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1. Introduction

Balanced sampling has received some attention in recent years, e.g., Deville

and Tillé (2004), Chauvet and Tillé (2006), Fuller (2009) and Legg and Yu (2010).

Consider a finite population P of size N . We are interested in estimating the

population total ty =
∑

i∈P yi, where y denotes a characteristic of interest. Prior

to sampling, we assume that a J-vector of auxiliary variables, z, is available for

all i ∈ P. The z-variables are often referred to as the design variables.

A sample s ⊂ P is said to be ψz-balanced if

t̂ψz ≡
∑
i∈s

ψ−1
i zi =

∑
i∈P

zi ≡ tz, (1.1)

where 0 < ψi < 1 for all i ∈ P . A design satisfying (1.1) for all s is called a

ψz-balanced sampling design. There exists a number of procedures leading to a

balanced or approximately balanced sample, including the Cube method (Deville

and Tillé (2004)) and rejective sampling (Hájek (1981); Fuller (2009)).

Let πi denote the inclusion probability attached to unit i with respect to the

sampling design used to select the random sample S. The Cube method consists

of assigning an inclusion probability πi to every population unit prior to sampling

and selecting a sample so that

t̂πz ≡
∑
i∈s

π−1
i zi = tz. (1.2)
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The z-variables in (1.1) and (1.2) are referred to as the balancing variables. The

Cube method ensures that the πi’s are exactly satisfied. However, there may not

exist a sample s exactly πz-balanced, and the balancing constraints may be only

approximately satisfied. This is referred to as the rounding problem.

In contrast, rejective sampling consists of selecting repeated samples ac-

cording to a basic sampling procedure pb(·) with basic inclusion probabilities

pi = pr(i ∈ Sb) until

(t̂pz − tz)
�Vb(t̂

p
z)

−1(t̂pz − tz) ≤ γ2, (1.3)

where t̂pz =
∑

i∈Sb
p−1
i zi with Sb denoting a random sample selected according to

the basic procedure and Vb(.) denotes the variance operator with respect to the

basic procedure. The coefficient γ > 0 in (1.3) is a balancing tolerance specified

by the survey statistician. The resulting rejective sampling procedure p(·) and

the associated random sample S are not to be confused with pb(·) and Sb, since

in particular

πi ≡ pr(i ∈ S) = pr
(
i ∈ Sb

∣∣∣(t̂pz − tz)
�Vb(t̂

p
z)

−1(t̂pz − tz) ≤ γ2
)
�= pi.

There is an important distinction between the Cube method and the rejective

method. In the first, the inclusion probabilities πi are exactly satisfied but one

has no control on the (possible) discrepancy between the estimates t̂πz and the true

population totals tz. In the second, the discrepancy between t̂pz and tz is perfectly

controlled through the balancing tolerance γ but the inclusion probabilities πi
are usually unknown.

In this paper, we examine the design-based properties of some estimation

procedures with respect to the Cube method and rejective sampling. We adopt

the following notation. Let I = (I1, . . . , IN )� be the vector of sample selection

indicators, and let y = (y1, . . . , yN )� be the vector of the population y-values.

In the design-based approach, the properties of estimators are evaluated with

respect to the sampling design: the vectors y and z are held fixed and the only

remaining source of randomness is the vector of sample indicators I.

As an estimator of ty, we consider linear estimators of the form

t̂wy =
∑
i∈S

wiyi, (1.4)

where wi is a weight attached to unit i. The weights wi = π−1
i lead to the

customary Horvitz-Thompson estimator, t̂πy ; it is design-unbiased and design-

consistent for ty, regardless of the y-variable being estimated, provided that the

inclusion probabilities πi’s are known without error. If the πi’s are unknown

(as for rejective sampling), we may settle for some approximation π̂i, say. If

π̂i provides a good approximation of πi, we expect (1.4) based on wi = π̂−1
i to

exhibit a small bias.
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Now, suppose that a q-vector of calibration variables u = (u1, . . . , uq)
� is

available at the estimation stage for all the sample units, and that the vector of

population totals tu =
∑

i∈U ui is known. An alternative set of weights is

wi = π−1
i

{
1 +

(
tu − t̂πu

)� (∑
i∈s

π−1
i uiu

�
i

)−1
ui

}
, (1.5)

where t̂πu =
∑

i∈s π
−1
i ui. The choice (1.5) leads to the Generalized Regression

(GREG) estimator noted as t̂πreg. The GREG estimator can be constructed with

the assistance of the model

yi = u�
i β + εi, Em(εi|u) = 0, (1.6)

Vm(εi|u) = σ2, Em(εiεj |u) = 0, i �= j,

where β and σ2 are unknown parameters and the subscript m denotes Model

(1.6). Once again, provided that the inclusion probabilities πi’s are known with-

out error, the GREG estimator is asymptotically design-unbiased and design-

consistent for ty regardless of the y-variable being estimated. This holds true

even if Model (1.6) is misspecified; e.g., Särndal, Swensson and Wretman (1992).

Now, suppose that the πi’s are unknown and are replaced by some approxima-

tion π̂i in (1.5). If π̂i is a poor approximation of πi, the GREG estimator may

suffer from a design-bias. On the other hand, it is model-unbiased and model-

consistent for ty, regardless of the quality of the approximation π̂i, provided that

Model (1.6) holds. Borrowing from the missing data literature, the GREG esti-

mator is said to be doubly robust or doubly protected, as being design-consistent

if the πi’s are known without errors even if (1.6) is misspecified, and being model-

consistent if (1.6) holds even if the sampling design is misspecified and the πi’s

are replaced by some poor approximation; e.g., Kott and Liao (2012) and Kim

and Haziza (2014) for a discussion of doubly robust procedures in the context of

finite population sampling.

For rejective sampling (Fuller (2009)), the inclusion probabilities π = (π1, . . .,

πN )� are unknown and some approximations are needed. The πi’s can be ap-

proximated through Monte Carlo methods (see Section 3) or through Edgeworth

expansions (see Section 4). Fuller (2009) suggests the use of a GREG-type esti-

mator based on the basic inclusion probabilities pi, which are different from the

inclusion probabilities πi. As a result, the sampling design is misspecified. We

argue in Section 3 that, although the GREG-type estimator advocated by Fuller

(2009) is design-consistent, it may suffer from bias for finite sample sizes when

the pi’s do not provide a good approximation of the πi’s, unless (1.6) holds. In

contrast, the Cube method ensures that the πi’s are exactly satisfied. As a result,

the Horvitz-Thompson estimator t̂πy is design-unbiased and design-consistent, al-

though it may suffer from a greater variability. To control for the potential in-

stability of the Horvitz-Thompson estimator, it is recommended, with the Cube
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method, to use a GREG estimator based on the true inclusion probabilities πi
and the vector of balancing variables. This is discussed in Section 2.

2. The Cube Algorithm

The cube method (Deville and Tillé (2004)) enables one to select (approxi-

mately) πz-balanced samples such that the inclusion probabilities π are exactly

respected. The cube method consists of two distinct steps: a flight phase, at the

end of which an exact balancing is maintained, and a landing phase in which the

balancing equations may be partly relaxed until the complete sample is obtained,

while the inclusion probabilities remain exactly respected.

The flight phase (Deville and Tillé (2004); Chauvet and Tillé (2006); Tillé

(2011)) is a random walk starting from the vector of inclusion probabilities π

and ending at a random vector π∗ such that π∗
i = 0 if unit i is definitely rejected

from the sample, π∗
i = 1 if unit i is selected and 0 < π∗

i < 1 if the decision for

unit i remains pending at the end of the flight phase. Denote by P ∗ the set of

units such that 0 < π∗
i < 1, so that Ii = π∗

i for i /∈ P ∗. From Proposition 1

in Deville and Tillé (2004), the size of P ∗ is at most the number J of balancing

variables. The flight phase is performed in such a way that

EF (π∗) = π, (2.1)

t̂π∗z ≡
∑
i∈P

zi
πi
π∗
i =

∑
i∈P

zi, (2.2)

where the subscript F denotes the flight phase. Equation (2.1) ensures that the

inclusion probabilities are exactly respected at the end of the flight phase, while

(2.2) ensures that the pseudo-estimator t̂π∗z is exactly πz-balanced. The flight

phase does not lead to an estimator per se, since the selection is still not carried

through for the units in P ∗.

The objective of the landing phase is to complete the sample selection pro-

cess, either by successively relaxing the balancing equations or by means of an

enumerative algorithm on P ∗ (Tillé (2011, p.163)). In any case, the landing

phase is performed to obtain a vector of sample indicators I such that

EL (I |π∗ ) = π∗, (2.3)

t̂πz ≡
∑
i∈P

zi
πi
Ii �

∑
i∈U

zi, (2.4)

where the subscript L denotes the landing phase. Equation (2.3) ensures that

the inclusion probabilities are exactly respected at the end of the landing phase

since, from (2.1) and (2.3),

Ep(I) = EFEL(I|π∗) = EF (π
∗) = π,
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where the subscript p denotes the global sampling design. Consequently, the
Horvitz-Thompson estimator t̂πy is exactly design-unbiased for ty.

The non-exact balancing (see (2.4)) results in an additional variability for the
Horvitz-Thompson estimator, which is due to the landing phase. More precisely,
the variance of t̂πy can be written as

Vp(t̂
π
y ) = VF

{
EL

(
t̂πy |π∗ )}+ EF

{
VL

(
t̂πy |π∗ )}

= VF

(∑
i∈P

yi
πi
π∗
i

)
+ EF

{
VL

( ∑
i∈P ∗

yi
πi
Ii

∣∣∣∣π∗
)}

. (2.5)

The first term on the right-hand side of (2.5) is the variance due to the flight
phase, whereas the second term is due to the landing phase. It follows from (2.2)
that, for any q-vector B, we have∑

i∈P

yi
πi
π∗
i =

∑
i∈P

yi −B�zi
πi

π∗
i +B�

∑
i∈P

zi.

