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Abstract: In survey sampling, calibration is a popular tool used to make total esti-

mators consistent with known totals of auxiliary variables and to reduce variance.

When the number of auxiliary variables is large, calibration on all the variables may

lead to estimators of totals whose mean squared error (MSE) is larger than the MSE

of the Horvitz-Thompson estimator even if this simple estimator does not take ac-

count of the available auxiliary information. We study a new technique based on

dimension reduction through principal components that can be useful in this large

dimension context. Calibration is performed on the first principal components,

which can be viewed as the synthetic variables containing the most important part

of the variability of the auxiliary variables. When some auxiliary variables play a

more important role than others, the method can be adapted to provide an exact

calibration on these variables. Some asymptotic properties are given in which the

number of variables is allowed to tend to infinity with the population size. A data-

driven selection criterion of the number of principal components ensuring that all

the sampling weights remain positive is discussed. The methodology of the paper

is illustrated, in a multipurpose context, by an application to the estimation of

electricity consumption with the help of 336 auxiliary variables.
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1. Introduction

Since the seminal work by Deville and Särndal (1992), calibration is one of

the most popular and useful tools to improve Horvitz-Thompson estimators of

totals in a design-based survey sampling framework. Roughly speaking, it con-

sists in looking for a modification of the sampling weights so that the totals, in

the population, of the auxiliary variables are perfectly estimated. Performing

calibration often leads to total estimators with smaller variances and this tech-

nique is routinely used by several national statistical agencies (see Särndal (2007)

for a review).

With the spread of automatic processes for data collection, as well as in-

creasing storage capacities, it is not unusual anymore to have to analyze data
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coming from very large surveys with many auxiliary variables. Here, calibra-

tion on all the auxiliary variables can lead to estimators whose performances

are worse than that of the simple Horvitz-Thompson estimator even if the lat-

ter does not account for any auxiliary information (see e.g., Silva and Skinner

(1997)). Several difficulties arise in this context, such as instability of the cal-

ibration weights or variance inflation. There are different ways of dealing with

these issues. One possibility is to choose only a subset of the auxiliary variables

and to consider only the auxiliary variables that are expected to be the more

pertinent, avoiding the problem of multicollinearity (see e.g., Silva and Skinner

(1997); Chambers, Skinner and Wang (1999) and Clark and Chambers (2008)).

Another way is to weaken exact calibration constraints to approximated ones.

A class of penalized estimators has been suggested by Bardsley and Chambers

(1984) in a model-based setting and extended later by Chambers (1996), Rao and

Singh (1997), and Théberge (2000) in a design-based (or model-assisted) setting.

Usually, some auxiliary variables play a role that is more important than others

and it is required that their totals be estimated exactly. Bardsley and Chambers

(1984) and Guggemos and Tillé (2010) suggested different penalized optimization

problems which lead in fact to the same system of weights (see Goga, Shehzad

and Vanheuverzwyn (2011)).

We present another way of dealing with this issue. Our estimator is based on

dimension reduction of the auxiliary variables via principal components calibra-

tion. In multivariate statistics, principal component analysis (PCA) is a popular

tool for reducing the dimension of a set of quantitative variables (see e.g., Jolliffe

(2002)) by transforming the initial data set into a new set of a few uncorrelated

synthetic variables, called principal components (PC), that are linear combina-

tions of the initial variables with the largest variance. Adopting a model-assisted

point of view, the PCA calibration approach can also be viewed as a GREG

estimator based on Principal Components Regression (PCR). PCR can be very

useful to reduce the number of covariates in a linear regression model especially

when the regressors are highly correlated. As explained in Jolliffe (2002), even if

PCR is a biased estimation method for estimating a regression coefficient, it is

useful to overcome the problem of multicollinearity among the regressors. The

method is easy to put into practice with classical softwares used for performing

calibration.

A natural alternative to principal components regression is partial least

squares (PLS), also a popular dimension reduction regression technique that

can be useful when there is a large number of auxiliary variables that are highly

correlated (see for example Swold, Sjöström and Eriksson (2001)). Other model

selection techniques, such as the Lasso (Tibshirani (1996)) or the elastic net (Zou

and Hastie (2005)) can be employed to deal with survey data with large number
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of auxiliary variables. The main drawback of these model selection techniques is

that they can give survey weights that depend explicitly on the outcome variable,

generally not desired in surveys, particularly in multipurpose surveys in which

there can be many outcome variables under study.

The paper is structured as follows: we briefly recall in Section 2 the cali-

bration method and the problems that can arise when the number of auxiliary

variables is large. We introduce the suggested method in Section 3, and we give a

model-assisted interpretation. When the values of the auxiliary variables are only

known in the sample, we first estimate the PC’s and then perform calibration on

the first estimated principal components (Section 4). In Section 5, under mild

assumptions on the sampling design and on the study and auxiliary variables,

we prove that the calibration estimator on true PC’s and on estimated PC’s are

consistent. We show in Section 6 how the method can be adapted to provide

an exact calibration on variables considered by the survey statistician more im-

portant than others. Our method is illustrated in Section 7 on the estimation

of the total electricity consumption for each day of a week with the help of the

past consumption measured every half an hour over the previous week. A brief

Section 8 gives some concluding remarks. The proofs as well as some additional

results on the electricity data are available in an online supplementary file.

