Examining some aspects of balanced sampling in surveys

Guillaume Chauvet, David Haziza and Éric Lesage

ENSAI/IRMAR Département de mathématiques et de statistique, Université de Montréal INSEE

Supplementary Material

S1 A numerical example

To illustrate the effect of both sources of bias in (25), we conducted a limited simulation study. We generated a finite population P of size N = 500, consisting of two variables: an auxiliary variable x, whose values were available prior to sampling for all the population units and a characteristic of interest y. First, the x-values were generated from a normal distribution with mean 0 and variance equal to 1. Then, five of the x-values were replaced manually by the values 7.9, 8, 8.2, 8.3 and 8.5. Thus, the distribution of the x-values may be viewed as a mixture of two populations with 1% contamination. Then, given the x-values, the y-values were generated according to

$$y_i = 1 + 2(x_i - \bar{X})^2 + \epsilon_i,$$

where the errors ϵ_i were generated from a normal distribution with mean and variance equal to 0 and 1, respectively and $\bar{X} = N^{-1} \sum_{i \in P} x_i$. From the population, we generated K = 10,000 samples of size 25 according to the rejective procedure of Fuller (2009) using simple random sampling without replacement as the basic procedure; see Example 3.1 for more details. In each sample, we computed the Monte Carlo contribution (in %) to the bias of \hat{t}_{reg}^p for each of the two terms on the right hand-side of (25), referred below as term 1 and term 2, respectively, for several values of the balancing tolerance γ . In addition, for each value of γ , we computed the percent Monte Carlo relative bias of \hat{t}_{reg}^p . The results are shown in Table 1.

From Table 1, we note that, for small values of γ , the contribution of term 2 was small. For example for $\gamma \leq 0.32$, the contribution of Term 2 was ranging from 0% to 5%. This can be explained by the fact that a small value of γ corresponds to a high the rejection rate, which in turns

γ	0.01	0.06	0.12	0.32	0.67	1.15	1.65	2.24	2.83
Rejection	95.0	84.0	74.0	54.0	30.0	13.0	5.0	1.0	0.3
rate (in $\%$)									
Contribution	100	100	99	95	77	51	29	9	2
(in %)									
Term 1									
Contribution	0	0	1	5	23	49	71	91	98
(in %)									
Term 2									
Monte Carlo	-8.8	-8.1	-9.1	-9.1	-8.8	-9.9	-11.2	-12.4	-12.3
relative bias									
of \hat{t}_{reg}^p (in %)									

Table 1: Monte Carlo contribution (in %) of each term on the right hand-side of (25) and percent Monte Carlo relative bias of \hat{t}^p_{reg}

implies that the term $\mathbf{t_z} - \hat{\mathbf{t}_z}^p$ is close to zero; that is, the resulting estimator does not suffer from a small sample bias. On the other hand, a small value of γ tends to lead to inclusion probabilities π_i significantly different from the basic inclusion probabilities p_i , especially for units exhibiting a large *x*-value. As a result, the contribution of term 1 is expected to be large. In contrast, large values of γ correspond to a low rejection rate, in which case there is not much difference between a rejective sampling procedure and a non-rejective one. In this case, the π 's are expected to be close to the p_i 's and the resulting estimator would suffer from small sample bias only; that is, the contribution of term 2 is expected to be large. This is confirmed by the results shown in Table 1.

S2 Other simulation results

Tables 3-11 below show the Monte Carlo results corresponding to a 50% rejection rate. The results are relatively similar to those obtained for a 90% rejection rate, except for Basic and Fuller. The latter showed some differences, especially in terms of RE. For example, when the *x*-values were generated according to a mixture distribution, Basic showed a value of RE equal to 57% for n = 25 when the *y*-values were generated according to the linear model; see Table 4. The same was true, regardless of the distribution of the *x*-value. The differences between Basic and Fuller can be explained by the fact that, with a 50% rejection rate, the term $\mathbf{t_z} - \hat{\mathbf{t_z}}^p$ on the right