As a result, we can write

VF (t̂
π
y ) ≡ VF

(∑
i∈P

yi
πi
π∗
i

)
= VF

(∑
i∈P

Ei

πi
π∗
i

)
, (2.6)

where Ei = yi −B�zi. The variance due to the landing phase is

VL(t̂
π
y ) ≡ EF

{
VL

( ∑
i∈P ∗

yi
πi
Ii

∣∣∣∣π∗
)}

= EF

{ ∑
i∈P ∗

∑
j∈P ∗

yi
πi

yj
πj

(π∗
ij − π∗

i π
∗
j )
}
, (2.7)

where π∗
ij = EL(IiIj |π∗). If the balancing variables have a large explanatory

power for the variable y, the residuals Ei are small and, from (2.6), so is the
variance due to the flight phase. As a result, the contribution of the variance
due the landing phase to the total variance may be appreciable (Breidt and
Chauvet (2011)). Further, from (2.7), the variance due to the landing phase
may be appreciable if the number of balancing variables is large as compared to
the sample size (in which case, the random subpopulation P ∗ may be large as
well) and/or the inclusion probabilities πi are poorly or negatively related to the
variable y, so that the yi/πi are highly variable (Chauvet (2011)).

The Horvitz-Thompson estimator t̂πy is design-unbiased for ty even if the
balancing equations (1.2) are not satisfied because the inclusion probabilities are
exactly satisfied. To cope with the rounding problem, it is recommended to
perform some form of calibration on the set of balancing variables (Tillé (2011)).
For example, one can use the GREG estimator, t̂πreg =

∑
i∈S wiyi, where the

weights wi are given by (1.5) with ui = zi. The error of t̂πreg can be expressed as

t̂πreg − ty =
(∑

i∈S
π−1
i Eπ

i −
∑
i∈P

Eπ
i

)
+ (B̂π −Bπ)�(tz − t̂πz ), (2.8)

where
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πi
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i

)
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π
y ) ≡ EF
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VL

( ∑
i∈P ∗

yi
πi
Ii

∣∣∣∣π∗
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= EF

{ ∑
i∈P ∗

∑
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πj
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∗
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B̂π =
(∑

i∈S
π−1
i ziz

�
i

)−1∑
i∈S

π−1
i ziyi, Bπ =

(∑
i∈P

ziz
�
i

)−1∑
i∈P

ziyi

and Eπ
i = yi−z�i B

π. Noting that Ep

(∑
i∈S π−1

i Eπ
i −

∑
i∈P Eπ

i

)
= 0, the design-

bias of t̂πreg is given by

Ep(t̂
π
reg − ty) = Ep

{
(B̂π −Bπ)�(tz − t̂πz )

}
. (2.9)

The expectation in (2.9) is often referred to as the small sample bias. Therefore

if the sample size n is not large enough, the small sample bias may be significant.

Under mild regularity conditions (Deville and Särndal (1992)), we have B̂−Bπ =

Op(n
−1/2). For non-balanced sampling designs (e.g., simple random sampling

without replacement), the term (tz − t̂πz ) is Op(Nn−1/2). As a result, (B̂π −
Bπ)�(tz − t̂πz ) = Op(Nn−1). On the other hand, with the Cube method, Deville

and Tillé (2004) showed that (tz − t̂πz ) = Op(NJn−1), which implies that (B̂π −
Bπ)�(tz − t̂πz ) = Op(NJn−3/2). If J = O(1), this is Op(Nn−3/2). Therefore,

the strategy consisting of the Cube method and the GREG estimator is less

vulnerable to small sample bias than the strategy consisting of a non-balanced

sampling design, such as simple random sampling without replacement and the

GREG estimator.

3. Rejective Sampling

In this section, we adopt the notation of Fuller (2009) who studied the prop-

erties of rejective sampling procedures that consists of discarding any sample

that does not meet a specified balancing tolerance. Samples are selected using a

basic procedure based on the vector of design variables, z, available for all i ∈ P.

Commonly used procedures are simple random sampling without replacement,

stratified sampling, and Poisson sampling. A subset of the z-variables are the

z2-variables, which are those satisfying Vb(z̄
p
2) = 0, where z̄p2 = N−1

∑
i∈Sb

p−1
i z2i

is the vector of basic expansion estimators for the population mean of z2. The

design variables not included in the set of the z2-variables are referred to as

the z1-variables. Let xi = z1i − C�z2i, where C is the matrix that minimizes

tr
{
Vb(z̄

p
1 −C�z̄p2)

}
and z̄p1 = N−1

∑
i∈Sb

p−1
i z1i. Finally, let z = (x�, z�2 )

�.

The rejective procedure p(·) proceeds as follows: (i) select a random sample,

Sb, according to the basic procedure, using p1, . . . , pN as the vector of inclusion

probabilities; (ii) the sample is retained if the rejection rule (1.3) is satisfied, with

z replaced by x, and with γ > 0 a constant specified by the survey statistician;

otherwise, replace the sample in the population and repeat step (i). We denote

by S the final random sample.

A small value of γ corresponds to a high rejection rate. The πi’s are complex

functions of t̂πx, tx, and the pi’s; as a result, they are generally untractable.

EXAMINING SOME ASPECTS OF BALANCED SAMPLING IN SURVEYS 7

Although (1.3) ensures that the sample S is approximately px-balanced for small
values of γ, there is no guarantee that it is πx-balanced. Since the πi’s are
unknown, they must be approximated. Some approximations are discussed in
Sections 3.1-3.3, and in Section 4.

3.1. Basic estimator

We start by examining the bias of the expansion estimator

t̂py =
∑
i∈S

p−1
i yi (3.1)

based on the basic inclusion probabilities pi. Although t̂py is design-unbiased for
ty with respect to the basic procedure, it is generally biased with respect to the
rejective sampling procedure. The bias is given by

Bp(t̂
p
y) =

∑
i∈P

δiyi, where δi =
πi − pi

pi
, (3.2)

with the subscript p denoting the expectation with respect to the rejective sam-
pling design. The coefficient |δi| can be viewed as a measure of relative distance
between the basic inclusion probabilities, pi, and the inclusion probabilities with
respect to the rejective sampling procedure, πi. The bias in (3.2) is large if some
units exhibit a large y-value and/or a large δ-value. For simplicity, consider the
case of a scalar x and suppose that the basic procedure is simple random sam-
pling without replacement so that pi = n/N for all i ∈ P. We expect a large value
of |δi| if xi is much larger than the population mean X̄ = tx/N. In this case, πi is
expected to be significantly smaller than pi because most samples containing unit
i are likely to be rejected, which in turns, leads to a large value of |δi|. Therefore,
a unit exhibiting large values of both x and y may contribute significantly to the
bias of t̂py. To overcome this problem, it may be wise to construct an additional
stratum consisting of all the units exhibiting large x-values. However, in prac-
tice, strata are usually formed for operational convenience. As a result, it is not
unusual for some strata to include units with relatively large x-values. As the
sample size n increases, we expect the δ-values to become smaller. Therefore, we
expect the bias of the basic expansion estimator, t̂py, to decrease as the sample
size increases. This is confirmed by the empirical results presented in Section 5.

3.2. Estimator based on Monte Carlo approximations

One option consists of estimating the πi’s through Monte Carlo simulations
to obtain π̂MC

i ; see Fattorini (2006), Thompson and Wu (2008), and Lesage
(2013). Then, use the Monte Carlo expansion estimator

t̂π̂y =
∑
i∈S

yi

π̂MC
i

(3.3)
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B̂π =
(∑

i∈S
π−1
i ziz

�
i

)−1∑
i∈S

π−1
i ziyi, Bπ =

(∑
i∈P

ziz
�
i

)−1∑
i∈P

ziyi

and Eπ
i = yi−z�i B

π. Noting that Ep

(∑
i∈S π−1

i Eπ
i −

∑
i∈P Eπ

i

)
= 0, the design-

bias of t̂πreg is given by

Ep(t̂
π
reg − ty) = Ep

{
(B̂π −Bπ)�(tz − t̂πz )

}
. (2.9)

The expectation in (2.9) is often referred to as the small sample bias. Therefore
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Bπ)�(tz − t̂πz ) = Op(Nn−1). On the other hand, with the Cube method, Deville

and Tillé (2004) showed that (tz − t̂πz ) = Op(NJn−1), which implies that (B̂π −
Bπ)�(tz − t̂πz ) = Op(NJn−3/2). If J = O(1), this is Op(Nn−3/2). Therefore,

the strategy consisting of the Cube method and the GREG estimator is less

vulnerable to small sample bias than the strategy consisting of a non-balanced

sampling design, such as simple random sampling without replacement and the

GREG estimator.

3. Rejective Sampling

In this section, we adopt the notation of Fuller (2009) who studied the prop-

erties of rejective sampling procedures that consists of discarding any sample

that does not meet a specified balancing tolerance. Samples are selected using a

basic procedure based on the vector of design variables, z, available for all i ∈ P.

Commonly used procedures are simple random sampling without replacement,

stratified sampling, and Poisson sampling. A subset of the z-variables are the

z2-variables, which are those satisfying Vb(z̄
p
2) = 0, where z̄p2 = N−1

∑
i∈Sb

p−1
i z2i

is the vector of basic expansion estimators for the population mean of z2. The

design variables not included in the set of the z2-variables are referred to as

the z1-variables. Let xi = z1i − C�z2i, where C is the matrix that minimizes

tr
{
Vb(z̄

p
1 −C�z̄p2)

}
and z̄p1 = N−1

∑
i∈Sb

p−1
i z1i. Finally, let z = (x�, z�2 )

�.