2. Calibration over a Large Number of Auxiliary Variables

We consider the finite population U = {1, . . . , k, . . . , N} and wish to estimate

the total ty =
∑

k∈U yk, where yk is the value of the variable of interest Y for the

kth unit. Let s be a random sample, with fixed size n, drawn from U according

to a sampling design that assigns to unit k a known inclusion probability πk =

Pr(k ∈ s) satisfying πk > 0. The corresponding sampling design weight is denoted

by dk = 1/πk. We suppose that yk is known for all k ∈ s (complete response).

Without auxiliary information, the total ty is estimated unbiasedly by the

Horvitz-Thompson (HT) estimator t̂yd =
∑

k∈s dkyk. Consider now p auxiliary

variables, X1, . . . ,Xp, and let xT
k = (xk1, . . . , xkp) be the transposed vector whose

elements are the values of the auxiliary variables for the kth unit. The calibration

method developed by Deville and Särndal (1992) uses as effectively as possible

the known population totals of Xj , j = 1, . . . , p at the estimation stage. The

calibration estimator of ty is the weighted estimator

t̂yw =
∑
k∈s

wkyk, (2.1)

whose (calibrated) weights wk are chosen as close as possible to the initial sam-

pling weights dk, according to some distance Φs and subject to some constraints.

244



2 H. CARDOT, C. GOGA AND M.-A. SHEHZAD
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of auxiliary variables. The main drawback of these model selection techniques is
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the total ty =
∑

k∈U yk, where yk is the value of the variable of interest Y for the

kth unit. Let s be a random sample, with fixed size n, drawn from U according

to a sampling design that assigns to unit k a known inclusion probability πk =

Pr(k ∈ s) satisfying πk > 0. The corresponding sampling design weight is denoted

by dk = 1/πk. We suppose that yk is known for all k ∈ s (complete response).
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Horvitz-Thompson (HT) estimator t̂yd =
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variables, X1, . . . ,Xp, and let xT
k = (xk1, . . . , xkp) be the transposed vector whose

elements are the values of the auxiliary variables for the kth unit. The calibration

method developed by Deville and Särndal (1992) uses as effectively as possible

the known population totals of Xj , j = 1, . . . , p at the estimation stage. The

calibration estimator of ty is the weighted estimator
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∑
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pling weights dk, according to some distance Φs and subject to some constraints.
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More exactly,

(wk)k∈s = argminwΦs(w) (2.2)

subject to
∑
k∈s

wkxk = tx, (2.3)

where w = (wk, k ∈ s) is the vector of weights assigned to each unit in the

sample, and tx =
∑

k∈U xk is the vector whose elements are the known totals of

Xj for j = 1, . . . , p. Several distance functions Φs were studied in Deville and

Särndal (1992). Under weak regularity assumptions they showed that all resulting

estimators are asymptotically equivalent to the one obtained by minimizing the

chi-square distance function Φs(w) =
∑

k∈s(wk − dk)
2/qkdk, where the qk’s are

known positive constants that can be used to take account of the variability of

the observations and are unrelated to dk. Of common use in applications are

uniform weights qk = 1 for all units k and we suppose, without loss of generality,

that qk = 1 in the following. We only consider calibration estimators derived

using the chi-square distance. The calibration weights wk, k ∈ s, are

wk = dk − dkx
T
k

(∑
ℓ∈s

dℓxℓx
T
ℓ

)−1

(t̂xd − tx), (2.4)

where t̂xd =
∑

k∈s dkxk is the HT estimator of tx, and the corresponding cali-

bration estimator is obtained by plugging wk in (2.1).

With a different point of view, it can be shown that the calibration estimator

obtained with the chi-squared distance is equal to the generalized regression esti-

mator (GREG) which is derived by assuming a linear regression model between

the study variable Y and the auxiliary variables X1, . . . ,Xp,

ξ : yk = xT
k β + εk, (2.5)

where ε = (εk, k ∈ U) is a centered random vector with a diagonal variance

matrix whose diagonal elements are 1/qk. Cassel, Särndal and Wretman (1976)

suggested the generalized difference estimator

t̃diffy,x = t̂yd −
(
t̂xd − tx

)T
β̃x, (2.6)

where β̃x = (
∑

k∈U xkx
T
k )

−1
∑

k∈U xkyk is the ordinary least squares estimator of

β. Here t̃diffy,x cannot be computed because β̃x cannot be computed unless we have

observed the whole population. We estimate β̃x by β̂x =
(∑

k∈s dkxkx
T
k

)−1∑
k∈s

dkxkyk and obtain the GREG estimator of ty : t̂yw = t̂yd −
(
t̂xd − tx

)T
β̂x.

