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1 Parameter selection simulation study

1.1 Bootstrap threshold selection

In Section 5.1 of Korkas and Fryzlewicz (2014) we discuss an alternative data-driven approach

in selecting an appropriate threshold C(i) by fitting an AR(p) model to the data. We refer

to this bootstrap method as Bsp1. A referee has shown us a way that utilises the wavelet

periodogram which is also our main change-point detection statistic. A similar procedure has

appeared in Nunes et al. (2014), but in the context of stationarity testing for textured images.

The algorithm for obtaining the thresholds is described below.

Bootstrap algorithm for obtaining C(i) (Bsp2)

• Input: compute the spectrum Ŝi(z) for i = −1,−2, ...,−I⋆.

1. Compute the average
¯̂
Si(z) by taking the average of spectrum values for each i =

−1,−2, ...,−I⋆ .

2. For g = 1, ..., B repeat the following

• Simulate a stationary model X
(g)
t,T using squared amplitudes given by

¯̂
Si(z) and

with N (0, 1) innovations.

• Compute the following ratio

C(i)
g = Y

(i)
v (log T )−1

(

T
∑

t=1

I
(i)
t,T

)−1

T for i = −1,−2, ...,−I⋆

where v maximises the absolute value of (3.1) from Korkas and Fryzlewicz

(2014).

3. Output: the qth quantile of C
(i)
g (we use the 95% quantile in this work).
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For a comparison study between the two bootstrap algorithms we repeat the simulation

study from the main text using the models S1-S7 (no change-points) and A-I. The results are

given in Table 1.1. Even though Bsp2 shows a slightly better performance compared with Bsp1

in terms of the hit ratio for models A-I, it produces more spurious change-points in models S3,

S6 and S7, similarly to the universal thresholds discussed in the main text. Hence, we favour

Bsp1 which appears to be more robust in most cases examined here.

Table 1.1: Table compares the performance of the two bootstrap approaches Bsp1 and

Bsp2 for selecting C(i). Panel I shows the number of occasions either Bsp1 or Bsp2

detected at least one change-point for models without change-points (taken from the

main text i.e. S1-S7). Panel II shows the hit ratios achieved by either Bsp1 or Bsp2 for

the models A-I from the main text. All the models have size 1024 and the hit ratios are

calculated assuming dmax = 25. In all the cases we use WBS2.

Panel I Panel II

Model Bsp1 Bsp2 Model Bsp1 Bsp2

S1 0 17 A 0.673 0.700

S2 1 14 B 0.765 0.758

S3 5 93 C 0.816 0.784

S4 0 22 D 0.695 0.680

S5 0 13 E 0.460 0.483

S6 0 29 F 0.634 0.635

S7 5 100 G 0.679 0.729

H 0.552 0.573

I 0.582 0.635

1.2 Other parameters

Another important parameter in our method is the unbalanceness condition (1.5) from the main

text which is controlled by c⋆ ∈ (0.67, 1). To choose an appropriate value that will work in most

cases we conduct the following (simple) experiment. For sample sizes T = 500, 550, ..., 1500 we

estimate the following model P1

yt =



















































−0.6yt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ ⌊0.12T ⌋
0.4yt−1 + εt, εt ∼ N (0, 1) for ⌊0.12T ⌋ + 1 ≤ t ≤ ⌊0.22T ⌋
−0.6yt−1 + εt, εt ∼ N (0, 1) for ⌊0.22T ⌋ + 1 ≤ t ≤ ⌊0.52T ⌋
0.5yt−1 + εt, εt ∼ N (0, 1) for ⌊0.52T ⌋ + 1 ≤ t ≤ ⌊0.60T ⌋
−0.6yt−1 + εt, εt ∼ N (0, 1) for ⌊0.60T ⌋ + 1 ≤ t ≤ ⌊0.72T ⌋
0.4yt−1 + εt, εt ∼ N (0, 1) for ⌊0.72T ⌋ + 1 ≤ t ≤ T

On a grid of c⋆ and T values we calculate the mean hit ratio over 50 repetitions for each

value c⋆ = 0.67, 0.695, ..., 1 and T = 500, 550, ..., 2000. For robustness we repeat the experiment
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Figure 1.1: The hit ratio heat

map for the model P1 for increas-

ing c⋆ and T .
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Figure 1.2: The hit ratio heat

map for the model P2 for increas-

ing c⋆ and T .

for a different model and for T = 1000, 1050, ..., 2000. We choose model G from the main text

but we keep the change-points η = 200, 400, 600, 800 the same for all sample sizes. We call this

model P2. In the colour map of Figures 1.1 and 1.2 the lighter (yellow) colours indicate high

hit ratios (good performance).

It appears that our method performs better when c⋆ is less than 0.75, hence we set this

value as the default for this parameter, even though the lower bound 0.67 shows an equally

strong performance.