			Linear			Quadratic			Exponential		
	Mean	Var.	Mean	Var.	Corr.	Mean	Var.	Corr.	Mean	Var.	Corr.
Normal	1.96	1.03	1.04	5.09	0.90	3.16	8.10	-0.01	4.54	28.0	0.82
Mixture	2.08	1.41	0.96	6.65	0.92	3.89	62.0	-0.39	16.5	$15 \ 900$	0.53
Lognormal	1.52	2.80	1.05	12.5	0.96	6.62	6.27	0.77	5570	$8.7 \ 10^9$	0.47
				Bump			Anova			Logistic	
			Mean	Var.	Corr.	Mean	Var.	Corr.	Mean	Var.	Corr.
Normal			1.65	21.5	-0.01	16.0	64.6	0.70	0.48	0.25	0.62
Mixture			2.59	77.0	0.36	16.2	61.8	0.47	0.53	0.25	0.56
Lognormal			5.47	647	0.76	9.18	800	0.46	0.30	0.21	0.57

S2. OTHER SIMULATION RESULTS

Table 2: Mean and variance of the auxiliary variable for three distributions, and mean, variance and coefficient of correlation with the auxiliary variable of the variable of interest for six models

hand-side of (24) may have been large for some samples since a low rejection rate corresponds to a large value of the balancing tolerance γ . In this case, using a calibration strategy such as Fuller generally "pays off" in terms of efficiency.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-0	-0	-0	-0	-0	-0	-0	-1
Linear	CV	23	19	24	19	20	19	42	19
	RE	63	100	62	100	85	98	20	95
	RB	-2	-2	-0	-1	-0	-0	-0	-4
Quadratic	CV	17	18	18	18	18	18	18	19
	RE	103	100	93	95	95	95	99	84
	RB	-1	-1	0	-0	-0	-0	0	-3
Exponential	CV	15	13	16	14	14	13	23	14
-	RE	79	100	69	93	87	95	32	88
	RB	-5	-7	-1	-3	-0	-1	-0	-12
Bump	CV	55	56	56	56	56	56	56	59
_	RE	102	100	100	99	101	101	101	85
	RB	0	1	-0	0	0	0	0	1
Stratification	CV	4	8	-2	2	0	1	1	16
	RE	90	100	95	100	95	98	52	88
	RB	-0	-0	-0	-0	0	0	-0	-0
Logistic	CV	17	16	17	16	16	16	20	16
_	RE	92	100	93	101	101	103	63	97

Guillaume Chauvet, David Haziza and Éric Lesage

Table 3: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 25, with a rejection rate equal to 50% and for a normal distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-1	-0	0	0	0	-0	0	-0
Linear	CV	28	21	31	21	26	21	53	21
	RE	57	100	45	100	67	100	16	101
	RB	-8	-10	-0	-6	0	-2	-0	-14
Quadratic	CV	34	33	49	39	39	37	39	32
	RE	97	100	50	75	77	88	76	95
	RB	-25	-29	0	-20	2	-8	0	-38
Exponential	CV	115	108	177	130	139	124	148	101
-	RE	90	100	40	72	65	81	57	107
	RB	-13	-16	-0	-10	1	-4	-0	-23
Bump	CV	59	58	80	66	66	63	66	58
-	RE	99	100	57	80	81	90	82	91
	RB	1	2	-0	1	0	0	0	2
Stratification	CV	14	20	-0	11	1	6	1	29
	RE	97	100	101	89	95	94	76	91
	RB	1	1	0	1	-0	0	0	1
Logistic	CV	16	15	15	15	15	15	18	16
Ű	RE	94	100	99	99	99	100	70	97

