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S1 A numerical example

To illustrate the effect of both sources of bias in (25), we conducted a limited
simulation study. We generated a finite population P of size N = 500, con-
sisting of two variables: an auxiliary variable x, whose values were available
prior to sampling for all the population units and a characteristic of interest
y. First, the z-values were generated from a normal distribution with mean
0 and variance equal to 1. Then, five of the z-values were replaced manually
by the values 7.9, 8, 8.2, 8.3 and 8.5. Thus, the distribution of the xz-values
may be viewed as a mixture of two populations with 1% contamination.
Then, given the z-values, the y-values were generated according to

Y; = 1+2(ZL’Z—X)2+€Z,

where the errors €; were generated from a normal distribution with mean
and variance equal to 0 and 1, respectively and X = N~! > icp Ti- From
the population, we generated K = 10,000 samples of size 25 according to
the rejective procedure of Fuller (2009) using simple random sampling with-
out replacement as the basic procedure; see Example 3.1 for more details.
In each sample, we computed the Monte Carlo contribution (in %) to the
bias of tAfeg for each of the two terms on the right hand-side of (25), referred
below as term 1 and term 2, respectively, for several values of the balanc-
ing tolerance . In addition, for each value of v, we computed the percent
Monte Carlo relative bias of tAfeg. The results are shown in Table 1.

From Table 1, we note that, for small values of ~, the contribution of
term 2 was small. For example for v < 0.32, the contribution of Term
2 was ranging from 0% to 5%. This can be explained by the fact that a
small value of v corresponds to a high the rejection rate, which in turns
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Table 1: Monte Carlo contribution (in %) of each term on the right hand-side of (25)

and percent Monte Carlo relative bias of tAfeg

¥ 0.01 | 0.06 | 0.12 | 0.32 | 0.67 | 1.15 | 1.65 | 2.24 | 2.83
Rejection 95.0 | 84.0 | 74.0 | 54.0 | 30.0 | 13.0 | 5.0 1.0 0.3
rate (in %)
Contribution | 100 | 100 99 95 77 51 29 9 2

(in %)
Term 1
Contribution 0 0 1 5 23 49 71 91 98

(in %)
Term 2
Monte Carlo | -8.8 | -8.1 | -9.1 | -9.1 | -88 | -9.9 | -11.2 | -12.4 | -12.3
relative bias
of &, (in %)

implies that the term t, —f’z’ is close to zero; that is, the resulting estimator
does not suffer from a small sample bias. On the other hand, a small value
of v tends to lead to inclusion probabilities 7; significantly different from
the basic inclusion probabilities p;, especially for units exhibiting a large
z-value. As a result, the contribution of term 1 is expected to be large. In
contrast, large values of v correspond to a low rejection rate, in which case
there is not much difference between a rejective sampling procedure and a
non-rejective one. In this case, the n’s are expected to be close to the p;’s
and the resulting estimator would suffer from small sample bias only; that
is, the contribution of term 2 is expected to be large. This is confirmed by
the results shown in Table 1.

S2 Other simulation results

Tables 3-11 below show the Monte Carlo results corresponding to a 50%
rejection rate. The results are relatively similar to those obtained for a
90% rejection rate, except for Basic and Fuller. The latter showed some
differences, especially in terms of RE. For example, when the x-values were
generated according to a mixture distribution, Basic showed a value of RE
equal to 57% for n = 25 when the y-values were generated according to the
linear model; see Table 4. The same was true, regardless of the distribution
of the z-value. The differences between Basic and Fuller can be explained
by the fact that, with a 50% rejection rate, the term t, — t2 on the right
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OTHER SIMULATION RESULTS

Linear Quadratic Exponential
Mean Var. | Mean Var. Corr. | Mean Var. Corr. | Mean Var. Corr.
Normal 1.96 1.03 | 1.04 5.09 0.90 3.16 8.10 -0.01 | 4.54 28.0 0.82
Mixture 2.08 141 | 0.96 6.65 0.92 3.8 620 -0.39 | 16.5 15900 0.53
Lognormal | 1.52 2.80 | 1.05 125 0.96 6.62 627 0.77 | 5570 8.710° 047

Bump Anova Logistic

Mean Var. Corr. | Mean Var. Corr. | Mean Var. Corr.
Normal 1.65 21.5 -0.01 16.0 64.6 0.70 0.48 0.25 0.62
Mixture 259 77.0 0.36 16.2 61.8 047 0.53 0.25 0.56
Lognormal 5.47 647  0.76 9.18 800 0.46 0.30 0.21 0.57