The rejective procedure p(·) proceeds as follows: (i) select a random sample,

Sb, according to the basic procedure, using p1, . . . , pN as the vector of inclusion

probabilities; (ii) the sample is retained if the rejection rule (1.3) is satisfied, with

z replaced by x, and with γ > 0 a constant specified by the survey statistician;

otherwise, replace the sample in the population and repeat step (i). We denote

by S the final random sample.

A small value of γ corresponds to a high rejection rate. The πi’s are complex

functions of t̂πx, tx, and the pi’s; as a result, they are generally untractable.

EXAMINING SOME ASPECTS OF BALANCED SAMPLING IN SURVEYS 7

Although (1.3) ensures that the sample S is approximately px-balanced for small
values of γ, there is no guarantee that it is πx-balanced. Since the πi’s are
unknown, they must be approximated. Some approximations are discussed in
Sections 3.1-3.3, and in Section 4.

3.1. Basic estimator

We start by examining the bias of the expansion estimator

t̂py =
∑
i∈S

p−1
i yi (3.1)

based on the basic inclusion probabilities pi. Although t̂py is design-unbiased for
ty with respect to the basic procedure, it is generally biased with respect to the
rejective sampling procedure. The bias is given by

Bp(t̂
p
y) =

∑
i∈P

δiyi, where δi =
πi − pi

pi
, (3.2)

with the subscript p denoting the expectation with respect to the rejective sam-
pling design. The coefficient |δi| can be viewed as a measure of relative distance
between the basic inclusion probabilities, pi, and the inclusion probabilities with
respect to the rejective sampling procedure, πi. The bias in (3.2) is large if some
units exhibit a large y-value and/or a large δ-value. For simplicity, consider the
case of a scalar x and suppose that the basic procedure is simple random sam-
pling without replacement so that pi = n/N for all i ∈ P. We expect a large value
of |δi| if xi is much larger than the population mean X̄ = tx/N. In this case, πi is
expected to be significantly smaller than pi because most samples containing unit
i are likely to be rejected, which in turns, leads to a large value of |δi|. Therefore,
a unit exhibiting large values of both x and y may contribute significantly to the
bias of t̂py. To overcome this problem, it may be wise to construct an additional
stratum consisting of all the units exhibiting large x-values. However, in prac-
tice, strata are usually formed for operational convenience. As a result, it is not
unusual for some strata to include units with relatively large x-values. As the
sample size n increases, we expect the δ-values to become smaller. Therefore, we
expect the bias of the basic expansion estimator, t̂py, to decrease as the sample
size increases. This is confirmed by the empirical results presented in Section 5.

3.2. Estimator based on Monte Carlo approximations

One option consists of estimating the πi’s through Monte Carlo simulations
to obtain π̂MC

i ; see Fattorini (2006), Thompson and Wu (2008), and Lesage
(2013). Then, use the Monte Carlo expansion estimator

t̂π̂y =
∑
i∈S

yi

π̂MC
i

(3.3)
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as an estimator of ty. For large populations though, simulating enough samples
to obtain precise estimates of the inclusion probabilities may prove problematic.
Alternatively, one may use a GREG estimator based on the π̂MC

i ’s, given by
(1.4), where wi is given by (1.5) with πi replaced by π̂MC

i .

3.3. The regression estimator

An alternative option was studied in Fuller (2009), who showed that the
regression estimator based on the basic inclusion probabilities pi and the vector
of auxiliary variables z, is design-consistent. Fuller (2009) assumes that pb(·) is
such that there exists some φi satisfying

E(x̄p − X̄|i ∈ Sb) = p−1
i N−1φixi, (3.4)

where x̄p = N−1
∑

i∈sb p
−1
i xi and X̄ = N−1

∑
i∈P xi. Fuller (2009) advocated

the use of the GREG type estimator

t̂preg =
∑
i∈P

z�i B̂
p with B̂p =

(∑
i∈S

p−2
i φiziz

�
i

)−1∑
i∈S

p−2
i φiziyi. (3.5)

Note that for an arbitrary basic procedure,

E(x̄p − X̄|i ∈ Sb) = N−1
∑
j∈U

(
pij − pipj

pipj

)
xj ,

where pij = pr(i, j ∈ Sb), so that (3.4) may not be fulfilled for any sampling
design pb(·). Fuller (2009) showed that the estimator (3.5) is design-consistent
provided there exists a vector of constants λ such that

p−2
i φiz

�
i λ = p−1

i . (3.6)

Example 1. Suppose that an auxiliary variable z1i is available. If the basic
procedure is simple random sampling without replacement with basic inclusion
probabilities pi = n/N for all i, we have z2i = 1 and z1i = z1i. Also, z�i = (x�

i , 1)
with xi = z1i − Z̄1 and Z̄1 = N−1

∑
i∈P z1i. Since

E(x̄p − X̄|i ∈ Sb) = (N − 1)−1

(
N

n
− 1

)
xi,

we have φi = (N − 1)−1(N − n) which does not depend on i.

Example 2. Suppose that an auxiliary variable z1i is available. If the basic
procedure is Bernoulli sampling with basic inclusion probabilities p0 for all i, we
have z2i = ∅, z1i = (1, z1i)

�, and z�i = (x�
i , z

�
2i) with xi = (1, z1i)

�. Since

E(x̄p − X̄|i ∈ Sb) = N−1 (1− p0)

p0
xi,

we have φi = 1− p0 which does not depend on i.
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The regression estimator (3.5) can be written in two alternative forms. Using

(3.6), it can expressed as

t̂preg =
∑
i∈S

yi

π̂F
i

, (3.7)

where

π̂F
i = pi

[{
1 + (tz − t̂pz)

�
(∑

i∈S
p−2
i φiziz

�
i

)−1
p−2
i φizi

}]−1
. (3.8)

Thus, π̂F
i can be viewed as an implicit estimate of the true inclusion probability

πi. As the sample size increases, the difference between pi and π̂F
i becomes

smaller. For finite sample sizes, this approximation may not be appropriate,

especially if some units exhibit large values for the balancing variables. This is

illustrated empirically in Section 5. A better approximation of the true πi’s can

be obtained through Edgeworth expansions. This is discussed in Section 4 with

Poisson sampling as the basic procedure.

Alternatively, the regression estimator (3.5) can be written as

t̂preg = t̂py + (tz − t̂pz)
�B̂p. (3.9)

From (3.9), it follows that t̂preg and t̂py are expected to share similar properties in

terms of bias and efficiency for small values of the balancing tolerance γ, which

correspond to high rejection rates. This is due to the fact that a high rejection

rate corresponds to small values of tz − t̂pz.

We now turn to the bias of t̂preg, whose error can be expressed as

t̂preg − ty = (t̂pE − tE) + (B̂p −Bp)�(tz − t̂pz), (3.10)

where

Bp =
(∑

i∈P
πip

−2
i φiziz

�
i

)−1∑
i∈P

πip
−2
i φiziyi

and t̂pE =
∑

i∈S p−1
i Ei, tE =

∑
i∈P Ei with Ei = yi − z�i B

p. From (3.10), the

design-bias of t̂preg can be expressed as the sum of two terms.

The design-expectation of the first term on the right hand-side of (3.10) is

Ep(t̂
p
E − tE) =

∑
i∈P

δiEi =
∑
i∈P

(δi − δ̄)(Ei − Ē), (3.11)

where δ̄ = N−1
∑

i∈P δi, noting that Ē = N−1
∑

i∈P Ei = 0. The design-

expectation of t̂pE−tE is zero if the Ei’s and the δi’s are unrelated. This condition

is approximately satisfied if

yi = x�
i β + εi with Em(εi|xi) = 0. (3.12)
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as an estimator of ty. For large populations though, simulating enough samples
to obtain precise estimates of the inclusion probabilities may prove problematic.
Alternatively, one may use a GREG estimator based on the π̂MC

i ’s, given by
(1.4), where wi is given by (1.5) with πi replaced by π̂MC

i .

3.3. The regression estimator

An alternative option was studied in Fuller (2009), who showed that the
regression estimator based on the basic inclusion probabilities pi and the vector
of auxiliary variables z, is design-consistent. Fuller (2009) assumes that pb(·) is
such that there exists some φi satisfying

E(x̄p − X̄|i ∈ Sb) = p−1
i N−1φixi, (3.4)

where x̄p = N−1
∑

i∈sb p
−1
i xi and X̄ = N−1

∑
i∈P xi. Fuller (2009) advocated

the use of the GREG type estimator

t̂preg =
∑
i∈P

z�i B̂
p with B̂p =

(∑
i∈S

p−2
i φiziz

�
i

)−1∑
i∈S

p−2
i φiziyi. (3.5)

Note that for an arbitrary basic procedure,

E(x̄p − X̄|i ∈ Sb) = N−1
∑
j∈U

(
pij − pipj

pipj

)
xj ,

where pij = pr(i, j ∈ Sb), so that (3.4) may not be fulfilled for any sampling
design pb(·). Fuller (2009) showed that the estimator (3.5) is design-consistent
provided there exists a vector of constants λ such that

p−2
i φiz

�
i λ = p−1

i . (3.6)

Example 1. Suppose that an auxiliary variable z1i is available. If the basic
procedure is simple random sampling without replacement with basic inclusion
probabilities pi = n/N for all i, we have z2i = 1 and z1i = z1i. Also, z

�
i = (x�

i , 1)
with xi = z1i − Z̄1 and Z̄1 = N−1

∑
i∈P z1i. Since

E(x̄p − X̄|i ∈ Sb) = (N − 1)−1

(
N

n
− 1

)
xi,

we have φi = (N − 1)−1(N − n) which does not depend on i.

