of this estimator, the assumptions A1 and A6(i)

need replacement by the following.

ROBUST ESTIMATION OF DISPERSION PARAMETER IN DIFFUSION PROCESSES 7

A1′. There exists a constant C such that for any x, y,

|a(x, θ0)− a(y, θ0)|+ |b(x, σ0)− b(y, σ0)| ≤ C|x− y| .

A6′(i). The functions a and b are differentiable with respect to θ and σ, respec-

tively, and their derivatives belong to P.

Theorem 3. Suppose that A1′–A6′(i) with 2k hold, and nhpn → 0 for some

p > 1. Then, for any k0 ∈ {1, . . . , k} and k1 ∈ {0} ∪ N, σ̂α,n(k0, k1) at (2.6)

converges almost surely to σ0 for each α ≥ 0.

Remark 5. For the consistency of θ̂α,n(k0, k1), we follow the arguments on pages

217-218 of Kessler (1997). Since Θ is compact and σ̂α,n(k0, k1) converges to σ0,

we can take a subsequence {(θ̂α,nk
, σ̂α,nk

)} converging to (θ∞, σ0) for some θ∞.

Then, it can be shown that for α > 0,

1

nkhnk

nk∑
i=1

{
V α
nk,i

(θ̂α,nk
, σ̂α,nk

; k0, k1)− V α
nk,i

(θ0, σ̂α,nk
; k0, k1)

}

a.s.−→ 1

2
√
1 + α

∫
(a(x, θ∞)− a(x, θ0))

2

b(x, σ0)α+2
dµ0(x)−

1

2
√
1 + α

R(θ∞),

where

R(θ∞)

=

∫ {
d1(x, θ∞, σ0)−d1(x, θ0, σ0)

b(x, σ0)α
+

4+α

1 + α

a(x, θ∞)−a(x, θ0)

b(x, σ0)α+2
b(x, σ0)∂xb(x, σ0)

}

dµ0(x)

and d1 is the coefficient of hn in the Taylor expansion of
(
1 + Γ̄k0+1

)−1
. Unlike

the MDPD estimator with α = 0 (see Lemma 3 in Kessler (1997)), the trou-

blesome term R(θ∞) appears in the limit. One of the sufficient conditions for

the consistency of θ̂α,n(k0, k1) is that the integrand in R(θ∞) is zero for µ0-a.s..

For instance, we can choose the case where the expansions of
(
1+ Γ̄k0+1

)−1
and(

1 + Γ̄k0+1

)−α/2
are not under consideration and ∂xb(x, σ) = 0. Such examples

can be found in Lee and Song (2013).

3. Simulation Study

In the present simulation, we compared the performance of the MDPD esti-

mator (MDPDE) with α > 0 and α = 0, the Quasi-ML estimator (QMLE) that

includes Kessler (1997) estimator. Toward this, we considered the stochastic

differential equation

dXt = −Xtdt+

(
1 +

σ

1 +X2
t

)
dWt, X0 = 0, (3.1)

379



8 JUNMO SONG

Figure 1. Relative efficiency of the MDPDE with α (n = 106).

with the true parameter σ0 = 1. The path of X was generated via the Milstein

scheme with the generating interval of h = 2× 10−5, and the sample {Xo,tni
}ni=1

was observed with the sampling intervals of hn = n−0.75 and n−0.45. In this

setting, the QMLE with k0 = k1 = 1 is Kessler’s estimator. The sample size

under consideration was 1,000. When n =1,000, hn = 1, 000−0.75 ≈ 1.5/250

(resp. 1, 000−0.45 ≈ 11/250) corresponds to the interval of 1.5 (resp. 11) trading

days in financial applications, and thus, it can describe a high (resp. low)-

frequency case. The comparison was based on the sample mean squared error

(MSE) and

dR :=
MSE of MDPDE with α

MSE of QMLE
.

We examined the case where the data were not contaminated by outliers.

Based on 1,000 repetitions, the mean, standard deviation (SD), MSE of the

estimates, and dR were calculated for k0 = 1, 2 and k1 = 0, 1. The estimation

results are presented in Table 1. Here the MDPDE with α close to 0 performs

similarly to the QMLE. The estimators with k1 = 1 show better performance

than the estimator with k1 = 0 when hn = 1, 000−0.45, which suggests that a

larger k1 is recommended in a low-frequency sampling case. k0 had little effect

on the estimation in our simulations. The QMLE outperforms the MDPDE

when hn = 1, 000−0.75, whereas the MDPDE with small α shows a slightly better

performance in the case of hn = 1, 000−0.45. A possible explanation for this

might be that the transition distribution of Xtni
|Xtni−1

is not sufficiently close to

the normal distribution due to the long sampling interval. It is, nevertheless,

expected that the QMLE would outperform the MDPDE as the sample size

increases. The point is that the performance of the MDPDE with α close to 0 is

not poor, and the efficiency of the MDPDE decreases with an increase in α.