For selecting the parameter λ, which defines the finest scale to be used by our methods,

we conduct a similar experiment. We allow λ = 0.25, 0.30, ..., 1.1 and T = 500, 550, ..., 2000 and

choose Model A from the main text, but with change-points at η = 200, 300. The reason for

selecting this model is due to our observation that the change-points were more likely to be

found in coarser scales and, hence, the performance of our methods are more sensitive to the λ

parameter. Similarly with the experiment described above, for every pair (c⋆, T ) we repeat the

estimation 50 times. Figure 1.3 indicates that the range [0.7, 0.9] provides the best results and

we choose λ = 0.7 as our default value for this parameter.

2 Additional analysis to the simulation study of Section 5.2

In this section we provide more evidence for the performance of our methods. First, we repeat

the simulation study described in the main text, but with dmax = 25 (2.5%) and not 50 (5%),

and we measure the performance by the obtained hit ratio. The results are given in Table 1.2.

Again the WBS methods do well compared with BS1, BS2 or CF methods and it is interesting

to note that there have been changes in the ranking of the methods in certain methods. CF

method is not within 10% of the best in Models B, C and F. The same holds for BS1 and

WBS1 in Models A and C, while WBS2 is the best or within 10% of the best in all models

except E for both dmax = 25 and 50. In general, WBS1 and WBS2 perform similarly and
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Figure 1.3: Hit ratio map for the model A to select the λ parameter.

the same holds for CF and BS1 (when dmax = 50, CF does better). In addition, we generate

empirical histograms for the estimated locations of the change-points using BS2 and WBS2.

The histograms confirm the fact that WBS2 reveals the majority of the change-points more

frequently, which is especially evident for models D, G, H and I.

3 Additional simulation studies

3.1 Small sample size simulation study

We assess the performance of our methods for small sample cases, i.e. T = 200, 300 using the

models As, Bs and Cs. These models are modifications of the models discussed in the main text

except Bs which is a modified version of Model G from Killick et al. (2013). All the results are

shown in Table 1.3 and dmax = 10 for all cases.

Model As: A non-stationary process similar to model D

In this model the change-points occur in positions (90, 135) and the sample size is T = 200.

The WBS1 and WBS2 methods achieve a high hit ratio, more than double of that of BS1/BS2.

Model Bs: A piecewise constant MA process

yt =















εt + 0.8εt−1, εt ∼ N (0, 1) for 1 ≤ t ≤ 85

εt + 1.68εt−1 − 0.81εt−2, εt ∼ N (0, 1) for 86 ≤ t ≤ 120

εt + 0.8εt−1, εt ∼ N (0, 1) for 121 ≤ t ≤ 200

In this model WBS1 and WBS2 revealed the two change-points in 84% and 85% of the
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Figure 1.4: Empirical change-point densities for the Models A (top), B (middle) and

C (bottom). Left: estimated locations frequency estimated by WBS2 method. Right:

estimated locations frequency estimated by BS2 method. The red vertical dotted lines

are the locations of the real change-points.
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Figure 1.5: Empirical change-point densities for the Models D (top), E (middle) and

F (bottom). Left: estimated locations frequency estimated by WBS2 method. Right:

estimated locations frequency estimated by BS2 method. The red vertical dotted lines

are the locations of the real change-points.
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Figure 1.6: Empirical change-point densities for the Models G (top), H (middle) and

I (bottom). Left: estimated locations frequency estimated by WBS2 method. Right:

estimated locations frequency estimated by BS2 method. The red vertical dotted lines

are the locations of the real change-points.
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Table 1.2: Non-stationary processes results for the simulation described in the main text.

Table shows the number of occasions a method detected that number of change-points

within 25 data points from the real ones. Bold: the method with the highest hit ratio

or within 10% from the highest.

Number of Change-points

Model A B C

BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 9 6 7 4 16 1 2 0 1 2 41 28 19 32 29

1 42 33 41 46 45 17 24 19 20 23 59 72 81 68 71

2 49 61 52 50 39 82 74 81 79 75 - - - - -

Hit ratio 0.619 0.690 0.607 0.599 0.530 0.836 0.835 0.838 0.845 0.775 0.570 0.705 0.753 0.628 0.648

Model D E F

BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 52 52 11 8 50 11 22 20 28 6 10 0 2 1 5

1 11 14 29 37 16 58 54 57 50 55 25 13 25 12 22

2 37 34 60 55 34 31 24 23 22 39 40 50 41 53 50

3 - - - - - - - - - - 25 37 32 34 23

Hit ratio 0.416 0.406 0.733 0.723 0.398 0.570 0.500 0.497 0.456 0.631 0.587 0.737 0.663 0.720 0.613

Model G H I

BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 61 63 9 8 43 6 5 10 1 4 5 10 0 0 5

1 19 16 18 15 24 48 39 26 29 45 43 35 10 1 45

2 10 13 18 22 24 34 39 39 44 45 15 16 16 17 30

3 5 5 31 29 5 12 17 25 26 6 17 19 23 20 15

4 5 3 24 26 4 - - - - - 10 10 23 31 3

5 - - - - - - - - - - 10 10 28 31 2

Hit ratio 0.183 0.170 0.598 0.618 0.257 0.501 0.552 0.577 0.644 0.498 0.425 0.428 0.669 0.727 0.343

occasions respectively achieving a high hit ratio. On the other hand, the BS methods did not

detect any change-point at 60% of the occasions.