Table 4: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 25, with a rejection rate equal to 50% and for a mixture distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-3	-0	-0	-0	0	0	-0	-0
Linear	CV	30	19	51	19	33	19	65	19
	RE	38	100	13	100	32	98	8	94
	RB	-15	-17	0	-14	-0	-8	-0	-21
Quadratic	CV	42	36	108	39	60	41	73	37
	RE	79	100	13	91	43	89	29	85
	RB	-66	-72	-0	-69	-1	-39	-3	-67
Exponential	CV	188	156	574	171	319	207	320	152
	RE	74	100	9	87	29	67	29	106
	RB	-18	-21	0	-18	-0	-10	-0	-27
Bump	CV	53	46	132	49	75	52	90	49
	RE	81	100	15	92	45	90	31	81
	RB	3	5	0	4	0	3	0	9
Stratification	CV	17	28	1	20	0	13	0	40
	RE	108	100	116	96	117	103	90	73
	RB	2	4	-0	3	-0	2	-0	5
Logistic	CV	25	25	24	25	24	25	30	26
	RE	99	100	107	100	104	101	70	90

Table 5: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 25, with a rejection rate equal to 50% and for a log-normal distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	0	-0	0	0	-0	-0	0	-0
Linear	CV	16	13	16	13	14	13	29	13
	RE	64	100	64	100	91	100	20	100
	RB	-1	-1	0	-0	-0	-0	0	-2
Quadratic	CV	12	12	12	12	12	12	12	13
-	RE	101	100	97	98	96	96	99	91
	RB	-0	-1	0	-0	-0	-0	0	-1
Exponential	CV	10	9	11	9	10	9	16	9
-	RE	78	100	73	97	89	94	33	96
	RB	-2	-3	0	-1	-1	-1	0	-5
Bump	CV	38	38	38	38	38	38	38	39
-	RE	101	100	100	99	100	100	101	93
	RB	0	0	-0	0	0	0	-0	1
Stratification	CV	3	5	-1	1	0	1	-0	10
	RE	89	100	91	100	97	98	51	93
	RB	0	0	0	0	-0	-0	-0	-0
Logistic	CV	11	11	11	11	11	11	14	11
0	RE	92	100	93	101	97	98	61	98

Table 6: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 50, with a rejection rate equal to 50% and for a normal distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-0	-0	0	0	0	0	0	-0
Linear	CV	19	14	19	14	16	14	36	14
	RE	58	100	54	100	80	103	16	99
	RB	-3	-4	0	-2	0	-1	1	-7
Quadratic	CV	25	25	29	27	26	26	27	25
	RE	99	100	76	85	91	96	85	94
	RB	-10	-13	1	-6	0	-3	1	-22
Exponential	CV	88	85	104	95	93	89	103	82
	RE	95	100	69	83	86	94	70	103
	RB	-5	-7	1	-3	0	-1	1	-12
Bump	CV	43	42	48	46	45	44	46	43
	RE	100	100	80	87	92	96	89	93
	RB	0	1	-0	0	-0	0	-0	1
Stratification	CV	8	12	-1	5	-0	2	-1	22
	RE	97	100	99	93	97	96	77	94
	RB	0	0	0	0	0	0	0	1
Logistic	CV	11	10	11	10	11	11	13	11
-8	RE	93	100	95	99	98	98	67	97

Table 7: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 50, with a rejection rate equal to 50% and for a mixture distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-1	0	0	0	0	0	-0	0
Linear	CV	21	13	24	13	19	13	45	13
	RE	38	100	30	100	46	100	8	97
	RB	-7	-8	0	-5	-0	-3	-0	-12
Quadratic	CV	34	31	49	34	39	32	51	30
	RE	83	100	42	87	69	100	39	97
	RB	-31	-37	1	-29	-0	-17	-1	-48
Exponential	CV	184	172	274	193	218	187	225	149
_	RE	89	100	41	82	65	88	61	127
	RB	-8	-10	0	-7	-0	-4	-0	-15
Bump	CV	43	39	60	42	48	40	62	38
	RE	84	100	44	87	71	100	41	96
	RB	1	2	0	1	-0	1	-0	4
Stratification	CV	11	17	1	11	-0	6	-1	28
	RE	103	100	107	96	113	106	85	83
	RB	1	2	0	1	0	1	-0	3
Logistic	CV	17	17	17	17	17	17	21	17
_	BE	96	100	100	99	104	103	70	95