We can observe this in two figures. The dotted line in Figure 1 displays

relative efficiency according to α, the ratio of asymptotic variance of the MDPDE

ROBUST ESTIMATION OF DISPERSION PARAMETER IN DIFFUSION PROCESSES 9

Figure 2. Scatter plots of QMLE and MDPDE when data are not contami-
nated (hn = 1, 000−0.75).

with α to that of the QMLE. We used Lemma 3 in supplementary material to

calculate the integrations in the variance, where the sample of size n = 20/h

was generated and the sampling interval was set to the generating interval h. It

can be seen that the relative efficiency increases up to about 1.9, and around

α = 0.2, an efficiency of about 1.1 is produced. In this figure, the circles and

lozenges represent the ratio of the sample variance of the MDPD estimates to that

of the QML estimates for hn = n−0.75 and n−0.45, respectively. The lozenges lie

below the circles, indicating that the MDPDE is more efficient when the sampling

interval is larger. Figure 2 depicts the scatter plots of pairs of QML and MDPD

estimates when hn = n−0.75, and confirms the results. The plots for the sampling

interval of hn = n−0.45 are similar to those for hn = n−0.75 and are not reported.

We addressed the case in which outliers are involved in the observations.

Here, it was assumed that the sample {Xo,tni
}ni=0 from (3.1) was contaminated

by outliers {Xc,tni
}ni=0 ∼ i.i.d. N(0, σ2

V ), and that the observed random variables

followed the scheme Xtni
= Xo,tni

+ piXc,tni
, where {pi}ni=0 are i.i.d. Bernoulli

random variables with success probability p; {pi} , {Xo,tni
}, and {Xc,tni

} were as-

sumed to be independent. We considered the cases of σ2
V = 0.5, 1, p = 0.01, 0.03

for hn = n−0.75, and p = 0.03, 0.05 for hn = n−0.45. The mean, standard devi-

ation, MSE, and dR based on {Xtni
}ni=0 were calculated from 1,000 repetitions.

Tables 2−5 demonstrate that the MDPDE performs much better than the QMLE

when the data are severely contaminated, that is, p or σ2
V increases, and the

scatter plots in Figure 3 also show the strong robustness of the MDPDE well.

Here, it is important to note that the QMLE is more damaged by outliers when
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Figure 1. Relative efficiency of the MDPDE with α (n = 106).
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Figure 2. Scatter plots of QMLE and MDPDE when data are not contami-
nated (hn = 1, 000−0.75).

with α to that of the QMLE. We used Lemma 3 in supplementary material to

calculate the integrations in the variance, where the sample of size n = 20/h

was generated and the sampling interval was set to the generating interval h. It

can be seen that the relative efficiency increases up to about 1.9, and around

α = 0.2, an efficiency of about 1.1 is produced. In this figure, the circles and

lozenges represent the ratio of the sample variance of the MDPD estimates to that

of the QML estimates for hn = n−0.75 and n−0.45, respectively. The lozenges lie

below the circles, indicating that the MDPDE is more efficient when the sampling

interval is larger. Figure 2 depicts the scatter plots of pairs of QML and MDPD

estimates when hn = n−0.75, and confirms the results. The plots for the sampling

interval of hn = n−0.45 are similar to those for hn = n−0.75 and are not reported.

We addressed the case in which outliers are involved in the observations.

Here, it was assumed that the sample {Xo,tni
}ni=0 from (3.1) was contaminated

by outliers {Xc,tni
}ni=0 ∼ i.i.d. N(0, σ2

V ), and that the observed random variables

followed the scheme Xtni
= Xo,tni

+ piXc,tni
, where {pi}ni=0 are i.i.d. Bernoulli

random variables with success probability p; {pi} , {Xo,tni
}, and {Xc,tni

} were as-

sumed to be independent. We considered the cases of σ2
V = 0.5, 1, p = 0.01, 0.03

for hn = n−0.75, and p = 0.03, 0.05 for hn = n−0.45. The mean, standard devi-

ation, MSE, and dR based on {Xtni
}ni=0 were calculated from 1,000 repetitions.

Tables 2−5 demonstrate that the MDPDE performs much better than the QMLE

when the data are severely contaminated, that is, p or σ2
V increases, and the

scatter plots in Figure 3 also show the strong robustness of the MDPDE well.

Here, it is important to note that the QMLE is more damaged by outliers when
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Figure 3. Scatter plots of QMLE and MDPDE when data are contaminated
(p = 0.03, σ2

V = 1, and hn = 1, 000−0.75).

hn = n−0.75 than when hn = n−0.45, mainly due to the fact that the normal

likelihood is easily damaged because of its short tail. This indicates that when

estimating diffusion models without jump-components in high-frequency sam-

pling cases, particular attention should be paid to the existence of outliers or

jumps. In such cases, the MDPDE can be a promising estimator for the disper-

sion parameter.

In addition, we dealt with a diffusion process with an unknown drift param-

eter

dXt = −θXtdt+

(
1 +

σ

1 +X2
t

)
dWt, X0 = 0 .

We set the true parameter (θ0, σ0) = (3, 1). σ2
V = 0, 0.5, 1, p = 0.03, k0 = 1,

k1 = 0, and hn = n−0.75 were considered. Here, σ2
V = 0 represents the case of no

contamination. We used the MDPDE at (2.6) to estimate the parameter (θ, σ).