Model Cs: A non-stationary process similar to model G

In this model the change-points occur in positions (100, 150, 225) and the sample size is

T = 300. Again, WBS1 and WBS2 do well in this example achieving a hit ratio almost 50%

better than that of the BS methods. In more than 60% of the occasions they detected three

change-points without over-segmenting the series and with a good accuracy.

3.2 Large sample size simulation study

We assess the performance of our methods for large sample cases, i.e.T = 5000, 10000 using the

models Ab, Bb and Cb. All the results are shown in Table 1.4 and dmax = 25 for all cases.

Model Ab: A non-stationary process similar to model G, but with many change-points

In this model the change-points occur in positions (1000, 1200, ..., 2800), i.e. there are 10

change-points in total. The sample size is T = 5000. The WBS1 and WBS2 methods achieve a

high hit ratio, more than double of that of BS1/BS2.
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Table 1.3: Non-stationary processes results for small sample sizes. Panel I shows the

number of occasions a method detected that number of change-points within 10 data

points from the real ones. Bold: the method with the highest hit ratio or within 10%

from the highest. Panel II shows the percentage of occasions a method detected that

number of change-points. True number of change-points is in bold.

Panel I

Number of Change-points within 10 data points from the real ones

Model As Bs Cs

BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2

0 70 69 36 33 61 61 10 10 16 16 10 6

1 16 17 23 23 13 14 26 29 54 52 33 25

2 14 14 41 44 26 25 64 61 14 12 14 25

3 - - - - - - - - 16 20 43 44

Hit ratio 0.216 0.225 0.521 0.551 0.325 0.429 0.770 0.755 0.433 0.453 0.625 0.683

Panel II

Number of Change-points

Model As Bs Cs

BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2

0 64 63 33 30 60 60 10 9 5 5 3 1

1 16 16 9 9 5 6 6 8 59 55 29 21

2 19 21 57 60 35 34 84 83 7 7 8 10

≥ 3 1 0 1 1 0 0 0 0 29 33 60 68

Total 100 100 100 100 100 100 100 100 100 100 100 100

Model Bb: A non-stationary process similar to model B, but with many change-points

In this model the change-points occur in positions (1000, 1200, ..., 2800), i.e. there are 10

change-points in total. The sample size is T = 5000. WBS2 outperforms all other methods

when measured by the hit ratio while it reveals ten change-points in 65% of the occasions and

this is confirmed by the histogram in Figure 1.7.

Model Bb: A non-stationary process similar to model B, but with three change-points

In this model the change-points occur in positions (500, 700, 900) and the sample size is

T = 10000. The reason for choosing this model is to examine the performance of the methods

in large datasets where there are a few change-points occurring in short distances at the start

of the series. Even though all methods perform well in that they reveal the three change-

points in most occasions the WBS methods are significantly more accurate in detecting their

locations. This is confirmed by the higher hit ratio achieved as well as the histogram of the

estimated change-points (Figure 1.7) where it is clearly shown that the middle change-point is

more concentrated around the real change-point 700.
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Figure 1.7: Empirical change-point densities for the Models Ab (top), Bb (middle) and

Cb (bottom). Left: estimated locations frequency estimated by WBS2 method. Right:

estimated locations frequency estimated by BS2 method. The red vertical dotted lines

are the locations of the real change-points. Note: density plot of Cb is a zoomed in

version.
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Table 1.4: Non-stationary processes results for large sample sizes. Panel I shows the

number of occasions a method detected that number of change-points within 25 data

points from the real ones. Bold: the method with the highest hit ratio or within 10%

from the highest. Panel II shows the percentage of occasions a method detected that

number of change-points. True number of change-points is in bold.