Example 2. Suppose that an auxiliary variable z1i is available. If the basic
procedure is Bernoulli sampling with basic inclusion probabilities p0 for all i, we
have z2i = ∅, z1i = (1, z1i)

�, and z�i = (x�
i , z

�
2i) with xi = (1, z1i)

�. Since

E(x̄p − X̄|i ∈ Sb) = N−1 (1− p0)

p0
xi,

we have φi = 1− p0 which does not depend on i.
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The regression estimator (3.5) can be written in two alternative forms. Using

(3.6), it can expressed as

t̂preg =
∑
i∈S

yi

π̂F
i

, (3.7)

where

π̂F
i = pi

[{
1 + (tz − t̂pz)

�
(∑

i∈S
p−2
i φiziz

�
i

)−1
p−2
i φizi

}]−1
. (3.8)

Thus, π̂F
i can be viewed as an implicit estimate of the true inclusion probability

πi. As the sample size increases, the difference between pi and π̂F
i becomes

smaller. For finite sample sizes, this approximation may not be appropriate,

especially if some units exhibit large values for the balancing variables. This is

illustrated empirically in Section 5. A better approximation of the true πi’s can

be obtained through Edgeworth expansions. This is discussed in Section 4 with

Poisson sampling as the basic procedure.

Alternatively, the regression estimator (3.5) can be written as

t̂preg = t̂py + (tz − t̂pz)
�B̂p. (3.9)

From (3.9), it follows that t̂preg and t̂py are expected to share similar properties in

terms of bias and efficiency for small values of the balancing tolerance γ, which

correspond to high rejection rates. This is due to the fact that a high rejection

rate corresponds to small values of tz − t̂pz.

We now turn to the bias of t̂preg, whose error can be expressed as

t̂preg − ty = (t̂pE − tE) + (B̂p −Bp)�(tz − t̂pz), (3.10)

where

Bp =
(∑

i∈P
πip

−2
i φiziz

�
i

)−1∑
i∈P

πip
−2
i φiziyi

and t̂pE =
∑

i∈S p−1
i Ei, tE =

∑
i∈P Ei with Ei = yi − z�i B

p. From (3.10), the

design-bias of t̂preg can be expressed as the sum of two terms.

The design-expectation of the first term on the right hand-side of (3.10) is

Ep(t̂
p
E − tE) =

∑
i∈P

δiEi =
∑
i∈P

(δi − δ̄)(Ei − Ē), (3.11)

where δ̄ = N−1
∑

i∈P δi, noting that Ē = N−1
∑

i∈P Ei = 0. The design-

expectation of t̂pE−tE is zero if the Ei’s and the δi’s are unrelated. This condition

is approximately satisfied if

yi = x�
i β + εi with Em(εi|xi) = 0. (3.12)
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On the other hand, the term (3.11) may be large if some units exhibit a large

E-value and/or a large δ-value, which can occur, for example, when the relation-

ship between y and z is not linear. In multipurpose surveys, it is unrealistic to

presume that (3.12) holds for every characteristic of interest y, in which case the

term Ep(t̂
p
E − tE) may be significantly different from zero.

The design-expectation of the second term on the right hand-side of (3.10) is

Ep

{
(B̂p −Bp)�(tz − t̂pz)

}
, referred to as the small sample bias. Assuming that

γ = O(1), tz − t̂pz is Op(Nn−1/2), so that the second term on the right hand-side

of (3.10) is Op(Nn−1). Therefore, if the sample size n is not large enough, the

small sample bias may be significant.

In summary, under Fuller’s estimation procedure, there are two possible

sources of bias: the first is due to a misspecification of the sampling design, based

on the basic inclusion probabilities pi instead of the true inclusion probabilities

πi. The second is the small sample bias that can be large for finite sample sizes.

Both sources of bias are illustrated numerically in Section 1 of the Supplementary

Material.

4. Approximation of the Inclusion Probabilities through Edgeworth

Expansion

In this section, we obtain an approximation of the true inclusion probabilities πi
through Edgeworth expansion when Poisson sampling is used as the basic proce-

dure. For simplicity, we consider the case of a scalar x. Let Ib = (Ib1, . . . , IbN )�

have entries Ibi = 1 if unit i is selected in the basic random sample Sb and

Ibi = 0, otherwise. Condition (1.3) may be rewritten as −γ ≤ X ≤ γ with

X = (1/
√
d)

∑
i∈P x̃i(Ii − pi), d =

∑
i∈P x̃2i pi(1 − pi) and x̃i = xi/pi. The final

inclusion probability for rejective sampling is

πi = pi
pr(−γ ≤ X ≤ γ|Ibi = 1)

pr(−γ ≤ X ≤ γ)
. (4.1)

We prove in Section 3 of the Supplementary Material that

πi = pi

{
1− 1

d

γφ(γ)

2ψ(γ)− 1
x̃2i (1− pi)(1− 2pi) +

κ3√
d

γφ(γ)(3− γ2)

3(2ψ(γ)− 1)
x̃i(1− pi)

}

+o(d−1). (4.2)

Assuming that γ = O(d−0.5), this approximation simplifies to

πi = pi

{
1− 1

2d
x̃2i (1− pi)(1− 2pi) +

κ3

2
√
d
x̃i(1− pi)

}
+ o(d−1). (4.3)

Ignoring the o(d−1) term in (4.3), we obtain an alternative approximation of πi
denoted π̂ED

i . An Edgeworth expansion estimator of ty is given by

EXAMINING SOME ASPECTS OF BALANCED SAMPLING IN SURVEYS 11

t̂ED
y =

∑
i∈S

yi

π̂ED
i

. (4.4)

A comparison of (3.8) and (4.3) helps in understanding why the GREG type

estimator (3.5) advocated by Fuller (2009), can perform poorly in terms of bias in

finite samples. Both (3.8) and (4.3) exhibit significant differences and as a result,

(3.8) may not be a good approximation of πi, unlike (4.3). This is illustrated

empirically in Section 5.1. An alternative to (4.4) is a GREG estimator based on

the π̂ED
i ’s, given by (1.4), where wi is given by (1.5) with πi replaced by π̂ED

i .

5. Simulation Study

We conducted an extensive simulation study in order to compare several

approximations of the first-order inclusion probabilities, and to compare the per-

formance of several estimators in terms of relative bias and mean square error.

We generated 18 populations of size N = 500, each consisting of an auxiliary

variable x and a characteristic of interest y. In each population, the x-values

were first generated according to the distributions: a normal with mean 2 and

variance 1; a mixture, where 99% were generated from a normal with mean 2 and

variance 1 and the remaining observations were set manually to 7.9, 8.0, 8.2, 8.3,

significantly larger than the remaining observations; a log-normal with mean 0

and variance 0.9.

Given the x-values, the y-values were generated according to the models:

yi = 1+2(xi−X̄)+σ εi linear; yi = 1+2(xi−X̄)2+σ εi, quadratic; yi = exp{1+
1(xi − X̄)}+ σ εi, exponential; yi = 1 + 2(xi − X̄)2 − 10 exp

{
−20(xi − X̄)2

}
+

σ εi, bump; yi = 20I(xi ∈ [1.077; 7.66]) + εi, anova; yi ∼ B(1,Φi), where

log (Φi/(1− Φi)) = 2 (xi − 2), logistic. For each model, we used σ = 1 and the

errors εi were generated from a normal with mean 0 and variance 1. Table 2 of the

Supplementary Material presents several characteristics for these populations.

5.1. Approximations of the first-order inclusion probabilities

We compared several approximations of the first-order inclusion probabilities

when the samples were selected according to the rejective procedure of Fuller

(2009) with Bernoulli sampling as the basic procedure. The expected sample

size n was set to 25, 50, and 100. Samples were repeatedly selected until the

rejection rule (1.3) was satisfied, with zi = xi. The balancing tolerance γ was set

so that approximately 90% of the samples were rejected.

In each sample, we computed the basic selection probabilities pi (Basic); the

estimated probability π̂F
i (Fuller) given in (3.8); the Monte-Carlo approximation

π̂MC
i (MC) used in equation (3.3); the approximation π̂ED

i (Edge.) obtained

in (4.3) through Edgeworth expansions. The π̂MC
i ’s were obtained through an

independent set of K1 = 500,000 simulations.
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On the other hand, the term (3.11) may be large if some units exhibit a large

E-value and/or a large δ-value, which can occur, for example, when the relation-

ship between y and z is not linear. In multipurpose surveys, it is unrealistic to

presume that (3.12) holds for every characteristic of interest y, in which case the

term Ep(t̂
p
E − tE) may be significantly different from zero.

The design-expectation of the second term on the right hand-side of (3.10) is

Ep

{
(B̂p −Bp)�(tz − t̂pz)

}
, referred to as the small sample bias. Assuming that

γ = O(1), tz − t̂pz is Op(Nn−1/2), so that the second term on the right hand-side

of (3.10) is Op(Nn−1). Therefore, if the sample size n is not large enough, the

small sample bias may be significant.

In summary, under Fuller’s estimation procedure, there are two possible

sources of bias: the first is due to a misspecification of the sampling design, based

on the basic inclusion probabilities pi instead of the true inclusion probabilities

πi. The second is the small sample bias that can be large for finite sample sizes.

Both sources of bias are illustrated numerically in Section 1 of the Supplementary

Material.