Estimation results are summarized in Tables 6 and 7. It can be seen that the

MDPDE for σ has strong robust properties and performs similarly to the QMLE

when the data are not contaminated. Thus, the MDPDE can be a good option

when diffusion model has an unknown drift parameter. Concerning θ, while its

MDPDE also seems to be robust against outliers, the consistency of the MDPD

estimator does not seem to hold. It appears that a decreasing trend exists in the

sample mean of estimates as α increases. This phenomenon is still observed when

the sample size is large (see Table 7). Since the shape of the contrast function

of the MDPDE with a small α is similar to that of the QMLE, the estimator

with a small α, for example α lying in [0.05, 0.2], could be used to estimate θ.
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Table 1. Mean, SD, MSE, and dR when data are not contaminated (hn =
1, 000−δ).

δ k0 k1
MDPDE

QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.75

1 0

Mean 0.992 0.992 0.992 0.992 0.993 0.993 0.994 0.996 0.997
SD 0.064 0.064 0.065 0.065 0.066 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.009 1.027 1.052 1.082 1.154 1.325 1.554 1.766

1 1

Mean 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.003 1.003
SD 0.064 0.064 0.065 0.066 0.067 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.010 1.029 1.055 1.087 1.161 1.339 1.574 1.792

2 0

Mean 0.992 0.992 0.992 0.992 0.993 0.993 0.994 0.996 0.997
SD 0.064 0.064 0.065 0.065 0.066 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.009 1.027 1.052 1.082 1.154 1.325 1.553 1.766

2 1

Mean 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.003 1.003
SD 0.064 0.064 0.065 0.066 0.067 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.010 1.029 1.055 1.087 1.161 1.338 1.574 1.792

0.45

1 0

Mean 0.946 0.946 0.946 0.946 0.947 0.949 0.953 0.957 0.960
SD 0.059 0.059 0.059 0.060 0.060 0.062 0.067 0.073 0.079
MSE 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008
dR 1.000 0.998 0.998 1.000 1.004 1.015 1.053 1.125 1.212

1 1

Mean 1.001 1.001 1.001 1.001 1.001 1.003 1.005 1.008 1.009
SD 0.061 0.061 0.061 0.061 0.062 0.064 0.069 0.075 0.081
MSE 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.007
dR 1.000 0.991 0.998 1.016 1.042 1.113 1.295 1.542 1.768

2 0

Mean 0.946 0.945 0.946 0.946 0.947 0.948 0.952 0.956 0.959
SD 0.059 0.059 0.059 0.060 0.060 0.062 0.067 0.073 0.079
MSE 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008
dR 1.000 0.999 1.000 1.004 1.008 1.020 1.060 1.134 1.220

2 1

Mean 1.001 1.001 1.001 1.001 1.001 1.002 1.004 1.007 1.008
SD 0.061 0.061 0.061 0.062 0.062 0.064 0.069 0.075 0.081
MSE 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.007
dR 1.000 0.991 0.998 1.015 1.042 1.112 1.292 1.537 1.762

However, as mentioned in Remark 5, the MDPDE for θ in (2.6) could be a biased

estimator. Thus, one should be careful when using the MDPDE for estimating

the drift parameter.

4. Conclusion

This paper presents a robust estimator for the dispersion parameter in dis-

cretely observed diffusion processes. To construct the contrast function, we ap-
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Figure 3. Scatter plots of QMLE and MDPDE when data are contaminated
(p = 0.03, σ2

V = 1, and hn = 1, 000−0.75).

hn = n−0.75 than when hn = n−0.45, mainly due to the fact that the normal

likelihood is easily damaged because of its short tail. This indicates that when

estimating diffusion models without jump-components in high-frequency sam-

pling cases, particular attention should be paid to the existence of outliers or

jumps. In such cases, the MDPDE can be a promising estimator for the disper-

sion parameter.

In addition, we dealt with a diffusion process with an unknown drift param-

eter

dXt = −θXtdt+

(
1 +

σ

1 +X2
t

)
dWt, X0 = 0 .

We set the true parameter (θ0, σ0) = (3, 1). σ2
V = 0, 0.5, 1, p = 0.03, k0 = 1,

k1 = 0, and hn = n−0.75 were considered. Here, σ2
V = 0 represents the case of no

contamination. We used the MDPDE at (2.6) to estimate the parameter (θ, σ).

Estimation results are summarized in Tables 6 and 7. It can be seen that the

MDPDE for σ has strong robust properties and performs similarly to the QMLE

when the data are not contaminated. Thus, the MDPDE can be a good option

when diffusion model has an unknown drift parameter. Concerning θ, while its

MDPDE also seems to be robust against outliers, the consistency of the MDPD

estimator does not seem to hold. It appears that a decreasing trend exists in the

sample mean of estimates as α increases. This phenomenon is still observed when

the sample size is large (see Table 7). Since the shape of the contrast function

of the MDPDE with a small α is similar to that of the QMLE, the estimator

with a small α, for example α lying in [0.05, 0.2], could be used to estimate θ.

ROBUST ESTIMATION OF DISPERSION PARAMETER IN DIFFUSION PROCESSES 11

Table 1. Mean, SD, MSE, and dR when data are not contaminated (hn =
1, 000−δ).