Panel I

Number of Change-points within 25 data points from the real ones

Model Ab Bb Cb

BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2

0 1 1 0 0 16 2 0 0 13 5 4 3

1 10 13 0 0 28 15 7 0 35 31 21 11

2 25 20 1 1 27 27 3 1 32 38 46 37

3 19 16 1 2 16 26 12 5 20 26 29 49

4 12 18 4 5 4 8 15 9 - - - -

5 9 4 4 13 6 10 20 12 - - - -

6 13 9 13 11 2 8 15 18 - - - -

7 4 5 24 21 1 3 16 21 - - - -

8 3 9 22 23 0 1 6 20 - - - -

9 3 3 23 18 0 0 6 11 - - - -

10 1 2 8 6 0 0 0 3 - - - -

Hit ratio 0.375 0.392 0.719 0.685 0.195 0.306 0.495 0.613 0.515 0.602 0.623 0.730

Panel II

Number of Change-points

Model Ab Bb Cb

BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2 BS1 BS2 WBS1 WBS2

0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 9 10 3 2

2 15 8 0 0 27 21 3 0 17 10 9 4

3 12 16 0 1 23 17 4 0 63 71 67 77

4 23 12 0 0 18 22 5 3 11 7 12 7

5 11 16 1 0 12 11 4 2 0 2 9 10

[6-9] 31 30 24 26 16 25 50 30 0 0 0 0

10 8 18 75 73 3 4 34 65 0 0 0 0

Total 100 100 100 100 100 100 100 100 100 100 100 100

4 Additional material on the variance stabilization

The “variance stabilization” refers to Stage II of our Algorithm of Section 4 in the main paper,

in which we divide our CUSUM statistic

Y
b(i)
sm,em =

√

em − b

n(b− sm + 1)

b
∑

t=sm

I
(i)
t,T −

√

b− sm + 1

n(em − b)

em
∑

t=b+1

I
(i)
t,T (1.2)
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by the local sample mean of I
(i)
t,T , given by

qsm,em =

em
∑

t=sm

I
(i)
t,T /nm,

before testing the thus-rescaled CUSUM against the threshold ωT .

The basic reason for performing the variance stabilization is that if it is not done, the

variance of Y
b(i)
sm,em will depend quadratically on E(I

(i)
t,T ), t = sm, . . . , em.

This means that for two processes that are both stationary over the segment [sm, em] but

have two different values of E(I
(i)
t,T ), the corresponding CUSUM statistics will be of different

magnitudes. Therefore, one cannot possibly envisage a single threshold against which to com-

pare the (unscaled) CUSUM statistics Y
b(i)
sm,em to test the stationarity of both these processes;

the reason is that either process will require its own, different threshold, whose magnitude will

have to depend on the unknown E(I
(i)
t,T ). This would make threshold selection challenging.

To fix this, we proposed to first divide our CUSUM statistic by the local sample mean of

I
(i)
t,T before performing the test against the threshold. This partly remedies the issue mentioned

above in the sense that now the variance of the (scaled) CUSUM does not substantially depend

on E(I
(i)
t,T ), which allows ωT to be a constant multiple of log(T ). This makes it relatively “easy”

to select so that it works well for a range of processes, which we demonstrate empirically in the

paper. It works in theory too, in the sense that it enables the result in our Theorem 1.

However, even after the division by qsm,em , the variance stabilization is not exact. This

is because of the autocorrelation in the sequence {I(i)t,T }t, which the variance of the rescaled

statistic Y
b(i)
sm,em/qsm,em will still depend on, albeit (much) less strongly than that of the unscaled

CUSUM Y
b(i)
sm,em .

To illustrate the essence of the problem and appreciate that the variance stabilization

as described above is still desirable despite this problem, we consider the following simplified

illustrative example. We take sm = 1, em = T , b = T/2, and postulate that the autocorrelation

in the periodogram sequence I
(i)
t,T resembles that of (squared) autoregression of order 1. To be

more precise, we set

I
(i)
t,T = D2

t ; Dt = aDt−1 + εt,

where a ∈ (−1, 1) and εt is a i.i.d. sequence distributed as N(0, σ2). While this is a very

specific choice (and does not necessarily correspond to any particular original process on which

the periodogram may have been computed), it will serve our illustrative purposes well, since it

describes the entire autocorrelation structure by the single parameter a, so it is a convenient

device for demonstrating how the variance stabilization is impacted by increasing autocorrelation

in the periodogram sequence. Even with this simple choice, the demonstration will have to

proceed via approximate arguments, as exact distributional arguments would be challenging to

obtain.

With this example, we have

Y
T/2
1,T /q1,T =

√
T
D2

1 + . . .+D2
T/2 − (D2

T/2+1 + . . .+D2
T )

D2
1 + . . .+D2

T

=
√
T
Z1 − Z2

Z1 + Z2
,
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where

Zi = D2
1+(i−1)T/2 + . . .+D2

T/2+(i−1)T/2 .

Our aim is to examine the effect of the parameter a on Var(Y
T/2
1,T /q1,T ). Some of the argu-

ments below are approximate in nature. As suggested in Brown (1975), we approximate the

distribution of Z1 (identical to the distribution of Z2, of course) as αχ
2
β , and note

E(αχ2
β) = αβ

Var(αχ2
β) = 2α2β.