4. Approximation of the Inclusion Probabilities through Edgeworth

Expansion

In this section, we obtain an approximation of the true inclusion probabilities πi
through Edgeworth expansion when Poisson sampling is used as the basic proce-

dure. For simplicity, we consider the case of a scalar x. Let Ib = (Ib1, . . . , IbN )�

have entries Ibi = 1 if unit i is selected in the basic random sample Sb and

Ibi = 0, otherwise. Condition (1.3) may be rewritten as −γ ≤ X ≤ γ with

X = (1/
√
d)

∑
i∈P x̃i(Ii − pi), d =

∑
i∈P x̃2i pi(1 − pi) and x̃i = xi/pi. The final

inclusion probability for rejective sampling is

πi = pi
pr(−γ ≤ X ≤ γ|Ibi = 1)

pr(−γ ≤ X ≤ γ)
. (4.1)

We prove in Section 3 of the Supplementary Material that

πi = pi

{
1− 1

d

γφ(γ)

2ψ(γ)− 1
x̃2i (1− pi)(1− 2pi) +

κ3√
d

γφ(γ)(3− γ2)

3(2ψ(γ)− 1)
x̃i(1− pi)

}

+o(d−1). (4.2)

Assuming that γ = O(d−0.5), this approximation simplifies to

πi = pi

{
1− 1

2d
x̃2i (1− pi)(1− 2pi) +

κ3

2
√
d
x̃i(1− pi)

}
+ o(d−1). (4.3)

Ignoring the o(d−1) term in (4.3), we obtain an alternative approximation of πi
denoted π̂ED

i . An Edgeworth expansion estimator of ty is given by
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t̂ED
y =

∑
i∈S

yi

π̂ED
i

. (4.4)

A comparison of (3.8) and (4.3) helps in understanding why the GREG type

estimator (3.5) advocated by Fuller (2009), can perform poorly in terms of bias in

finite samples. Both (3.8) and (4.3) exhibit significant differences and as a result,

(3.8) may not be a good approximation of πi, unlike (4.3). This is illustrated

empirically in Section 5.1. An alternative to (4.4) is a GREG estimator based on

the π̂ED
i ’s, given by (1.4), where wi is given by (1.5) with πi replaced by π̂ED

i .

5. Simulation Study

We conducted an extensive simulation study in order to compare several

approximations of the first-order inclusion probabilities, and to compare the per-

formance of several estimators in terms of relative bias and mean square error.

We generated 18 populations of size N = 500, each consisting of an auxiliary

variable x and a characteristic of interest y. In each population, the x-values

were first generated according to the distributions: a normal with mean 2 and

variance 1; a mixture, where 99% were generated from a normal with mean 2 and

variance 1 and the remaining observations were set manually to 7.9, 8.0, 8.2, 8.3,

significantly larger than the remaining observations; a log-normal with mean 0

and variance 0.9.

Given the x-values, the y-values were generated according to the models:

yi = 1+2(xi−X̄)+σ εi linear; yi = 1+2(xi−X̄)2+σ εi, quadratic; yi = exp{1+
1(xi − X̄)}+ σ εi, exponential; yi = 1 + 2(xi − X̄)2 − 10 exp

{
−20(xi − X̄)2

}
+

σ εi, bump; yi = 20I(xi ∈ [1.077; 7.66]) + εi, anova; yi ∼ B(1,Φi), where

log (Φi/(1− Φi)) = 2 (xi − 2), logistic. For each model, we used σ = 1 and the

errors εi were generated from a normal with mean 0 and variance 1. Table 2 of the

Supplementary Material presents several characteristics for these populations.

5.1. Approximations of the first-order inclusion probabilities

We compared several approximations of the first-order inclusion probabilities

when the samples were selected according to the rejective procedure of Fuller

(2009) with Bernoulli sampling as the basic procedure. The expected sample

size n was set to 25, 50, and 100. Samples were repeatedly selected until the

rejection rule (1.3) was satisfied, with zi = xi. The balancing tolerance γ was set

so that approximately 90% of the samples were rejected.

In each sample, we computed the basic selection probabilities pi (Basic); the

estimated probability π̂F
i (Fuller) given in (3.8); the Monte-Carlo approximation

π̂MC
i (MC) used in equation (3.3); the approximation π̂ED

i (Edge.) obtained

in (4.3) through Edgeworth expansions. The π̂MC
i ’s were obtained through an

independent set of K1 = 500,000 simulations.
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Figure 1 plots the relationship between the different inclusion probabilities

and the x-variable. In each plot, the bold dashed line corresponds to the basic

inclusion probabilities pi, that are all equal under Bernoulli sampling; the bold

black curve represents the Monte Carlo average of π̂F
i ; the dashed curve represent

the Monte Carlo approximation, π̂MC
i ; the black curve represent the approxima-

tion of the πi’s obtained through Edgeworth expansions, π̂ED
i . The blue curve is

a smoothed adjustment curve.

From Figure 1, when the x-values were generated from a normal distribution,

the probabilities π̂F
i , π̂

MC
i and π̂ED

i were relatively close to the basic inclusion

probabilities pi. This was especially true for n = 50 and n = 100. When the

x-values were generated according to a mixture or a lognormal distribution, the

units with a large x-value exhibited an inclusion probability π̂MC
i significantly

smaller than the basic inclusion probability pi. This was especially apparent for

n = 25, where the probabilities π̂F
i given by (3.8) provided a poor approximation

of the true πi’s, especially for units associated with large x-values. We note that

the distribution of the π̂ED
i ’s was very close to that of the π̂MC

i ’s. Finally, as

the (expected) sample size increased, all the approximations of the πi’s became

increasingly closer to the basic inclusion probabilities pi, as expected.

5.2. Efficiency of sampling and estimation strategies

We compared several sampling and estimation strategies in terms of relative

bias and relative efficiency. From each population, we selected K2 =10,000 sam-

ples of size n = 25, 50 and 100, according to the sampling designs: simple random

sampling without replacement; the rejective procedure of Fuller (2009) described

in Section 3 with simple random sampling without replacement as the basic sam-

pling procedure; the basic samples were selected until
∣∣∣(t̂px − tx)/Vb(t̂

p
x)

1/2
∣∣∣ < γ,

and the balancing tolerance γ was set so that the rejection rate was approxi-

mately equal to 90% and 50%; the cube method described in Section 2 with the

balancing constraints of fixed sample size and t̂πx = tx with πi = n/N.

We were interested in estimating the population total of the y-values, ty =∑
i∈P yi. In each sample selected by the rejective procedure, we computed the

estimator given by (3.1)(Basic); the estimator given by (3.5), where the values

of pi, φi and zi are presented in Example 1(Fuller); the estimator given by (3.3)

(MC); the estimator given by (1.4), where wi is given by (1.5) with ui = (1, xi)
�

and πi replaced by π̂MC
i (MC-Reg).

In each sample selected by the Cube method, we computed estimator given

by (1.4) with wi = π−1
i (Cube); the estimator given by (1.4), where wi is given by

(1.5) with ui = (1, xi)
� (Cube-Reg). In each sample selected by simple random

sampling without replacement, we computed the estimator given by (1.4) with
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Figure 1. Smoothed curve of the inverse of the weights of BEE (in bold
dashed), MC (in dashed), Fuller (in bold black) and Edge. (in black), for
a normal distribution on top, a mixture distribution in the middle and a
log-normal distribution on the bottom, for a sample of size n = 25 on the
right, n = 50 in the center and n = 100 on the left, for a rejective Bernoulli
sampling, with an 90 % rejection rate.

wi = N/n (SRS); the estimator given by (1.4), where wi is given by (1.5) with

ui = (1, xi)
� and πi = n/N (SRS-Reg).

As a measure of the bias of an estimator t̂, we computed its Monte Carlo

percent relative bias (RB)

RBMC

(
t̂
)
=

1

K2

K2∑
j=1

(t̂(j) − ty)

ty
× 100,

where t̂(j) denotes the estimator t̂ for the j-th iteration, j = 1, . . . ,K2. As a

measure of variability of t̂, we computed its Monte Carlo percent coefficient of

variation (CV)
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Figure 1 plots the relationship between the different inclusion probabilities

and the x-variable. In each plot, the bold dashed line corresponds to the basic

inclusion probabilities pi, that are all equal under Bernoulli sampling; the bold

black curve represents the Monte Carlo average of π̂F
i ; the dashed curve represent

the Monte Carlo approximation, π̂MC
i ; the black curve represent the approxima-

tion of the πi’s obtained through Edgeworth expansions, π̂ED
i . The blue curve is

a smoothed adjustment curve.

From Figure 1, when the x-values were generated from a normal distribution,

the probabilities π̂F
i , π̂

MC
i and π̂ED

i were relatively close to the basic inclusion

probabilities pi. This was especially true for n = 50 and n = 100. When the

x-values were generated according to a mixture or a lognormal distribution, the

units with a large x-value exhibited an inclusion probability π̂MC
i significantly

smaller than the basic inclusion probability pi. This was especially apparent for

n = 25, where the probabilities π̂F
i given by (3.8) provided a poor approximation

of the true πi’s, especially for units associated with large x-values. We note that

the distribution of the π̂ED
i ’s was very close to that of the π̂MC

i ’s. Finally, as

the (expected) sample size increased, all the approximations of the πi’s became

increasingly closer to the basic inclusion probabilities pi, as expected.

5.2. Efficiency of sampling and estimation strategies

We compared several sampling and estimation strategies in terms of relative

bias and relative efficiency. From each population, we selected K2 =10,000 sam-

ples of size n = 25, 50 and 100, according to the sampling designs: simple random

sampling without replacement; the rejective procedure of Fuller (2009) described

in Section 3 with simple random sampling without replacement as the basic sam-

pling procedure; the basic samples were selected until
∣∣∣(t̂px − tx)/Vb(t̂

p
x)

1/2
∣∣∣ < γ,

and the balancing tolerance γ was set so that the rejection rate was approxi-

mately equal to 90% and 50%; the cube method described in Section 2 with the

balancing constraints of fixed sample size and t̂πx = tx with πi = n/N.