δ k0 k1
MDPDE

QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.75

1 0

Mean 0.992 0.992 0.992 0.992 0.993 0.993 0.994 0.996 0.997
SD 0.064 0.064 0.065 0.065 0.066 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.009 1.027 1.052 1.082 1.154 1.325 1.554 1.766

1 1

Mean 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.003 1.003
SD 0.064 0.064 0.065 0.066 0.067 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.010 1.029 1.055 1.087 1.161 1.339 1.574 1.792

2 0

Mean 0.992 0.992 0.992 0.992 0.993 0.993 0.994 0.996 0.997
SD 0.064 0.064 0.065 0.065 0.066 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.009 1.027 1.052 1.082 1.154 1.325 1.553 1.766

2 1

Mean 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.003 1.003
SD 0.064 0.064 0.065 0.066 0.067 0.069 0.074 0.080 0.085
MSE 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007
dR 1.000 1.010 1.029 1.055 1.087 1.161 1.338 1.574 1.792

0.45

1 0

Mean 0.946 0.946 0.946 0.946 0.947 0.949 0.953 0.957 0.960
SD 0.059 0.059 0.059 0.060 0.060 0.062 0.067 0.073 0.079
MSE 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008
dR 1.000 0.998 0.998 1.000 1.004 1.015 1.053 1.125 1.212

1 1

Mean 1.001 1.001 1.001 1.001 1.001 1.003 1.005 1.008 1.009
SD 0.061 0.061 0.061 0.061 0.062 0.064 0.069 0.075 0.081
MSE 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.007
dR 1.000 0.991 0.998 1.016 1.042 1.113 1.295 1.542 1.768

2 0

Mean 0.946 0.945 0.946 0.946 0.947 0.948 0.952 0.956 0.959
SD 0.059 0.059 0.059 0.060 0.060 0.062 0.067 0.073 0.079
MSE 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.008
dR 1.000 0.999 1.000 1.004 1.008 1.020 1.060 1.134 1.220

2 1

Mean 1.001 1.001 1.001 1.001 1.001 1.002 1.004 1.007 1.008
SD 0.061 0.061 0.061 0.062 0.062 0.064 0.069 0.075 0.081
MSE 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.007
dR 1.000 0.991 0.998 1.015 1.042 1.112 1.292 1.537 1.762

However, as mentioned in Remark 5, the MDPDE for θ in (2.6) could be a biased

estimator. Thus, one should be careful when using the MDPDE for estimating

the drift parameter.

4. Conclusion

This paper presents a robust estimator for the dispersion parameter in dis-

cretely observed diffusion processes. To construct the contrast function, we ap-
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Table 2. Estimation results when data are contaminated (p = 0.01, hn =
1, 000−0.75).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.900 1.218 1.108 1.069 1.050 1.034 1.026 1.028 1.032
SD 0.539 0.119 0.081 0.072 0.069 0.069 0.072 0.078 0.084
MSE 1.101 0.062 0.018 0.010 0.007 0.006 0.006 0.007 0.008
dR 1.000 0.056 0.017 0.009 0.007 0.005 0.005 0.006 0.007

2 1

Mean 1.914 1.226 1.115 1.076 1.057 1.041 1.034 1.035 1.039
SD 0.544 0.119 0.081 0.072 0.070 0.069 0.072 0.078 0.084
MSE 1.132 0.066 0.020 0.011 0.008 0.006 0.006 0.007 0.009
dR 1.000 0.058 0.018 0.010 0.007 0.006 0.006 0.007 0.008

1.0

1 0

Mean 2.868 1.225 1.095 1.058 1.042 1.028 1.023 1.027 1.032
SD 1.242 0.123 0.080 0.073 0.071 0.072 0.077 0.083 0.089
MSE 5.032 0.066 0.015 0.009 0.007 0.006 0.006 0.008 0.009
dR 1.000 0.013 0.003 0.002 0.001 0.001 0.001 0.002 0.002
Mean 2.889 1.233 1.103 1.065 1.049 1.036 1.030 1.033 1.039

2 1

SD 1.246 0.123 0.080 0.073 0.071 0.072 0.077 0.083 0.089
MSE 5.121 0.070 0.017 0.010 0.007 0.006 0.007 0.008 0.009
dR 1.000 0.014 0.003 0.002 0.001 0.001 0.001 0.002 0.002

Table 3. Estimation results when data are contaminated (p = 0.03, hn =
1, 000−0.75).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 3.658 1.840 1.411 1.257 1.186 1.126 1.096 1.097 1.108
SD 1.033 0.287 0.153 0.110 0.094 0.084 0.083 0.088 0.094
MSE 8.132 0.788 0.192 0.078 0.044 0.023 0.016 0.017 0.021
dR 1.000 0.097 0.024 0.010 0.005 0.003 0.002 0.002 0.003

2 1

Mean 3.686 1.853 1.420 1.265 1.194 1.134 1.103 1.104 1.115
SD 1.033 0.288 0.153 0.110 0.094 0.084 0.083 0.088 0.094
MSE 8.281 0.811 0.200 0.082 0.047 0.025 0.018 0.019 0.022
dR 1.000 0.098 0.024 0.010 0.006 0.003 0.002 0.002 0.003