Table 2: Mean and variance of the auxiliary variable for three distributions, and mean,
variance and coefficient of correlation with the auxiliary variable of the variable of interest
for six models

hand-side of (24) may have been large for some samples since a low rejection
rate corresponds to a large value of the balancing tolerance . In this case,
using a calibration strategy such as Fuller generally ”pays off” in terms of
efficiency.
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Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -0 -0 -0 -0 -0 -0 -0 -1

Linear | CV 23 19 24 19 20 19 42 19

RE 63 100 62 100 85 98 20 95

RB -2 -2 -0 -1 -0 -0 -0 -4

Quadratic cv 17 18 18 18 18 18 18 19
RE 103 100 93 95 95 95 99 84

RB -1 -1 0 -0 -0 -0 0 -3

Exponential cv 15 13 16 14 14 13 23 14
RE 79 100 69 93 87 95 32 88

RB -5 -7 -1 -3 -0 -1 -0 -12

Bump | CV 55 56 56 56 56 56 56 59

RE 102 100 100 99 101 101 101 85

RB 0 1 -0 0 0 0 0 1

Stratification Ccv 4 8 -2 2 0 1 1 16
RE 90 100 95 100 95 98 52 88

RB -0 -0 -0 -0 0 0 -0 -0

Logistic | CV 17 16 17 16 16 16 20 16

RE 92 100 93 101 101 103 63 97

Table 3: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 25, with a rejection rate equal to 50% and for a normal distribution of z.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -1 -0 0 0 0 -0 0 -0

Linear (6% 28 21 31 21 26 21 53 21

RE 57 100 45 100 67 100 16 101

RB -8 -10 -0 -6 0 -2 -0 -14

Quadratic Ccv 34 33 49 39 39 37 39 32
RE 97 100 50 75 7 88 76 95

RB -25 -29 0 -20 2 -8 0 -38

Exponential | CV 115 108 177 130 139 124 148 101
RE 90 100 40 72 65 81 57 107

RB -13 -16 -0 -10 1 -4 -0 -23

Bump cv 59 58 80 66 66 63 66 58

RE 99 100 57 80 81 90 82 91

RB 1 2 -0 1 0 0 0 2

Stratification (6% 14 20 -0 11 1 6 1 29
RE 97 100 101 89 95 94 76 91

RB 1 1 0 1 -0 0 0 1

Logistic Ccv 16 15 15 15 15 15 18 16

RE 94 100 99 99 99 100 70 97

Table 4: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and
percent relative efficiency of several estimators under three sampling designs of size n = 25, with a

rejection rate equal to 50% and for a mixture distribution of z.



S2. OTHER SIMULATION RESULTS

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -3 -0 -0 -0 0 0 -0 -0

Linear | CV 30 19 51 19 33 19 65 19

RE 38 100 13 100 32 98 8 94

RB -15 -17 0 -14 -0 -8 -0 -21

Quadratic | CV 42 36 108 39 60 41 73 37
RE 79 100 13 91 43 89 29 85

RB -66 =72 -0 -69 -1 -39 -3 -67

Exponential | CV 188 156 574 171 319 207 320 152
RE 74 100 9 87 29 67 29 106

RB -18 -21 0 -18 -0 -10 -0 -27

Bump | CV 53 46 132 49 75 52 90 49

RE 81 100 15 92 45 90 31 81

RB 3 5 0 4 0 3 0 9

Stratification | CV 17 28 1 20 0 13 0 40
RE 108 100 116 96 117 103 90 73

RB 2 4 -0 3 -0 2 -0 5

Logistic | CV 25 25 24 25 24 25 30 26

RE 99 100 107 100 104 101 70 90

Table 5: Monte Carlo percent relative bias, percent coefficient of variation, percent bias ratio and
percent relative efficiency of several estimators under three sampling designs of size n = 25, with a

rejection rate equal to 50% and for a log-normal distribution of z.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB 0 -0 0 0 -0 -0 0 -0

Linear Ccv 16 13 16 13 14 13 29 13

RE 64 100 64 100 91 100 20 100

RB -1 -1 0 -0 -0 -0 0 -2

Quadratic (6% 12 12 12 12 12 12 12 13
RE 101 100 97 98 96 96 99 91

RB -0 -1 0 -0 -0 -0 0 -1

Exponential cv 10 9 11 9 10 9 16 9
RE 78 100 73 97 89 94 33 96

RB -2 -3 0 -1 -1 -1 0 -5

Bump Ccv 38 38 38 38 38 38 38 39

RE 101 100 100 99 100 100 101 93

RB 0 0 -0 0 0 0 -0 1

Stratification Ccv 3 5 -1 1 0 1 -0 10
RE 89 100 91 100 97 98 51 93

RB 0 0 0 0 -0 -0 -0 -0

Logistic (6% 11 11 11 11 11 11 14 11

RE 92 100 93 101 97 98 61 98

Table 6: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 50, with a rejection rate equal to 50% and for a normal distribution of z.
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Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -0 -0 0 0 0 0 0 -0