Table 8: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 50, with a rejection rate equal to 50% and for a log-normal distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-0	-0	0	0	-0	-0	0	-0
Linear	CV	11	9	11	9	9	9	19	9
	RE	66	100	65	100	100	105	20	102
	RB	-0	-0	-0	-0	-0	-0	0	-1
Quadratic	CV	8	8	8	8	8	8	8	8
	RE	101	100	99	99	102	102	103	98
	RB	-0	-0	-0	-0	-0	-0	0	-1
Exponential	CV	7	6	7	6	6	6	10	6
	RE	79	100	77	99	99	102	35	100
	RB	-1	-1	-0	-0	0	0	0	-2
Bump	CV	25	25	25	25	25	25	25	26
	RE	101	100	100	100	103	103	101	97
	RB	0	0	-0	0	0	0	-0	0
Stratification	CV	1	2	-1	0	0	1	-1	6
	RE	89	100	90	100	99	100	52	99
	RB	-0	-0	-0	-0	-0	-0	-0	-0
Logistic	CV	8	7	8	7	7	7	9	7
	RE	92	100	92	100	100	101	63	102

Table 9: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 100, with a rejection rate equal to 50% and for a normal distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-0	-0	0	-0	0	0	0	0
Linear	CV	13	10	13	10	10	10	24	10
	RE	57	100	56	100	87	100	16	98
	RB	-1	-2	-0	-1	0	-0	-0	-4
Quadratic	CV	17	17	18	18	17	17	18	17
	RE	99	100	90	94	97	99	89	93
	RB	-5	-6	-0	-3	0	-1	-0	-11
Exponential	CV	60	59	64	62	61	60	68	60
	RE	96	100	85	92	95	98	75	95
	RB	-2	-3	-0	-2	0	-0	-0	-6
Bump	CV	29	29	30	30	29	29	30	30
	RE	100	100	92	95	98	100	92	93
	RB	0	0	0	0	-0	-0	0	1
Stratification	CV	7	9	1	4	-1	-0	0	16
	RE	97	100	97	97	100	98	78	95
	RB	0	0	-0	0	0	0	-0	0
Logistic	CV	7	7	7	7	7	7	8	7
_	RE	94	100	95	100	103	103	69	99

Table 10: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 100, with a rejection rate equal to 50% and for a mixture distribution of x.

Model		Basic	Fuller	MC	MC-Reg	Cube	Cube-Reg	SRS	SRS-Reg
	RB	-0	-0	0	-0	-0	-0	0	0
Linear	CV	14	9	14	9	11	9	30	9
	RE	39	100	36	100	61	102	8	100
	RB	-2	-3	0	-2	-0	-1	0	-6
Quadratic	CV	24	22	27	23	24	21	34	22
	RE	84	100	67	91	88	107	43	93
	RB	-10	-14	2	-8	-2	-8	-1	-28
Exponential	CV	138	134	157	144	141	134	149	125
	RE	96	100	74	88	92	101	82	111
	RB	-2	-4	1	-2	-0	-2	0	-8
Bump	CV	30	28	34	29	29	27	42	28
	RE	85	100	68	92	89	107	45	92
	RB	1	1	0	0	0	0	0	2
Stratification	CV	6	9	1	5	0	2	2	20
	RE	99	100	100	98	110	107	81	88
	RB	0	1	0	0	0	0	-0	1
Logistic	CV	12	11	11	11	11	11	14	11
0	RE	95	100	96	99	101	101	68	96

Table 11: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and percent relative efficiency of several estimators under three sampling designs of size n = 100, with a rejection rate equal to 50% and for a log-normal distribution of x.