1.0

1 0

Mean 6.625 1.945 1.361 1.208 1.147 1.100 1.082 1.091 1.107
SD 2.324 0.354 0.148 0.102 0.087 0.078 0.079 0.084 0.090
MSE 37.04 1.019 0.152 0.054 0.029 0.016 0.013 0.015 0.020
dR 1.000 0.028 0.004 0.001 0.001 0.000 0.000 0.000 0.001

2 1

Mean 6.707 1.960 1.370 1.216 1.155 1.107 1.090 1.098 1.114
SD 2.370 0.357 0.148 0.102 0.087 0.079 0.079 0.084 0.090
MSE 38.19 1.049 0.159 0.057 0.032 0.018 0.014 0.017 0.021
dR 1.000 0.027 0.004 0.001 0.001 0.000 0.000 0.000 0.001

proximate the transition density of the diffusion process to the Gaussian density

by using the approach of Kessler (1997) and then adopt the MDPD estimation

ROBUST ESTIMATION OF DISPERSION PARAMETER IN DIFFUSION PROCESSES 13

Table 4. Estimation results when data are contaminated (p = 0.03, hn =
1, 000−0.45).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.270 1.187 1.141 1.111 1.091 1.067 1.047 1.042 1.044
SD 0.125 0.095 0.084 0.079 0.077 0.075 0.077 0.083 0.088
MSE 0.088 0.044 0.027 0.019 0.014 0.010 0.008 0.009 0.010
dR 1.000 0.498 0.305 0.211 0.161 0.114 0.093 0.098 0.111

2 1

Mean 1.343 1.255 1.206 1.174 1.152 1.126 1.102 1.095 1.095
SD 0.132 0.100 0.088 0.083 0.080 0.078 0.080 0.085 0.090
MSE 0.135 0.075 0.050 0.037 0.030 0.022 0.017 0.016 0.017
dR 1.000 0.555 0.370 0.274 0.219 0.161 0.125 0.120 0.127

1.0

1 0

Mean 1.584 1.326 1.216 1.157 1.121 1.081 1.053 1.049 1.053
SD 0.224 0.126 0.099 0.088 0.082 0.078 0.079 0.084 0.090
MSE 0.391 0.122 0.057 0.032 0.021 0.013 0.009 0.009 0.011
dR 1.000 0.312 0.145 0.083 0.055 0.033 0.023 0.024 0.028

2 1

Mean 1.679 1.403 1.286 1.222 1.183 1.140 1.109 1.102 1.104
SD 0.238 0.133 0.104 0.092 0.086 0.081 0.082 0.086 0.092
MSE 0.517 0.180 0.092 0.058 0.041 0.026 0.019 0.018 0.019
dR 1.000 0.348 0.179 0.112 0.079 0.051 0.036 0.034 0.037

Table 5. Estimation results when data are contaminated (p = 0.05, hn =
1, 000−0.45).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.496 1.363 1.285 1.234 1.199 1.154 1.116 1.103 1.104
SD 0.161 0.119 0.102 0.093 0.088 0.083 0.083 0.086 0.091
MSE 0.272 0.146 0.092 0.063 0.047 0.031 0.020 0.018 0.019
dR 1.000 0.535 0.336 0.233 0.173 0.113 0.074 0.066 0.070

2 1

Mean 1.583 1.442 1.358 1.304 1.266 1.218 1.174 1.158 1.157
SD 0.169 0.125 0.106 0.096 0.091 0.086 0.085 0.088 0.093
MSE 0.369 0.210 0.140 0.102 0.079 0.055 0.038 0.033 0.033
dR 1.000 0.570 0.379 0.275 0.214 0.148 0.102 0.089 0.090

1.0

1 0

Mean 2.039 1.616 1.428 1.323 1.258 1.186 1.132 1.119 1.124
SD 0.302 0.167 0.127 0.108 0.098 0.089 0.086 0.089 0.094
MSE 1.171 0.407 0.199 0.116 0.076 0.042 0.025 0.022 0.024
dR 1.000 0.348 0.170 0.099 0.065 0.036 0.021 0.019 0.021

2 1

Mean 2.166 1.714 1.511 1.398 1.327 1.249 1.190 1.174 1.177
SD 0.322 0.177 0.133 0.112 0.102 0.092 0.089 0.091 0.096
MSE 1.463 0.541 0.279 0.171 0.117 0.071 0.044 0.039 0.040
dR 1.000 0.370 0.191 0.117 0.080 0.048 0.030 0.026 0.028

method of Basu et al. (1998). According to simulations, the proposed estimator

possesses strong robustness against outliers while still having a high efficiency
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Table 2. Estimation results when data are contaminated (p = 0.01, hn =
1, 000−0.75).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.900 1.218 1.108 1.069 1.050 1.034 1.026 1.028 1.032
SD 0.539 0.119 0.081 0.072 0.069 0.069 0.072 0.078 0.084
MSE 1.101 0.062 0.018 0.010 0.007 0.006 0.006 0.007 0.008
dR 1.000 0.056 0.017 0.009 0.007 0.005 0.005 0.006 0.007