Using simple algebra, we have

E(Z1) =
Tσ2

2(1− a2)

Var(Z1) ≈ Tσ4(1 + a2)

(1− a2)3
.

Matching the respective moments gives

α =
σ2(1 + a2)

(1− a2)2

β =
T (1− a2)

2(1 + a2)
.

For larger values of T (longer intervals are particularly interesting to us as it is unlikely that

change-points detected by the WBS algorithm will come from the examination of short in-

tervals), the variables Z1 and Z2 are approximately independent. Therefore, by Lemma 1 in

Fryzlewicz et al. (2006), the distribution of Y
T/2
1,T /q1,T can be approximated as

√
T

(

2Beta

{

T (1− a2)

4(1 + a2)
,
T (1− a2)

4(1 + a2)

}

− 1

)

,

which leads (by standard results on the beta distribution) to

Var(Y
T/2
1,T /q1,T ) ≈

2(1 + a2)

1− a2
. (1.3)

While this expression is independent of the scale parameter σ2, it does depend to some extent

on the autocorrelation parameter a. However, we now compare it to the variance of the unscaled

CUSUM, approximated by similar arguments as

Var(Y
T/2
1,T ) ≈ 2σ4(1 + a2)

(1− a2)3
.

Unsurprisingly, it depends also on σ. However, even if σ is kept constant, the interesting aspect

of this expression is that is (much) more dependent on a (in the sense of being further away

from a constant function) than Var(Y
T/2
1,T /q1,T ), which is illustrated in Figure 1.8. Therefore,

even abstracting from the scale parameter σ, the division by q1,T provides a substantial degree

of variance stabilization in the sense of making Var(Y
T/2
1,T /q1,T ) “less dependent” on the degree

of autocorrelation in I
(i)
t,T than Var(Y

T/2
1,T ).
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Figure 1.8: Red line: 2(1+a
2)

(1−a2)3 ; blue line: 2(1+a
2)

1−a2 .

5 Proofs of theoretical results

Proof of Theorem 1

The proof of consistency is based on the following multiplicative model

Ỹt,T = σ(t/T )2Z2
t,T , t = 0, ..., T − 1.

We define the following two CUSUM statistics

Y
b
s,e =

√

e− b

n(b− s+ 1)

b
∑

t=s

Ỹt,T −
√

b− s+ 1

n(e− b)

e
∑

t=b+1

Ỹt,T

and

S
b
s,e =

√

e− b

n(b− s+ 1)

b
∑

t=s

σ2(t/T )−
√

b− s+ 1

n(e− b)

e
∑

t=b+1

σ2(t/T )

where n = e− s+ 1, the size of the segment defined by (s, e).

Y
b
s,e can be seen as the inner product between sequence {Ỹt,T }t=s,...,e and a vector ψb

s,e

whose elements ψb
s,e,t are constant and positive for t ≤ b and constant and negative for t > b

such that they sum to zero and sum to one when squared. Similarly for Sb
s,e.
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Let s, e satisfy ηp0 ≤ s < ηp0+1 < ... < ηp0+q < e ≤ ηp0+q+1 for 0 ≤ p0 ≤ N − q.

The inequality will hold at all stages of the algorithm until no undetected change-points are

remained. We impose at least one of the following conditions

s < ηp0+r′ − CδT < ηp0+r′ + CδT < e, for some 1 ≤ r′ ≤ q (1.4)

{(ηp0+1 − s) ∧ (s− ηp0)} ∨ {(ηp0+q+1 − e) ∧ (e− ηp0+q)} ≤ CǫT (1.5)

where ∧ and ∨ denote the minimum and maximum operators, respectively. These inequalities

will hold throughout the algorithm until no further change-points are detected.

We define symmetric intervals IL
r and IR

r around change-points such that for every triplet

{ηr−1, ηr, ηr+1}
IL
r =

[

ηr − 2

3
δrmin, ηr −

1

3
δrmin (1 + c̄)

]

and

IR
r =

[

ηr +
1

3
δrmin (1 + c̄) , ηr +

2

3
δrmin

]

for r = 1, ..., N + 1

where δrmin = min{ηr−ηr−1, ηr+1−ηr} and c̄ = 3− 2
c⋆

for c⋆ as in formula (1.5) of the main paper.

We recall that at every stage of theWBS algorithmM intervals (sm, em),m = 1, ...,M are drawn

from a discrete uniform distribution over the set {(s, e) : s < e, 0 ≤ s ≤ T − 2, 1 ≤ e ≤ T − 1}.
We define the event DM

T as

DM
T = {∀r = 1, ..., N ∃ m = 1, ...,M (sm, em) ∈ IL

r × IR
r }.