S3 Proof of equation (30)

We first compute an expansion of $pr(-\gamma \leq X \leq \gamma) = F_X(\gamma) - F_X(-\gamma)$. From the formal Edgeworth expansion (see Thompson, 1997, equation (3.41)), we get

$$F_X(\gamma) = \psi(\gamma) - \phi(\gamma) \left\{ \frac{\kappa_3}{6} (\gamma^2 - 1) \right\} - \phi(\gamma) \left\{ \frac{\kappa_4}{24} (\gamma^3 - 3\gamma) + \frac{\kappa_3^2}{72} (\gamma^5 - 10\gamma^3 + 15\gamma) \right\} + o(d^{-1}),$$

$$F_X(-\gamma) = 1 - \psi(\gamma) - \phi(\gamma) \left\{ \frac{\kappa_3}{6} (\gamma^2 - 1) \right\}$$

$$+ \phi(\gamma) \left\{ \frac{\kappa_4}{12} (\gamma^3 - 3\gamma) + \frac{\kappa_3^2}{36} (\gamma^5 - 10\gamma^3 + 15\gamma) \right\} + o(d^{-1}),$$
(S3.1)

where $\psi(\cdot)$ and $\phi(\cdot)$ are the cumulative distribution function and the probability density function of a standard normal distribution with

$$\kappa_3 \equiv \mu_3(X) = d^{-3/2} \sum_{i \in P} \tilde{x}_i^3 p_i (1 - p_i) (1 - 2p_i),$$

$$\kappa_4 \equiv \mu_4(X) - 3\{\mu_2(X)\}^2 = d^{-2} \sum_{i \in P} \tilde{x}_i^4 p_i (1 - p_i) \{1 - 6p_i (1 - p_i)\},$$

and $\mu_m(X)$ denoting the centered moment of order *m* of the random variable *X*. Equations (S3.1) lead to

$$pr(-\gamma \le X \le \gamma) = \{2\psi(\gamma) - 1\}$$

$$-\phi(\gamma) \left\{ \frac{\kappa_4}{12} (\gamma^3 - 3\gamma) + \frac{\kappa_3^2}{36} (\gamma^5 - 10\gamma^3 + 15\gamma) \right\} + o(d^{-1}).$$
(S3.2)

We now obtain an expansion of $pr(-\gamma \leq X \leq \gamma | I_{bi} = 1)$. We have

$$pr(X \le \gamma | I_{bi} = 1) = pr(X_i \le \gamma_i),$$

where

$$X_{i} = \frac{1}{\sqrt{d - \tilde{x}_{i}^{2} p_{i}(1 - p_{i})}} \sum_{j \neq i \in U} \tilde{x}_{j}(I_{bj} - p_{j})$$

and

$$\gamma_i = \frac{1}{\sqrt{1 - d^{-1} \tilde{x}_i^2 p_i (1 - p_i)}} \left\{ \gamma - d^{-1/2} \tilde{x}_i (1 - p_i) \right\}.$$

Applying once again the formal Edgeworth expansion to X_i leads to

$$F_{X_{i}}(\gamma_{i}) = \psi(\gamma_{i}) - \phi(\gamma_{i}) \left\{ \frac{\kappa_{3i}}{6} (\gamma_{i}^{2} - 1) \right\}$$

$$- \phi(\gamma_{i}) \left\{ \frac{\kappa_{4i}}{24} (\gamma_{i}^{3} - 3\gamma_{i}) + \frac{\kappa_{3i}^{2}}{72} (\gamma_{i}^{5} - 10\gamma_{i}^{3} + 15\gamma_{i}) \right\} + o(d^{-1}),$$
(S3.3)

where

$$\kappa_{3i} \equiv \mu_3(X_i) = \left\{ d - \tilde{x}_i^2 \ p_i(1 - p_i) \right\}^{-3/2} \sum_{j \neq i \in P} \tilde{x}_j^3 \ p_j(1 - p_j)(1 - 2p_j)$$

and

$$\kappa_{4i} \equiv \mu_4(X_i) - 3\{\mu_2(X_i)\}^2 = \left\{d - \tilde{x}_i^2 \ p_i(1-p_i)\right\}^{-2} \sum_{j \neq i \in P} \tilde{x}_j^4 \ p_j(1-p_j)\{1 - 6p_j(1-p_j)\}.$$