2 1

Mean 1.914 1.226 1.115 1.076 1.057 1.041 1.034 1.035 1.039
SD 0.544 0.119 0.081 0.072 0.070 0.069 0.072 0.078 0.084
MSE 1.132 0.066 0.020 0.011 0.008 0.006 0.006 0.007 0.009
dR 1.000 0.058 0.018 0.010 0.007 0.006 0.006 0.007 0.008

1.0

1 0

Mean 2.868 1.225 1.095 1.058 1.042 1.028 1.023 1.027 1.032
SD 1.242 0.123 0.080 0.073 0.071 0.072 0.077 0.083 0.089
MSE 5.032 0.066 0.015 0.009 0.007 0.006 0.006 0.008 0.009
dR 1.000 0.013 0.003 0.002 0.001 0.001 0.001 0.002 0.002
Mean 2.889 1.233 1.103 1.065 1.049 1.036 1.030 1.033 1.039

2 1

SD 1.246 0.123 0.080 0.073 0.071 0.072 0.077 0.083 0.089
MSE 5.121 0.070 0.017 0.010 0.007 0.006 0.007 0.008 0.009
dR 1.000 0.014 0.003 0.002 0.001 0.001 0.001 0.002 0.002

Table 3. Estimation results when data are contaminated (p = 0.03, hn =
1, 000−0.75).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 3.658 1.840 1.411 1.257 1.186 1.126 1.096 1.097 1.108
SD 1.033 0.287 0.153 0.110 0.094 0.084 0.083 0.088 0.094
MSE 8.132 0.788 0.192 0.078 0.044 0.023 0.016 0.017 0.021
dR 1.000 0.097 0.024 0.010 0.005 0.003 0.002 0.002 0.003

2 1

Mean 3.686 1.853 1.420 1.265 1.194 1.134 1.103 1.104 1.115
SD 1.033 0.288 0.153 0.110 0.094 0.084 0.083 0.088 0.094
MSE 8.281 0.811 0.200 0.082 0.047 0.025 0.018 0.019 0.022
dR 1.000 0.098 0.024 0.010 0.006 0.003 0.002 0.002 0.003

1.0

1 0

Mean 6.625 1.945 1.361 1.208 1.147 1.100 1.082 1.091 1.107
SD 2.324 0.354 0.148 0.102 0.087 0.078 0.079 0.084 0.090
MSE 37.04 1.019 0.152 0.054 0.029 0.016 0.013 0.015 0.020
dR 1.000 0.028 0.004 0.001 0.001 0.000 0.000 0.000 0.001

2 1

Mean 6.707 1.960 1.370 1.216 1.155 1.107 1.090 1.098 1.114
SD 2.370 0.357 0.148 0.102 0.087 0.079 0.079 0.084 0.090
MSE 38.19 1.049 0.159 0.057 0.032 0.018 0.014 0.017 0.021
dR 1.000 0.027 0.004 0.001 0.001 0.000 0.000 0.000 0.001

proximate the transition density of the diffusion process to the Gaussian density

by using the approach of Kessler (1997) and then adopt the MDPD estimation
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Table 4. Estimation results when data are contaminated (p = 0.03, hn =
1, 000−0.45).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.270 1.187 1.141 1.111 1.091 1.067 1.047 1.042 1.044
SD 0.125 0.095 0.084 0.079 0.077 0.075 0.077 0.083 0.088
MSE 0.088 0.044 0.027 0.019 0.014 0.010 0.008 0.009 0.010
dR 1.000 0.498 0.305 0.211 0.161 0.114 0.093 0.098 0.111

2 1

Mean 1.343 1.255 1.206 1.174 1.152 1.126 1.102 1.095 1.095
SD 0.132 0.100 0.088 0.083 0.080 0.078 0.080 0.085 0.090
MSE 0.135 0.075 0.050 0.037 0.030 0.022 0.017 0.016 0.017
dR 1.000 0.555 0.370 0.274 0.219 0.161 0.125 0.120 0.127

1.0

1 0

Mean 1.584 1.326 1.216 1.157 1.121 1.081 1.053 1.049 1.053
SD 0.224 0.126 0.099 0.088 0.082 0.078 0.079 0.084 0.090
MSE 0.391 0.122 0.057 0.032 0.021 0.013 0.009 0.009 0.011
dR 1.000 0.312 0.145 0.083 0.055 0.033 0.023 0.024 0.028

2 1

Mean 1.679 1.403 1.286 1.222 1.183 1.140 1.109 1.102 1.104
SD 0.238 0.133 0.104 0.092 0.086 0.081 0.082 0.086 0.092
MSE 0.517 0.180 0.092 0.058 0.041 0.026 0.019 0.018 0.019
dR 1.000 0.348 0.179 0.112 0.079 0.051 0.036 0.034 0.037

Table 5. Estimation results when data are contaminated (p = 0.05, hn =
1, 000−0.45).