Also, note that

P ((DM
T )c) ≤

N
∑

r=1

M
∏

m−1

(1− P ((sm, em) ∈ IL
r × IR

r )) ≤ T

δT
(1− δ2T (1− c̄)2T−2/9)M . (1.6)

On a generic interval satisfying (1.4) and (1.5) we consider

(m0, b) = arg max
(m,t):m∈Ms,e,sm≤t≤em

|Ỹ t
sm,em | (1.7)

where Ms,e = {m : (sm, em) ⊆ (s, e), 1 ≤ m ≤M}.

Lemma 1

P

(

max
(s,b,e)

∣

∣

∣
Y

b
s,e − S

b
s,e

∣

∣

∣
> λ1

)

→ 0 (1.8)

for

λ1 ≥ log T.

Proof: We start by studying the following event

∣

∣

∣

∣

∣

e
∑

t=s

ctσ(t/T )
2(Z2

t,T − 1)

∣

∣

∣

∣

∣

>
√
nλ1
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where ct =
√

(e − b)/(b − s + 1) and ct =
√

(b− s + 1)/(e − b) for t ≤ b and b + 1 ≤ t

respectively. From formula (1.5) of the main paper, we have that ct ≤ c⋆ ≡
√

c⋆
1−c⋆

< ∞. The

proof proceeds as in Cho and Fryzlewicz (2015) and we have that (1.8) is bounded by

∑

(s,b,e)

2 exp

(

− nλ2
1

4c2⋆ maxz σ2(z)nρ2∞ + 2c⋆ maxz σ(z)
√
nλ1ρ1∞

)

≤ 2T 3 exp
(

−C′
1(c⋆−2) log

2 T
)

which converges to 0 since n ≥ δT = O(log2 T ) and ρ1∞ <∞ from (A2).

Lemma 2 Assuming that (1.4) holds, then there exists C2 > 0 such that for b satisfying |b −
ηp0+r′ | = C2γT for some r′, we have |Sηp0+r′

sm0
,em0

| ≥ |Sb
sm0

,em0
| + CγT δ

−1/2
T ≥ |Sb

sm0
,em0

| + 2λ1,

where γT =
√
δTλ1.

Proof: From the proof of Theorem 3.2 in Fryzlewicz (2014) and Lemma 1 in Cho and Fryzlewicz

(2012) we have the following result

|Sb
sm0

,em0
| ≥ |Yb

sm0
,em0

| − λ1 ≥ C3

√
δT (1.9)

provided that δT ≥ C4λ
2
1.

By Lemma 2.2 in Venkatraman (1992) there exists a change-point ηp0+r′ immediately to

the left or right of b such that

|Sη
p0+r′

sm0
,em0

| > |Sb
sm0

,em0
| ≥ C3

√
δT .

Now, the following three cases are not possible:

1. (sm0
, em0

) contains a single change-point, ηp0+r′ , and both ηp0+r′ −sm0
and em0

−ηp0+r′

are not bounded from below by c1δT .

2. (sm0
, em0

) contains a single change-point, ηp0+r′ , and either ηp0+r′ − sm0
or em0

−ηp0+r′

are not bounded from below by c1δT .

3. (sm0
, em0

) contains two change-points, ηp0+r′ and ηp0+r′+1, and both ηp0+r′ − sm0
and

em0
− ηp0+r′+1 are not bounded from below by c1δT .

The first case is not permitted by (A5). For the last two, if either case were true,

then following the arguments as in Lemma A.5 of Fryzlewicz (2014), we would obtain that

maxt:sm0
≤t≤em0

|St
sm0

,em0
| was not bounded from below by C3

√
δT which contradicted (1.9).

Hence, interval (sm0
, em0

) satisfies condition (1.4) and following a similar argument to the proof

of Lemma 2 in Cho and Fryzlewicz (2012) we can show that for any b satisfying |b− ηp0+r′ | =
C2γT , we have |Sηp0+r′

sm0
,em0

| ≥ |Sb
sm0

,em0
|+ CγT δ

−1/2
T .

Lemma 3 Under conditions (1.4) and (1.5) there exists 1 ≤ r′ ≤ q such that |b− ηp0+r′ | ≤ ǫT ,

where b is given in (1.7) and ǫT = C log2 T for a positive constant C.
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Proof: First, we mention that the model from formula (1.1) of the main paper can be writ-

ten as Ỹt,T = σ(t/T )2 + σ(t/T )2(Z2
t,T − 1) which has the form of a signal+noise model i.e.

Yt = ft + εt. Now, let f̄d
sm0

,em0
define the best function approximation to ft such that

argmaxd |〈ψd
sm0

,em0
, f〉| = argmind

∑em0

t=sm0
(ft−f̄d

sm0
,em0

) where f̄d
sm0

,em0
= f̄+〈f, ψd

sm0
,em0

〉ψd
sm0

,em0
,

f̄ is the mean of f and ψd
sm0

,em0
is a set of vectors that are constant and positive until d and

then constant and negative from d+ 1 until em0
.