We were interested in estimating the population total of the y-values, ty =∑
i∈P yi. In each sample selected by the rejective procedure, we computed the

estimator given by (3.1)(Basic); the estimator given by (3.5), where the values

of pi, φi and zi are presented in Example 1(Fuller); the estimator given by (3.3)

(MC); the estimator given by (1.4), where wi is given by (1.5) with ui = (1, xi)
�

and πi replaced by π̂MC
i (MC-Reg).

In each sample selected by the Cube method, we computed estimator given

by (1.4) with wi = π−1
i (Cube); the estimator given by (1.4), where wi is given by

(1.5) with ui = (1, xi)
� (Cube-Reg). In each sample selected by simple random

sampling without replacement, we computed the estimator given by (1.4) with
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Figure 1. Smoothed curve of the inverse of the weights of BEE (in bold
dashed), MC (in dashed), Fuller (in bold black) and Edge. (in black), for
a normal distribution on top, a mixture distribution in the middle and a
log-normal distribution on the bottom, for a sample of size n = 25 on the
right, n = 50 in the center and n = 100 on the left, for a rejective Bernoulli
sampling, with an 90 % rejection rate.

wi = N/n (SRS); the estimator given by (1.4), where wi is given by (1.5) with

ui = (1, xi)
� and πi = n/N (SRS-Reg).

As a measure of the bias of an estimator t̂, we computed its Monte Carlo

percent relative bias (RB)

RBMC

(
t̂
)
=

1

K2

K2∑
j=1

(t̂(j) − ty)

ty
× 100,

where t̂(j) denotes the estimator t̂ for the j-th iteration, j = 1, . . . ,K2. As a

measure of variability of t̂, we computed its Monte Carlo percent coefficient of

variation (CV)
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CVMC(t̂) = 100×

{
(1/K2)

∑K2
j=1

(
t̂(j) − (1/K2)

∑K2
k=1 t̂

(k)
)2

}1/2

ty
.

As a measure of relative efficiency (RE) of t̂, using the estimator t̂preg advocated

by Fuller (2009) as the reference, we computed

REMC(t̂) = 100×

{
(1/K2)

∑K2
j=1

(
t̂
p(j)
reg − ty

)2
}1/2

{
(1/K2)

∑K2
j=1

(
t̂(j) − ty

)2}1/2
.

Tables 1−9 show the Monte Carlo results of eight estimators in terms of

relative bias, coefficient of variation, and relative root mean square error for

eighteen populations, and a rejection rate of 90%. The results corresponding to

a rejection rate of 50% are presented in Section 2 of the Supplementary Material.

When the x-values were normally distributed, both Basic and Fuller showed

small biases, regardless of the sample size n and the model used to generate the

y-values; see Tables 1, 4, and 7. When the relationship between y and x was

linear, Basic and Fuller showed virtually no bias, regardless of the distribution of

the x-variable. They exhibited almost identical efficiency. When the x-variable

was not normally distributed, Basic and Fuller were generally biased and their

bias was virtually identical. The bias was especially large for highly non-linear

relationships between y and x. For example, when the distribution of the x-

values was log-normal and the relationship between y and x was exponential,

both Basic and Fuller showed a value of RB approximately equal to −35%, see

Table 6. In terms of efficiency, Basic was very close to Fuller in all the scenarios,

with a value of RE ranging from 94% to 102%. The fact that Basic and Fuller

exhibited almost identical properties in all the scenarios can be easily explained

by the fact that the term tz− t̂pz on the right hand-side of (3.9) was close to zero

due to the high rejection rate. As a result, Fuller essentially reduced to Basic.

Finally, we note that the bias of Basic and Fuller decreased as the sample size

increased, as expected.

We now turn to the estimators MC and MC-Reg. First, MC showed a small

bias in all the scenarios, as expected. However, in some scenarios, it was con-

siderably less efficient than Fuller. For example, when the distribution of the

x-variable was a mixture, the values of RE was 46% for the quadratic relation-

ship between y and x, and for n = 25, see Table 2. For both the ANOVA and the

logistic populations, MC was slightly more efficient than Fuller in all the scenar-

ios. Except for these populations, MC-reg performed better than MC in terms of

RE, although the difference became smaller as the sample size increased. When

the distribution of the x-values was not normal and the relationship between y
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Table 1. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 25, with a rejection rate equal to 90% and for a normal
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 0 0 -0 0 -0 -0

Linear CV 19 19 19 19 20 19 42 19
RE 98 100 97 100 86 103 20 96

RB -2 -2 -0 -0 0 -0 0 -4
Quadratic CV 18 18 19 18 18 18 18 18

RE 100 100 89 94 95 95 101 87

RB -1 -1 -0 -0 0 -0 0 -3
Exponential CV 13 13 14 14 14 13 23 13

RE 99 100 81 91 84 94 32 90

RB -5 -5 0 -0 0 -1 0 -11
Bump CV 55 55 56 55 56 56 54 58

RE 100 100 97 98 96 95 104 88

RB 1 1 0 0 -0 0 -0 1
Anova CV 7 7 7 7 7 7 10 7

RE 100 100 108 100 94 97 52 89

RB -0 -0 -0 -0 0 0 0 -0
Logistic CV 16 16 16 16 16 16 20 16

RE 100 100 102 102 98 100 62 94

Table 2. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 25, with a rejection rate equal to 90% and for a mixture
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB 0 0 0 0 0 0 -0 -0

Linear CV 21 21 24 21 26 21 53 21
RE 98 100 73 100 65 100 15 96

RB -9 -9 0 -5 -0 -3 1 -13
Quadratic CV 33 33 51 41 39 36 40 32

RE 100 100 46 71 79 90 75 98

RB -27 -28 1 -16 -1 -11 2 -38
Exponential CV 112 111 183 138 135 120 152 102

RE 100 100 39 68 72 90 57 111

RB -15 -15 -0 -8 -0 -5 1 -22
Bump CV 58 58 83 69 66 62 67 58

RE 100 100 53 76 84 93 81 94

RB 1 1 0 1 0 0 -0 2
Anova CV 8 8 8 9 8 8 10 8

RE 100 100 106 86 95 95 75 91

RB 1 1 0 1 0 0 0 1
Logistic CV 15 15 15 15 15 15 19 16

RE 100 100 107 99 100 101 67 95
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CVMC(t̂) = 100×

{
(1/K2)

∑K2
j=1

(
t̂(j) − (1/K2)

∑K2
k=1 t̂

(k)
)2

}1/2

ty
.

As a measure of relative efficiency (RE) of t̂, using the estimator t̂preg advocated

by Fuller (2009) as the reference, we computed

REMC(t̂) = 100×

{
(1/K2)

∑K2
j=1

(
t̂
p(j)
reg − ty

)2
}1/2

{
(1/K2)

∑K2
j=1

(
t̂(j) − ty

)2}1/2
.

Tables 1−9 show the Monte Carlo results of eight estimators in terms of

relative bias, coefficient of variation, and relative root mean square error for

eighteen populations, and a rejection rate of 90%. The results corresponding to

a rejection rate of 50% are presented in Section 2 of the Supplementary Material.

When the x-values were normally distributed, both Basic and Fuller showed

small biases, regardless of the sample size n and the model used to generate the

y-values; see Tables 1, 4, and 7. When the relationship between y and x was

linear, Basic and Fuller showed virtually no bias, regardless of the distribution of

the x-variable. They exhibited almost identical efficiency. When the x-variable

was not normally distributed, Basic and Fuller were generally biased and their

bias was virtually identical. The bias was especially large for highly non-linear

relationships between y and x. For example, when the distribution of the x-

values was log-normal and the relationship between y and x was exponential,

both Basic and Fuller showed a value of RB approximately equal to −35%, see

Table 6. In terms of efficiency, Basic was very close to Fuller in all the scenarios,

with a value of RE ranging from 94% to 102%. The fact that Basic and Fuller

exhibited almost identical properties in all the scenarios can be easily explained

by the fact that the term tz− t̂pz on the right hand-side of (3.9) was close to zero

due to the high rejection rate. As a result, Fuller essentially reduced to Basic.

Finally, we note that the bias of Basic and Fuller decreased as the sample size

increased, as expected.