Linear CcVv 19 14 19 14 16 14 36 14

RE 58 100 54 100 80 103 16 99

RB -3 -4 0 -2 0 -1 1 -7

Quadratic | CV 25 25 29 27 26 26 27 25
RE 99 100 76 85 91 96 85 94

RB -10 -13 1 -6 0 -3 1 -22

Exponential | CV 88 85 104 95 93 89 103 82
RE 95 100 69 83 86 94 70 103

RB -5 -7 1 -3 0 -1 1 -12

Bump CcVv 43 42 48 46 45 44 46 43

RE 100 100 80 87 92 96 89 93

RB 0 1 -0 0 -0 0 -0 1

Stratification | CV 8 12 -1 5 -0 2 -1 22
RE 97 100 99 93 97 96 77 94

RB 0 0 0 0 0 0 0 1

Logistic | CV 11 10 11 10 11 11 13 11

RE 93 100 95 99 98 98 67 97

Table 7: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 50, with a rejection rate equal to 50% and for a mixture distribution of .

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -1 0 0 0 0 0 -0 0

Linear CcVv 21 13 24 13 19 13 45 13

RE 38 100 30 100 46 100 8 97

RB -7 -8 0 -5 -0 -3 -0 -12

Quadratic cv 34 31 49 34 39 32 51 30
RE 83 100 42 87 69 100 39 97

RB -31 -37 1 -29 -0 -17 -1 -48

Exponential | CV 184 172 274 193 218 187 225 149
RE 89 100 41 82 65 88 61 127

RB -8 -10 0 -7 -0 -4 -0 -15

Bump cv 43 39 60 42 48 40 62 38

RE 84 100 44 87 71 100 41 96

RB 1 2 0 1 -0 1 -0 4

Stratification CcVv 11 17 1 11 -0 6 -1 28
RE 103 100 107 96 113 106 85 83

RB 1 2 0 1 0 1 -0 3

Logistic Ccv 17 17 17 17 17 17 21 17

RE 96 100 100 99 104 103 70 95

Table 8: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 50, with a rejection rate equal to 50% and for a log-normal distribution of x.
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Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -0 -0 0 0 -0 -0 0 -0

Linear CcVv 11 9 11 9 9 9 19 9

RE 66 100 65 100 100 105 20 102

RB -0 -0 -0 -0 -0 -0 0 -1

Quadratic Ccv 8 8 8 8 8 8 8 8
RE 101 100 99 99 102 102 103 98

RB -0 -0 -0 -0 -0 -0 0 -1

Exponential Ccv 7 6 7 6 6 6 10 6
RE 79 100 77 99 99 102 35 100

RB -1 -1 -0 -0 0 0 0 -2

Bump cv 25 25 25 25 25 25 25 26

RE 101 100 100 100 103 103 101 97

RB 0 0 -0 0 0 0 -0 0

Stratification Ccv 1 2 -1 0 0 1 -1 6
RE 89 100 90 100 99 100 52 99

RB -0 -0 -0 -0 -0 -0 -0 -0

Logistic Ccv 8 7 8 7 7 7 9 7

RE 92 100 92 100 100 101 63 102

Table 9: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 100, with a rejection rate equal to 50% and for a normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -0 -0 0 -0 0 0 0 0

Linear CcVv 13 10 13 10 10 10 24 10

RE 57 100 56 100 87 100 16 98

RB -1 -2 -0 -1 0 -0 -0 -4

Quadratic cv 17 17 18 18 17 17 18 17
RE 99 100 90 94 97 99 89 93

RB -5 -6 -0 -3 0 -1 -0 -11

Exponential | CV 60 59 64 62 61 60 68 60
RE 96 100 85 92 95 98 75 95

RB -2 -3 -0 -2 0 -0 -0 -6

Bump cv 29 29 30 30 29 29 30 30

RE 100 100 92 95 98 100 92 93

RB 0 0 0 0 -0 -0 0 1

Stratification CcVv 7 9 1 4 -1 -0 0 16
RE 97 100 97 97 100 98 78 95

RB 0 0 -0 0 0 0 -0 0

Logistic Ccv 7 7 7 7 7 7 8 7

RE 94 100 95 100 103 103 69 99

Table 10: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 100, with a rejection rate equal to 50% and for a mixture distribution of .
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Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg

RB -0 -0 0 -0 -0 -0 0 0

Linear Ccv 14 9 14 9 11 9 30 9

RE 39 100 36 100 61 102 8 100

RB -2 -3 0 -2 -0 -1 0 -6

Quadratic CcvV 24 22 27 23 24 21 34 22
RE 84 100 67 91 88 107 43 93

RB -10 -14 2 -8 -2 -8 -1 -28

Exponential CcVv 138 134 157 144 141 134 149 125
RE 96 100 74 88 92 101 82 111

RB -2 -4 1 -2 -0 -2 0 -8

Bump Ccv 30 28 34 29 29 27 42 28

RE 85 100 68 92 89 107 45 92

RB 1 1 0 0 0 0 0 2

Stratification CcVv 6 9 1 5 0 2 2 20
RE 99 100 100 98 110 107 81 88

RB 0 1 0 0 0 0 -0 1

Logistic CcvV 12 11 11 11 11 11 14 11

RE 95 100 96 99 101 101 68 96

Table 11: Monte Carlo percent relative bias, percent coefficient of variation, percent bias
ratio and percent relative efficiency of several estimators under three sampling designs
of size n = 100, with a rejection rate equal to 50% and for a log-normal distribution of
x.
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S3 Proof of equation (30)

We first compute an expansion of pr(—y < X < ) = Fx(y) — Fx(—7).
From the formal Edgeworth expansion (see Thompson, 1997, equation (3.41)),
we get

0
—6(7) {%(f’ —3) + (1" 1070+ 157)} +o(d™),
Fx(=) = 1=9()—é() {T(* -1} (3.1
+00) { 520% - 39) + 5207 = 107+ 159) b+ ofa ),

where ¥(-) and ¢(-) are the cumulative distribution function and the prob-
ability density function of a standard normal distribution with

Ky = pa(X)=d? fo’ pi(1 —pi)(1 —2p;),
icP

pa(X) = 3{p2(X)}? = d* fo‘ pi(1 —pi){1 — 6pi(L — py)},

ieP

Rq

and fi,,, (X)) denoting the centered moment of order m of the random variable
X. Equations (S3.1) lead to

pr(=y<X<v) = {2(y) -1} (53.2)
~o0) {307 = 39 4 507 = 1090 159) b+ ofa ).

We now obtain an expansion of pr(—y < X < ~|[; =1). We have

pr(X <Ay =1) = pr(X; <),

where
1
X, = _ 7l — ;)
N EETE R IR
and
1 1/9~
Yi = {’y—d 1/21’2' (1—]9@)}

\/1 —d='7? pi(1 — )
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Applying once again the formal Edgeworth expansion to X; leads to

Fx() = b0 — o) {02 - 1)} (83.3)
R4 5121,1' —
— (%) {ﬂ(%?’ —3v) + 5(7? — 1077 + 15%’)} +o(d™),
where
Ry = pa(X) = {d— 22 pi(1—p)} 7 0 & ps(1—py)(L - 2py)
jAIEP
and

ki = pa(Xy) = 3{pa(X)}? = {d — 77 pi(1 —pi)}_Z Z @} pi(1—p;){1 —6p;(1 —p))}.
jAiEP

By neglecting terms of smaller order than d—!, we obtain after some algebra
Fe(w) = 90) = 60) { 5=(1=p) + grss® = 1) (53.4)
X \Vi - Y Y \/a 2 Di 6 3\Y )

1.
[0 = 5 Cmio(a) + (- 00 )

N I€37¢(7)i,'(1 —pi) — Kad(7) (v* = 3v)

3vd 24
2 2
K3, 5 3 Lrg(y” —1) . /
() B (45— 107° + 159) + - 2T g (1 — p,
o= (v 7+ 157) + ¢ 7 Zi(1 = pi)¢'(7)
+ o(d™).
Also, pr(X < —|Iy = 1) = Fx,(—%;), where
~ 1 —1/2~

\/1 —d='7? pi(1 —pi)
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Similar arguments lead to
Fr(=3) = (1= 00} = 6) { S50t~ + gralr® = 1)} (53.5)

¥ Bd (1 p) {-1pi0(7) — (1 - p)d/ ()}

_ r379(7)
3vd

. K
(1 —p;) +

+ o(d™).

We obtain
pri-y <X <alli=1) = {20() ~ 1} + 281~ p) fpidln) + (1 - p)o (1)} (53.6)

r3YP(7) - Kad(Y) 3
; z{ 11— ) - M50 30)
1r3(v? —1)

—¢(7)7—3( —109° +159) + ¢ 7
+ o(d™).

Plugging (S3.2) and (S3.6) into (29) and making use of the identity ¢'(y) = —vo (),
we obtain (30).

H(1-p)o))
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