If it can be shown that for a certain ǫT < C2γT , we have

em0
∑

t=sm0

(Yt − Ȳ d
sm0

,em0
,t)

2 >

em0
∑

t=sm0

(Yt − f̄
η
p0+r′

sm0
,em0

,t)
2 (1.10)

as long as

ǫT ≤ |d − ηp0+r′ |

then this would prove necessarily that |b− ηp0+r′ | ≤ ǫT .

By Lemma 2 and Lemma A.3 in Fryzlewicz (2014), we have the same triplet of inequalities

as in the argument in the proof of Theorem 3.2 in Fryzlewicz (2014) i.e.

|d − ηp0+r′ | ≥ C(λ2|d− ηp0+r′ |δ−1/2
T ) ∨ (λ2|d− ηp0+r′ |−1/2) ∨ (λ2

2). (1.11)

Hence, with the requirement that |d− ηp0+r′ | ≤ C2γT = C2λ1

√
δT we obtain

δT > C2λ2
2 max(C2C−2

2 λ−2
1 λ2

2, 1)

and ǫT = max(1, C2)λ2
2. From Lemma 1 λ1 is of order O(log T ). For λ2, which appears in the

following two terms of the decomposition of (1.10)

I =
1

d− sm0
+ 1





d
∑

t=sm0

εt





2

and II =
1

em0
− d+ 1

( em0
∑

t=d+1

εt

)2

we show below that with probability tending to 1, I ≤ λ2
2 = log2 T . From Lemma 1 we have

that ct = 1 for t = sm0
, ..., d and thus

P





1
√

d− sm0
+ 1

∣

∣

∣

∣

∣

∣

d
∑

t=sm0

εt

∣

∣

∣

∣

∣

∣

> λ2



→ 0

since by the Bernstein inequality the probability is bounded by

2T 2 exp

(

− (d− sm0
+ 1)λ2

2

4maxz σ2(z)(d− sm0
+ 1)ρ2∞ + 2c′ maxz σ(z)

√

d− sm0
+ 1λ2ρ1∞

)

≤ 2T 2 exp
(

−C′
3λ

2
2

)

which converges to 0 due to (d− sm0
+1) = O(δT ) from formula (1.5) of the main paper. Note

that II has similar order and we omit the details. This concludes the lemma.



18 Karolos K. Korkas and Piotr Fryzlewicz

Lemma 4 Under conditions (1.4) and (1.5)

P

(

|Yb
sm0

,em0
| > ωT

∑em0

t=sm0
Ỹt

nm0

)

→ 1

where b is given in (1.7).

Proof: We define the following two events A =
{

|Yb
sm0

,em0
| < ωT

1
nm0

∑em0

t=sm0
Ỹt,T

}

and B =
{

1
nm0

∣

∣

∣

∑em0

t=sm0
Ỹt,T −∑em0

t=sm0
σ(t/T )2

∣

∣

∣
< σ̄ = 1

2nm0

∑em0

t=sm0
σ2(t/T )

}

.

Since P (A) ≤ P (A ∩ B) + P (Bc) we need to show that P (B) → 1 and P (A∩ B) → 0. To

show that P (B) = P
(

1
nm0

∑em0

t=sm0
Ỹt,T ∈ (σ̄/2, 3σ̄/2)

)

→ 1 we apply the Bernstein inequality

as in Lemma 1 and we have that

P (B′) = P





1

nm0

∣

∣

∣

∣

∣

∣

em0
∑

t=sm0

Ỹt,T −
em0
∑

t=sm0

σ(t/T )2

∣

∣

∣

∣

∣

∣

> σ̄



 = P





∣

∣

∣

∣

∣

∣

em0
∑

t=sm0

σ(t/T )2(Z2
t,T − 1)

∣

∣

∣

∣

∣

∣

> nm0
σ̄



 .

Hence,

P (B′) ≤ 2 exp

(

− n2
m0
σ̄2

4maxz σ2(z)nm0
ρ2∞ + 2c′ maxz σ(z)nm0

σ̄ρ1∞

)

≤ 2T 2 exp
(

−C′
4 log

2 T
)

which converges to 0 since nm0
≥ δT = O(log2 T ) and ρ1∞ <∞ from (A2).

Now, from Lemma (3), we have some η ≡ ηp0+r′ satisfying |b − η| ≤ CǫT . Turning to

P (A∩ B) we have from conditions (1.4) and (1.5)

|Yb
sm0

,em0
| ≥ |Yη

sm0
,em0

| ≥ |Sη
sm0

,em0
| − log T

=

∣

∣

∣

∣

∣

√

(η − sm0
+ 1)(em0

− η)

nm0

(

σ
( η

T

)2

− σ

(

η + 1

T

)2
)
∣

∣

∣

∣

∣

− log T

=

√

em0
− η

nm0
(η − sm0

+ 1)
(η − sm0

+ 1)σ⋆ − log T ≥ C
√
δT − log T > ωT 3σ̄/2,

which concludes the Lemma.