We now turn to the estimators MC and MC-Reg. First, MC showed a small

bias in all the scenarios, as expected. However, in some scenarios, it was con-

siderably less efficient than Fuller. For example, when the distribution of the

x-variable was a mixture, the values of RE was 46% for the quadratic relation-

ship between y and x, and for n = 25, see Table 2. For both the ANOVA and the

logistic populations, MC was slightly more efficient than Fuller in all the scenar-

ios. Except for these populations, MC-reg performed better than MC in terms of

RE, although the difference became smaller as the sample size increased. When

the distribution of the x-values was not normal and the relationship between y
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Table 1. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 25, with a rejection rate equal to 90% and for a normal
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 0 0 -0 0 -0 -0

Linear CV 19 19 19 19 20 19 42 19
RE 98 100 97 100 86 103 20 96

RB -2 -2 -0 -0 0 -0 0 -4
Quadratic CV 18 18 19 18 18 18 18 18

RE 100 100 89 94 95 95 101 87

RB -1 -1 -0 -0 0 -0 0 -3
Exponential CV 13 13 14 14 14 13 23 13

RE 99 100 81 91 84 94 32 90

RB -5 -5 0 -0 0 -1 0 -11
Bump CV 55 55 56 55 56 56 54 58

RE 100 100 97 98 96 95 104 88

RB 1 1 0 0 -0 0 -0 1
Anova CV 7 7 7 7 7 7 10 7

RE 100 100 108 100 94 97 52 89

RB -0 -0 -0 -0 0 0 0 -0
Logistic CV 16 16 16 16 16 16 20 16

RE 100 100 102 102 98 100 62 94

Table 2. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 25, with a rejection rate equal to 90% and for a mixture
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB 0 0 0 0 0 0 -0 -0

Linear CV 21 21 24 21 26 21 53 21
RE 98 100 73 100 65 100 15 96

RB -9 -9 0 -5 -0 -3 1 -13
Quadratic CV 33 33 51 41 39 36 40 32

RE 100 100 46 71 79 90 75 98

RB -27 -28 1 -16 -1 -11 2 -38
Exponential CV 112 111 183 138 135 120 152 102

RE 100 100 39 68 72 90 57 111

RB -15 -15 -0 -8 -0 -5 1 -22
Bump CV 58 58 83 69 66 62 67 58

RE 100 100 53 76 84 93 81 94

RB 1 1 0 1 0 0 -0 2
Anova CV 8 8 8 9 8 8 10 8

RE 100 100 106 86 95 95 75 91

RB 1 1 0 1 0 0 0 1
Logistic CV 15 15 15 15 15 15 19 16

RE 100 100 107 99 100 101 67 95
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Table 3. Monte Carlo percent relative bias, percent coefficient of variation and percent

relative efficiency of several estimators under three sampling designs of size n = 25, with

a rejection rate equal to 90% and for a log-normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 0 0 0 0

Linear CV 19 19 54 19 33 19 66 19
RE 94 100 12 100 32 101 8 92

RB -15 -15 0 -12 -0 -9 1 -21
Quadratic CV 37 37 128 40 61 41 75 38

RE 99 100 9 90 42 89 27 84

RB -74 -74 4 -71 1 -38 5 -67
Exponential CV 165 164 703 179 321 208 336 152

RE 99 100 7 87 31 72 29 117

RB -19 -19 0 -15 -0 -11 2 -26
Bump CV 47 47 156 51 75 52 93 49

RE 99 100 10 90 44 89 29 81

RB 4 4 -0 3 0 3 -1 8
Anova CV 19 19 18 20 18 19 21 22

RE 100 100 109 95 108 95 81 68

RB 3 3 0 2 -0 2 -0 5
Logistic CV 24 24 23 24 25 25 30 26

RE 100 100 110 100 100 98 68 84

Table 4. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 50, with a rejection rate equal to 90% and for a normal
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 0 0 0 -0

Linear CV 13 13 13 13 13 13 29 13
RE 98 100 98 100 93 100 20 100

RB -1 -1 0 -0 0 -0 -0 -2
Quadratic CV 12 12 12 12 13 13 12 13

RE 100 100 95 97 93 93 101 91

RB -1 -1 0 0 0 0 -0 -1
Exponential CV 9 9 10 9 10 9 15 9

RE 99 100 91 96 93 97 35 97

RB -2 -2 0 0 0 0 -1 -6
Bump CV 38 38 38 38 38 38 38 39

RE 100 100 99 99 96 96 99 90

RB 0 0 -0 -0 -0 -0 0 1
Anova CV 5 5 5 5 5 5 7 5

RE 100 100 103 100 96 98 51 93

RB -0 -0 -0 -0 0 0 -0 -0
Logistic CV 11 11 11 11 11 11 14 11

RE 100 100 101 101 97 98 61 95
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Table 5. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 50, with a rejection rate equal to 90% and for a mixture
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 -0 -0 -0 -0

Linear CV 14 14 15 14 16 14 36 15
RE 97 100 93 100 78 99 16 95

RB -4 -4 -0 -2 0 -1 -0 -8
Quadratic CV 25 25 29 28 26 26 27 25

RE 100 100 74 82 91 95 86 94

RB -14 -14 -2 -6 1 -2 0 -24
Exponential CV 84 84 103 96 93 89 103 82

RE 100 100 69 80 84 91 69 101

RB -7 -7 -1 -2 1 -1 -0 -13
Bump CV 42 42 48 47 45 44 45 42

RE 100 100 78 84 92 95 89 93

RB 1 1 0 0 -0 0 0 1
Anova CV 6 6 6 6 6 6 7 6

RE 100 100 102 91 97 95 77 91

RB 0 0 -0 0 -0 0 0 1
Logistic CV 11 11 10 11 11 11 13 11

RE 100 100 103 99 101 101 71 99

Table 6. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 50, with a rejection rate equal to 90% and for a log-
normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 0 -0 -0 -0

Linear CV 13 13 16 13 19 13 45 13
RE 95 100 62 100 47 100 8 97

RB -7 -7 -0 -4 -0 -3 0 -12
Quadratic CV 31 31 48 35 38 32 52 30

RE 99 100 44 83 70 102 38 96

RB -35 -35 -0 -26 -0 -17 2 -46
Exponential CV 178 178 277 203 217 185 228 150

RE 99 100 43 78 70 95 63 133

RB -8 -8 -0 -5 -0 -4 0 -15
Bump CV 39 39 59 44 47 40 64 38

RE 99 100 46 84 72 102 40 94

RB 2 2 0 1 0 1 -0 4
Anova CV 13 13 13 14 13 13 14 14

RE 100 100 105 95 109 102 87 82

RB 1 1 0 1 0 1 0 3
Logistic CV 17 17 16 17 17 17 21 18

RE 100 100 107 99 102 101 67 91
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distribution of x.
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Linear CV 14 14 15 14 16 14 36 15
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Bump CV 42 42 48 47 45 44 45 42

RE 100 100 78 84 92 95 89 93

RB 1 1 0 0 -0 0 0 1
Anova CV 6 6 6 6 6 6 7 6

RE 100 100 102 91 97 95 77 91

RB 0 0 -0 0 -0 0 0 1
Logistic CV 11 11 10 11 11 11 13 11

RE 100 100 103 99 101 101 71 99

Table 6. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 50, with a rejection rate equal to 90% and for a log-
normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 0 -0 -0 -0

Linear CV 13 13 16 13 19 13 45 13
RE 95 100 62 100 47 100 8 97

RB -7 -7 -0 -4 -0 -3 0 -12
Quadratic CV 31 31 48 35 38 32 52 30

RE 99 100 44 83 70 102 38 96

RB -35 -35 -0 -26 -0 -17 2 -46
Exponential CV 178 178 277 203 217 185 228 150

RE 99 100 43 78 70 95 63 133

RB -8 -8 -0 -5 -0 -4 0 -15
Bump CV 39 39 59 44 47 40 64 38

RE 99 100 46 84 72 102 40 94

RB 2 2 0 1 0 1 -0 4
Anova CV 13 13 13 14 13 13 14 14

RE 100 100 105 95 109 102 87 82

RB 1 1 0 1 0 1 0 3
Logistic CV 17 17 16 17 17 17 21 18

RE 100 100 107 99 102 101 67 91
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Table 7. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 100, with a rejection rate equal to 90% and for a normal
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB 0 0 0 0 -0 -0 0 0

Linear CV 9 9 9 9 9 9 19 9
RE 97 100 97 100 94 99 19 97

RB -0 -0 -0 -0 -0 -0 0 -1
Quadratic CV 8 8 8 8 8 8 8 8

RE 100 100 98 99 98 98 101 96

RB -0 -0 -0 -0 -0 0 0 -1
Exponential CV 6 6 6 6 6 6 10 6

RE 99 100 96 98 96 99 34 100

RB -1 -1 0 0 0 -0 0 -2
Bump CV 25 25 25 25 25 25 25 26

RE 100 100 100 100 99 99 97 94

RB 0 0 -0 -0 0 0 0 0
Anova CV 3 3 3 3 3 3 5 3

RE 100 100 101 100 95 96 49 94

RB 0 0 0 0 0 0 0 -0
Logistic CV 7 7 7 7 7 7 9 7

RE 100 100 100 100 98 99 61 99

Table 8. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 100, with a rejection rate equal to 90% and for a mixture
distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 0 -0 0 -0 -0 0 0

Linear CV 10 10 10 10 10 10 24 10
RE 98 100 97 100 86 98 15 99

RB -2 -2 -0 -0 -0 -0 0 -4
Quadratic CV 17 17 18 18 17 17 18 17

RE 100 100 90 92 99 100 86 92

RB -5 -5 -0 -1 -0 -1 0 -12
Exponential CV 59 58 63 62 60 59 69 59

RE 100 100 88 91 96 99 73 95

RB -3 -3 -0 -0 -0 -0 -0 -6
Bump CV 29 29 30 30 29 29 31 30

RE 100 100 92 93 98 100 88 91

RB 0 0 0 0 -0 -0 0 1
Anova CV 4 4 4 4 4 4 4 4

RE 100 100 101 97 100 99 77 91

RB 0 0 0 0 -0 0 -0 0
Logistic CV 7 7 7 7 7 7 8 7

RE 100 100 101 100 97 97 67 95
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Table 9. Monte Carlo percent relative bias, percent coefficient of variation
and percent relative efficiency of several estimators under three sampling
designs of size n = 100, with a rejection rate equal to 90% and for a log-
normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 -0 -0 0 -0

Linear CV 9 9 9 9 11 8 30 9
RE 95 100 89 100 62 104 8 98

RB -2 -2 -0 -1 -0 -1 -0 -6
Quadratic CV 22 22 25 24 24 22 33 22

RE 99 100 76 89 85 104 44 93

RB -14 -14 -2 -7 -0 -6 -2 -29
Exponential CV 134 134 154 146 143 135 148 125

RE 100 100 76 85 88 98 83 110

RB -3 -3 -0 -1 -0 -1 -0 -8
Bump CV 28 28 32 29 30 27 41 28

RE 99 100 77 90 86 104 46 93

RB 1 1 0 0 0 0 -0 2
Anova CV 9 9 9 9 8 9 10 9

RE 100 100 101 97 110 107 83 91

RB 1 1 0 0 -0 0 0 1
Logistic CV 11 11 11 11 11 11 14 11

RE 100 100 102 99 101 100 69 96

and x not linear (e.g., quadratic and exponential), the estimator MC-reg showed

some bias, especially for small sample sizes, which can be attributed to the prob-

lem of small sample bias. For example, for n = 50, MC-reg showed a value

of RB of approximately −26% for the exponential relationship and a lognormal

distribution for the x-values, see Table 6.