σ2
V k0 k1

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0.5

1 0

Mean 1.496 1.363 1.285 1.234 1.199 1.154 1.116 1.103 1.104
SD 0.161 0.119 0.102 0.093 0.088 0.083 0.083 0.086 0.091
MSE 0.272 0.146 0.092 0.063 0.047 0.031 0.020 0.018 0.019
dR 1.000 0.535 0.336 0.233 0.173 0.113 0.074 0.066 0.070

2 1

Mean 1.583 1.442 1.358 1.304 1.266 1.218 1.174 1.158 1.157
SD 0.169 0.125 0.106 0.096 0.091 0.086 0.085 0.088 0.093
MSE 0.369 0.210 0.140 0.102 0.079 0.055 0.038 0.033 0.033
dR 1.000 0.570 0.379 0.275 0.214 0.148 0.102 0.089 0.090

1.0

1 0

Mean 2.039 1.616 1.428 1.323 1.258 1.186 1.132 1.119 1.124
SD 0.302 0.167 0.127 0.108 0.098 0.089 0.086 0.089 0.094
MSE 1.171 0.407 0.199 0.116 0.076 0.042 0.025 0.022 0.024
dR 1.000 0.348 0.170 0.099 0.065 0.036 0.021 0.019 0.021

2 1

Mean 2.166 1.714 1.511 1.398 1.327 1.249 1.190 1.174 1.177
SD 0.322 0.177 0.133 0.112 0.102 0.092 0.089 0.091 0.096
MSE 1.463 0.541 0.279 0.171 0.117 0.071 0.044 0.039 0.040
dR 1.000 0.370 0.191 0.117 0.080 0.048 0.030 0.026 0.028

method of Basu et al. (1998). According to simulations, the proposed estimator

possesses strong robustness against outliers while still having a high efficiency
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Table 6. Mean, SD, MSE, and dR (p = 0.03, hn = 1, 000−0.75).

σ2
V

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0

θ

Mean 3.266 3.204 3.148 3.097 3.050 2.969 2.842 2.731 2.655
SD 0.966 0.955 0.948 0.945 0.943 0.948 0.973 1.025 1.088
MSE 1.004 0.954 0.921 0.902 0.893 0.899 0.972 1.122 1.302
dR 1.000 0.950 0.918 0.898 0.889 0.896 0.969 1.118 1.297

σ

Mean 0.982 0.983 0.983 0.983 0.983 0.984 0.984 0.984 0.984
SD 0.051 0.052 0.052 0.053 0.053 0.055 0.060 0.066 0.070
MSE 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.005
dR 1.000 1.001 1.013 1.033 1.061 1.131 1.306 1.539 1.748

0.5

θ

Mean 12.62 4.922 3.908 3.561 3.381 3.182 2.979 2.842 2.760
SD 5.742 1.675 1.291 1.178 1.124 1.076 1.058 1.085 1.134
MSE 125.6 6.500 2.491 1.702 1.410 1.192 1.120 1.202 1.343
dR 1.000 0.052 0.020 0.014 0.011 0.009 0.009 0.010 0.011

σ

Mean 2.868 1.653 1.329 1.207 1.150 1.099 1.072 1.071 1.079
SD 0.641 0.210 0.117 0.087 0.076 0.069 0.068 0.073 0.078
MSE 3.900 0.470 0.122 0.051 0.028 0.015 0.010 0.010 0.012
dR 1.000 0.121 0.031 0.013 0.007 0.004 0.003 0.003 0.003

1.0

Mean 28.37 4.984 3.791 3.473 3.316 3.141 2.958 2.830 2.751
SD 12.002 1.728 1.191 1.086 1.045 1.015 1.015 1.052 1.104
MSE 787.9 6.923 2.045 1.402 1.191 1.049 1.032 1.135 1.281
dR 1.000 0.009 0.003 0.002 0.002 0.001 0.001 0.001 0.002

σ

Mean 4.968 1.724 1.288 1.168 1.118 1.077 1.060 1.065 1.076
SD 1.413 0.265 0.117 0.084 0.073 0.066 0.067 0.072 0.077
MSE 17.74 0.594 0.097 0.035 0.019 0.010 0.008 0.009 0.012
dR 1.000 0.033 0.005 0.002 0.001 0.001 0.000 0.001 0.001

Table 7. Estimation results when data are not contaminated (hn = n−0.75).

n
MDPDE

QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

5,000

θ
Mean 3.194 3.134 3.080 3.031 2.986 2.909 2.789 2.686 2.615
SD 0.781 0.773 0.768 0.765 0.764 0.767 0.787 0.825 0.872
MSE 0.647 0.615 0.596 0.586 0.584 0.597 0.663 0.779 0.909

σ
Mean 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995
SD 0.024 0.024 0.024 0.024 0.025 0.026 0.028 0.031 0.033
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

10,000

θ
Mean 3.160 3.100 3.047 2.998 2.954 2.878 2.762 2.660 2.591
SD 0.703 0.696 0.692 0.690 0.689 0.694 0.716 0.758 0.810
MSE 0.520 0.495 0.481 0.476 0.477 0.496 0.569 0.690 0.823

σ
Mean 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
SD 0.017 0.017 0.017 0.017 0.018 0.018 0.020 0.021 0.023
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
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relative to the QML estimator. In particular, the QML estimator is observed to

be severely damaged by outliers in a high-frequency sampling case, whereas our

estimator shows much better performance. This indicates that in the presence of

outliers or jumps, particular attention should be paid when estimating diffusion

models without jump components. In such situations, the MDPD estimator can

be a good alternative.