Lemma 5 For some positive constants C, C′, let s, e satisfy either

• ∃1 ≤ p ≤ N such that s ≤ ηp ≤ e and (ηp − s+ 1) ∧ (e− ηp) ≤ CǫT or

• ∃1 ≤ p ≤ N such that s ≤ ηp+1 ≤ e and (ηp − s+ 1) ∨ (e− ηp+1) ≤ C′ǫT .

Then,

P

(

|Yb
sm0

,em0
| < ωT

∑em0

t=sm0
Yt

nm0

)

→ 1

where b is given in (1.7).
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Proof: A similar argument to the proof of Lemma 5 is applied here. We only need to show that

P (A ∩ B) → 0 where now event A =
{

|Ysm0
,b,em0

| > ωT
1

nm0

∑em0

t=sm0
Ỹt,T

}

. Using condition

(i) or (ii) we have that

|Yb
sm0

,em0
| ≤ |Sb

sm0
,em0

|+ log T

=

∣

∣

∣

∣

∣

√

b− sm0
+ 1
√

em0
− b

√
nm0

(

σ2(b/T )− σ2((b+ 1)/T )
)

∣

∣

∣

∣

∣

+ log T

≤ σ∗C
√
ǫT + log T < ωT σ̄/2.

The proof of Theorem 1 proceeds as follows: at the start of the algorithm when s = 0 and

e = T − 1 all the conditions of (1.4) & (1.5) required by Lemma 4 are met and thus it detects a

change-point on that interval defined by formula (1.7) within the distance of CǫT (by Lemma

3). The conditions of Lemma 4 are satisfied until all change-points have been identified. Then,

every random interval (sm, em) does not contain a change-point or the conditions of Lemma 5

are met; hence no more change-points are detected and the algorithm stops.

Finally, we examine whether the bias present in EI
(i)
t,T (see condition (A0)) will affect the

above result. We define S̃
t
s,e similarly to S

t
s,e by replacing σ(t/T )2 with σ2

t,T . Assume that

ηr is a change-point within the interval [sm0
, em0

] and b = argmaxt∈(sm0
,em0

) |Sb
sm0

,em0
| and

b̂ = argmaxt∈(sm0
,em0

) |S̃b
sm0

,em0
|. Recall that EI

(i)
t,T is constant within each segment apart

from short intervals around true change-point ηr i.e. [ηr −K2−i, ηr +K2−i]. In addition, from

Theorem 2 in Cho and Fryzlewicz (2015) the finest scale should satisfy i ≥ I⋆ = −⌊α log log T ⌋
in order for (A4) to hold. Then, |̂b− b| ≤ K2I

⋆

< ǫT holds since I⋆ = O(log log T ). Therefore,

bias does not affect the above result and the consistency is preserved.

Proof of Theorem 2

We start by the first method of aggregation. From the invertibility of the autocorrelation

wavelet inner product matrix A, there exists at least one ordinate of wavelet periodogram in

which a change-point θr is detected. From Theorem 1 it holds that |θr − θ̂r| ≤ CǫT with

probability converging to 1 regardless of the scale i. Since the algorithm begins its search from

the finest scale and only proceeds to the next one if no change-point is detected (until scale I⋆)

then consistency is preserved.

We now turn to the second method of aggregation. We note that Y
thr
t has the same

functional form with each of Y(i)
t i.e. h(i)(x) = (x(1− x))−1/2(c

(i)
x x+ d

(i)
x x) for x = (t − sm +

1)/n ∈ (0, 1), where c
(i)
x , d

(i)
x are determined by the location and the magnitude of the change-

points of I
(i)
t,T . Let b = argmaxsm0

<t<em0
Y

thr
t ; then following a similar argument to Lemma 2

of Fryzlewicz (2014) we can show that Ythr
t must have a local maximum at t = θp0+r′ and that

|b− θp0+r′ | ≤ C5γT . With this result, we can show that |b− θp0+r| ≤ C′ǫT for some 1 ≤ r′ ≤ q

as in Lemma 3 above by constructing a signal+noise model yt = ft+εt and substituting ft with
∑−1

i=−I⋆ EI
(i)
t,T I(Y

(i)
t > ω

(i)
T )/q

(i)
sm,em . Then, conditions (1.4) and (1.5) are satisfied within each

segment for at least one scale i ∈ {−1, ...,−I⋆}. When all change-points have been detected

every subsequent random interval (sm, em) will satisfy the conditions of Lemma 5 for every

i ∈ {−1, ...,−I⋆} and the algorithm stops.
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