The estimator Cube showed virtually no bias in all the scenarios, as expected.

However, it was generally less efficient than Fuller. For example, when the x-

values were normal, Cube showed a value of RE of approximately 86% in the case

of a linear relationship between y and x, and n = 25, see Table 1. Some exceptions

occurred in the case of ANOVA and the logistic populations, e.g., see Table 9.

The estimator Cube-reg showed virtually no bias regardless of the sample size n

when the x-values were normal. In this case, its efficiency was almost identical to

that of Fuller with values of RE ranging from 95% to 103%.When the distribution

of the x-values was a mixture or log-normal, Cube-reg showed some bias in some

scenarios. For example, when the x-variable was log-normal, Cube-reg showed

a value of RB oof approximately −38% for the exponential distribution, and for

n = 25, see Table 3. However, the bias of Cube-reg was significantly smaller than

that of Fuller, which exhibited a value of RB close to −71% in the same scenario.

The bias of Cube-reg can be attributed to a small sample bias that comes mostly

from the fact that the balancing constraints were not exactly satisfied. The same
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Table 7. Monte Carlo percent relative bias, percent coefficient of variation
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designs of size n = 100, with a rejection rate equal to 90% and for a normal
distribution of x.
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Table 9. Monte Carlo percent relative bias, percent coefficient of variation
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designs of size n = 100, with a rejection rate equal to 90% and for a log-
normal distribution of x.

Model Basic Fuller MC MC-Reg Cube Cube-Reg SRS SRS-Reg
RB -0 -0 -0 -0 -0 -0 0 -0

Linear CV 9 9 9 9 11 8 30 9
RE 95 100 89 100 62 104 8 98

RB -2 -2 -0 -1 -0 -1 -0 -6
Quadratic CV 22 22 25 24 24 22 33 22

RE 99 100 76 89 85 104 44 93

RB -14 -14 -2 -7 -0 -6 -2 -29
Exponential CV 134 134 154 146 143 135 148 125

RE 100 100 76 85 88 98 83 110

RB -3 -3 -0 -1 -0 -1 -0 -8
Bump CV 28 28 32 29 30 27 41 28

RE 99 100 77 90 86 104 46 93

RB 1 1 0 0 0 0 -0 2
Anova CV 9 9 9 9 8 9 10 9

RE 100 100 101 97 110 107 83 91

RB 1 1 0 0 -0 0 0 1
Logistic CV 11 11 11 11 11 11 14 11

RE 100 100 102 99 101 100 69 96

and x not linear (e.g., quadratic and exponential), the estimator MC-reg showed

some bias, especially for small sample sizes, which can be attributed to the prob-

lem of small sample bias. For example, for n = 50, MC-reg showed a value

of RB of approximately −26% for the exponential relationship and a lognormal

distribution for the x-values, see Table 6.

The estimator Cube showed virtually no bias in all the scenarios, as expected.

However, it was generally less efficient than Fuller. For example, when the x-

values were normal, Cube showed a value of RE of approximately 86% in the case

of a linear relationship between y and x, and n = 25, see Table 1. Some exceptions

occurred in the case of ANOVA and the logistic populations, e.g., see Table 9.

The estimator Cube-reg showed virtually no bias regardless of the sample size n

when the x-values were normal. In this case, its efficiency was almost identical to

that of Fuller with values of RE ranging from 95% to 103%.When the distribution

of the x-values was a mixture or log-normal, Cube-reg showed some bias in some

scenarios. For example, when the x-variable was log-normal, Cube-reg showed

a value of RB oof approximately −38% for the exponential distribution, and for

n = 25, see Table 3. However, the bias of Cube-reg was significantly smaller than

that of Fuller, which exhibited a value of RB close to −71% in the same scenario.

The bias of Cube-reg can be attributed to a small sample bias that comes mostly

from the fact that the balancing constraints were not exactly satisfied. The same
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observation can be made when the x-variable was distributed according to a

mixture. However, in terms of RE, Fuller was slightly better than Cube-reg. For

example, when the x-values were distributed according to a mixture, the values

of RE ranged from 90% to 101%, see Tables 2, 5, and 8.

Finally, we discuss the properties of the estimators SRS and SRS-reg ob-

tained under simple random sampling without replacement. As expected, SRS

showed virtually no bias in all the scenarios. However, it was generally less ef-

ficient than Fuller. On the other hand, SRS-reg was generally better than SRS

in terms of RE, although it suffered from small sample bias in some scenarios.

For example, when the x-values log-normal, SRS-reg showed a value of RB of

approximately −67% for the exponential distribution, and for n = 25, see Table

3. On the other hand, Cube-reg showed a value of RB of approximately −38%

for the same scenario. This can be explained by the fact that both estimators

include the term (B̂π−Bπ)�(tz− t̂πz ), which is Op(Nn−3/2) for the Cube method

and Op(Nn−1/2) for simple random sampling without replacement.

6. Concluding Remarks

In this paper, we examined the properties of several point and estimation

procedures. The estimator based on Monte Carlo approximations were generally

inefficient. To cope with this problem, it would be interesting to smooth these

probabilities through the use of classes formed on the basis on the Monte Carlo

approximations. This requires further research.

The properties of the regression estimator advocated by Fuller (2009) de-

pend partly on the rejection rate. For a high rejection (which is typically what

would one use in practice to achieve near balance), there are very minor differ-

ences between the Horvitz-Thompson type estimator based on the basic inclu-

sion probabilities and the regression estimator of Fuller (2009). Only for low to

medium rejections rates, would the use of a regression type estimator improve

the efficiency of the estimation procedure significantly.

For the rejective sampling procedure of Fuller (2009), the basic inclusion

probabilities pi are known and fixed prior to sampling. On the other hand,

the inclusion probabilities with respect to the rejective sampling design, πi, are

unknown. Another approach consists of fixing the πi’s and determining the

basic inclusion probabilities pi so that, after performing the rejective sampling

procedure, the πi’s are exactly or approximately satisfied. In the context of

Conditional Poisson sampling, this approach was studied by Dupacova (1979)

and Chen, Dempster and Liu (1994). The extension to general rejective sampling

procedures is currently under investigation.

Supplementary Materials

EXAMINING SOME ASPECTS OF BALANCED SAMPLING IN SURVEYS 21

The Supplement provides an empirical illustration of both sources of bias in
(3.10) (Section 1 of the Supplement), additional results for a rejection rate of 50%
(Section 2 of the Supplement) and a proof of (4.3) (Section 3 of the Supplement).
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observation can be made when the x-variable was distributed according to a

mixture. However, in terms of RE, Fuller was slightly better than Cube-reg. For

example, when the x-values were distributed according to a mixture, the values

of RE ranged from 90% to 101%, see Tables 2, 5, and 8.

Finally, we discuss the properties of the estimators SRS and SRS-reg ob-

tained under simple random sampling without replacement. As expected, SRS

showed virtually no bias in all the scenarios. However, it was generally less ef-

ficient than Fuller. On the other hand, SRS-reg was generally better than SRS

in terms of RE, although it suffered from small sample bias in some scenarios.

For example, when the x-values log-normal, SRS-reg showed a value of RB of

approximately −67% for the exponential distribution, and for n = 25, see Table

3. On the other hand, Cube-reg showed a value of RB of approximately −38%

for the same scenario. This can be explained by the fact that both estimators

include the term (B̂π−Bπ)�(tz− t̂πz ), which is Op(Nn−3/2) for the Cube method

and Op(Nn−1/2) for simple random sampling without replacement.

6. Concluding Remarks

In this paper, we examined the properties of several point and estimation

procedures. The estimator based on Monte Carlo approximations were generally

inefficient. To cope with this problem, it would be interesting to smooth these

probabilities through the use of classes formed on the basis on the Monte Carlo

approximations. This requires further research.

The properties of the regression estimator advocated by Fuller (2009) de-

pend partly on the rejection rate. For a high rejection (which is typically what

would one use in practice to achieve near balance), there are very minor differ-

ences between the Horvitz-Thompson type estimator based on the basic inclu-

sion probabilities and the regression estimator of Fuller (2009). Only for low to

medium rejections rates, would the use of a regression type estimator improve

the efficiency of the estimation procedure significantly.

For the rejective sampling procedure of Fuller (2009), the basic inclusion

probabilities pi are known and fixed prior to sampling. On the other hand,

the inclusion probabilities with respect to the rejective sampling design, πi, are

unknown. Another approach consists of fixing the πi’s and determining the

basic inclusion probabilities pi so that, after performing the rejective sampling

procedure, the πi’s are exactly or approximately satisfied. In the context of

Conditional Poisson sampling, this approach was studied by Dupacova (1979)

and Chen, Dempster and Liu (1994). The extension to general rejective sampling

procedures is currently under investigation.
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