By neglecting terms of smaller order than d^{-1} , we obtain after some algebra

$$F_{X_{i}}(\gamma_{i}) = \psi(\gamma) - \phi(\gamma) \left\{ \frac{1}{\sqrt{d}} \tilde{x}_{i}(1-p_{i}) + \frac{1}{6} \kappa_{3}(\gamma^{2}-1) \right\}$$

$$+ \left[\frac{1}{2d} \tilde{x}_{i}^{2}(1-p_{i}) \left(\gamma p_{i} \phi(\gamma) + (1-p_{i}) \phi'(\gamma)\right) \right. \\ \left. + \frac{\kappa_{3} \gamma \phi(\gamma)}{3\sqrt{d}} \tilde{x}_{i}(1-p_{i}) - \frac{\kappa_{4} \phi(\gamma)}{24} (\gamma^{3}-3\gamma) \right. \\ \left. - \phi(\gamma) \frac{\kappa_{3}^{2}}{72} (\gamma^{5}-10\gamma^{3}+15\gamma) + \frac{1}{6} \frac{\kappa_{3}(\gamma^{2}-1)}{\sqrt{d}} \tilde{x}_{i}(1-p_{i}) \phi'(\gamma) \right] \\ \left. + o(d^{-1}). \right\}$$

$$\left. + o(d^{-1}).$$

$$\left. \right\}$$

$$\left. \left(S3.4 \right) \right\}$$

Also, $pr(X \leq -\gamma | I_{bi} = 1) = F_{X_i}(-\tilde{\gamma}_i)$, where

$$\tilde{\gamma}_i = \frac{1}{\sqrt{1 - d^{-1}\tilde{x}_i^2 p_i(1 - p_i)}} \left\{ \gamma + d^{-1/2} \tilde{x}_i (1 - p_i) \right\}.$$

Similar arguments lead to

$$F_{X_{i}}(-\tilde{\gamma}_{i}) = \{1 - \psi(\gamma)\} - \phi(\gamma) \left\{ \frac{1}{\sqrt{d}} \tilde{x}_{i}(1 - p_{i}) + \frac{1}{6} \kappa_{3}(\gamma^{2} - 1) \right\}$$
(S3.5)
+ $\left[\frac{1}{2d} \tilde{x}_{i}^{2}(1 - p_{i}) \{-\gamma p_{i}\phi(\gamma) - (1 - p_{i})\phi'(\gamma)\} - \frac{\kappa_{3}\gamma\phi(\gamma)}{3\sqrt{d}} \tilde{x}_{i}(1 - p_{i}) + \frac{\kappa_{4}\phi(\gamma)}{24} (\gamma^{3} - 3\gamma) + \phi(\gamma)\frac{\kappa_{3}^{2}}{72} (\gamma^{5} - 10\gamma^{3} + 15\gamma) - \frac{1}{6} \frac{\kappa_{3}(\gamma^{2} - 1)}{\sqrt{d}} \tilde{x}_{i}(1 - p_{i})\phi'(\gamma) \right]$ + $o(d^{-1}).$

We obtain

$$pr(-\gamma \le X \le \gamma | I_i = 1) = \{2\psi(\gamma) - 1\} + \frac{1}{d}\tilde{x}_i^2(1 - p_i)\{\gamma p_i\phi(\gamma) + (1 - p_i)\phi'(\gamma)\} (S3.6) + 2\left\{\frac{\kappa_3\gamma\phi(\gamma)}{3\sqrt{d}}\tilde{x}_i(1 - p_i) - \frac{\kappa_4\phi(\gamma)}{24}(\gamma^3 - 3\gamma) - \phi(\gamma)\frac{\kappa_3^2}{72}(\gamma^5 - 10\gamma^3 + 15\gamma) + \frac{1}{6}\frac{\kappa_3(\gamma^2 - 1)}{\sqrt{d}}\tilde{x}_i(1 - p_i)\phi'(\gamma)\right\} + o(d^{-1}).$$

Plugging (S3.2) and (S3.6) into (29) and making use of the identity $\phi'(\gamma) = -\gamma \phi(\gamma)$, we obtain (30).

References

Fuller, W.A. (2009). Some design properties of a rejective sampling procedure. *Biometrika* 96, 933–944.

Thompson, M.E. (1997). Theory of Sample Surveys. Chapman and Hall.