Although we deal with the univariate diffusion processes, the estimation

method can be generalized to the multivariate cases. Other approximation tech-

niques, such as Aı̈t-Sahalia (2002), can be employed in the construction of the

MDPD estimator. In this case, the estimator is anticipated to be more efficient

when data are observed at a low frequency or a sampling interval is fixed. Robust

estimation of the drift parameter is also of great interest because this parameter

plays its own role, for example, in the calculation of the value-at-risk (VaR).

Although the MDPD estimator for the drift parameter has been proposed, we

cannot guarantee its consistency except for some special cases. It is considered

that some bias reduction techniques could be applied. We leave these issues as

possible topics of future research.

Supplementary Materials

The online supplementary material contains some technical lemmas and the

proofs of Theorems 1, 2, and 3.
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Table 6. Mean, SD, MSE, and dR (p = 0.03, hn = 1, 000−0.75).

σ2
V

MDPDE
QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

0

θ

Mean 3.266 3.204 3.148 3.097 3.050 2.969 2.842 2.731 2.655
SD 0.966 0.955 0.948 0.945 0.943 0.948 0.973 1.025 1.088
MSE 1.004 0.954 0.921 0.902 0.893 0.899 0.972 1.122 1.302
dR 1.000 0.950 0.918 0.898 0.889 0.896 0.969 1.118 1.297

σ

Mean 0.982 0.983 0.983 0.983 0.983 0.984 0.984 0.984 0.984
SD 0.051 0.052 0.052 0.053 0.053 0.055 0.060 0.066 0.070
MSE 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.005
dR 1.000 1.001 1.013 1.033 1.061 1.131 1.306 1.539 1.748

0.5

θ

Mean 12.62 4.922 3.908 3.561 3.381 3.182 2.979 2.842 2.760
SD 5.742 1.675 1.291 1.178 1.124 1.076 1.058 1.085 1.134
MSE 125.6 6.500 2.491 1.702 1.410 1.192 1.120 1.202 1.343
dR 1.000 0.052 0.020 0.014 0.011 0.009 0.009 0.010 0.011

σ

Mean 2.868 1.653 1.329 1.207 1.150 1.099 1.072 1.071 1.079
SD 0.641 0.210 0.117 0.087 0.076 0.069 0.068 0.073 0.078
MSE 3.900 0.470 0.122 0.051 0.028 0.015 0.010 0.010 0.012
dR 1.000 0.121 0.031 0.013 0.007 0.004 0.003 0.003 0.003

1.0
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dR 1.000 0.009 0.003 0.002 0.002 0.001 0.001 0.001 0.002

σ

Mean 4.968 1.724 1.288 1.168 1.118 1.077 1.060 1.065 1.076
SD 1.413 0.265 0.117 0.084 0.073 0.066 0.067 0.072 0.077
MSE 17.74 0.594 0.097 0.035 0.019 0.010 0.008 0.009 0.012
dR 1.000 0.033 0.005 0.002 0.001 0.001 0.000 0.001 0.001

Table 7. Estimation results when data are not contaminated (hn = n−0.75).

n
MDPDE

QMLE 0.05 0.1 0.15 0.2 0.3 0.5 0.75 1.0

5,000

θ
Mean 3.194 3.134 3.080 3.031 2.986 2.909 2.789 2.686 2.615
SD 0.781 0.773 0.768 0.765 0.764 0.767 0.787 0.825 0.872
MSE 0.647 0.615 0.596 0.586 0.584 0.597 0.663 0.779 0.909

σ
Mean 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.995
SD 0.024 0.024 0.024 0.024 0.025 0.026 0.028 0.031 0.033
MSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

10,000

θ
Mean 3.160 3.100 3.047 2.998 2.954 2.878 2.762 2.660 2.591
SD 0.703 0.696 0.692 0.690 0.689 0.694 0.716 0.758 0.810
MSE 0.520 0.495 0.481 0.476 0.477 0.496 0.569 0.690 0.823

σ
Mean 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
SD 0.017 0.017 0.017 0.017 0.018 0.018 0.020 0.021 0.023
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
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relative to the QML estimator. In particular, the QML estimator is observed to

be severely damaged by outliers in a high-frequency sampling case, whereas our

estimator shows much better performance. This indicates that in the presence of

outliers or jumps, particular attention should be paid when estimating diffusion

models without jump components. In such situations, the MDPD estimator can

be a good alternative.

Although we deal with the univariate diffusion processes, the estimation

method can be generalized to the multivariate cases. Other approximation tech-

niques, such as Aı̈t-Sahalia (2002), can be employed in the construction of the

MDPD estimator. In this case, the estimator is anticipated to be more efficient

when data are observed at a low frequency or a sampling interval is fixed. Robust

estimation of the drift parameter is also of great interest because this parameter

plays its own role, for example, in the calculation of the value-at-risk (VaR).

Although the MDPD estimator for the drift parameter has been proposed, we

cannot guarantee its consistency except for some special cases. It is considered

that some bias reduction techniques could be applied. We leave these issues as

possible topics of future research.
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