Under mild regularity assumptions, Deville and Särndal (1992) showed that

the calibration estimator t̂yw and t̃diffy,x have the same asymptotic distribution. We
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have N−1
(
t̂yw − ty

)
= N−1

(
t̃diffy,x − ty

)
+ op(n

−1/2) and, as a result, the asymp-

totic variance of t̂yw is AV (t̂yw) =
∑

k∈U
∑

ℓ∈U (πkℓ − πkπℓ)dkdℓ(yk −xT
k β̃x)(yℓ −

xT
ℓ β̃x), where πkℓ = Pr(k ∈ s & ℓ ∈ s) is the probability that both k and ℓ are

included in the sample s, and πkk = πk. Calibration improves the HT estimator,

AV (t̂yw) ≤ V (t̂yd), if the predicted values xT
k β̃x are close enough to the yk’s,

that is to say if the model (2.5) explains the variable of interest sufficiently well.

Nevertheless, when a large number p of auxiliary variables is used, this no longer

holds (see Silva and Skinner (1997)).

One way to circumvent the problems due to over-calibration, such as ex-

tremely large weights and variance inflation, is to weaken the exact calibration

constraints to approximate ones. Then, the deviation between
∑

k∈swkxk and∑
k∈U xk is controlled by means of a penalty. Bardsley and Chambers (1984), in a

model-based setting, and Chambers (1996) and Rao and Singh (1997) in a design-

based setting, suggested finding weights satisfying (2.2), subject to a quadratic

constraint, as wpen(λ) = argminw Φs(w) + λ−1
(
t̂xw − tx

)T
C
(
t̂xw − tx

)
, where

t̂xw =
∑

k∈swkxk, C = diag(cj)
p
j=1, and cj ≥ 0 is a user-specified cost associated

with the jth calibration constraint. The tuning parameter λ > 0 controls the

trade-off between exact calibration (λ → 0) and no calibration (λ → ∞). With

the chi-square distance, the solution is, for k ∈ s,

wpen
k (λ) = dk − dkx

T
k

(∑
ℓ∈s

dℓxℓx
T
ℓ + λC−1

)−1 (
t̂xd − tx

)
,

and the penalized calibration estimator is a GREG-type estimator, whose re-

gression coefficient is estimated by a ridge-type estimator. For an infinite cost

cj , the jth calibration constraint is satisfied exactly (see Beaumont and Bocci

(2008)). As noted in Bardsley and Chambers (1984), the risk of having nega-

tive weights (in the case of the chi-square distance) is greatly reduced by using

penalized calibration. With an empirical likelihood approach, Chen, Sitter and

Wu (2002) suggested replacing true totals tx with tx +∆(t̂xw − tx), where ∆ is

a diagonal matrix depending on the costs cj and a tuning parameter controlling

the deviation between t̂xw and t̂x.

3. Calibration on Principal Components

We consider another class of approximately calibrated estimators that are

based on dimension reduction through principal components analysis (PCA). In

multivariate statistics, PCA is a popular technique for reducing the dimension

of a set of quantitative variables (see e.g., Jolliffe (2002)) by extracting most of

the variability of the data by projection on a low dimension space. Principal

components analysis consists in transforming the initial data set into a new set
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More exactly,

(wk)k∈s = argminwΦs(w) (2.2)

subject to
∑
k∈s

wkxk = tx, (2.3)

where w = (wk, k ∈ s) is the vector of weights assigned to each unit in the

sample, and tx =
∑

k∈U xk is the vector whose elements are the known totals of

Xj for j = 1, . . . , p. Several distance functions Φs were studied in Deville and

Särndal (1992). Under weak regularity assumptions they showed that all resulting

estimators are asymptotically equivalent to the one obtained by minimizing the

chi-square distance function Φs(w) =
∑

k∈s(wk − dk)
2/qkdk, where the qk’s are

known positive constants that can be used to take account of the variability of

the observations and are unrelated to dk. Of common use in applications are

uniform weights qk = 1 for all units k and we suppose, without loss of generality,

that qk = 1 in the following. We only consider calibration estimators derived

using the chi-square distance. The calibration weights wk, k ∈ s, are

wk = dk − dkx
T
k

(∑
ℓ∈s

dℓxℓx
T
ℓ

)−1

(t̂xd − tx), (2.4)

where t̂xd =
∑

k∈s dkxk is the HT estimator of tx, and the corresponding cali-

bration estimator is obtained by plugging wk in (2.1).

With a different point of view, it can be shown that the calibration estimator

obtained with the chi-squared distance is equal to the generalized regression esti-

mator (GREG) which is derived by assuming a linear regression model between

the study variable Y and the auxiliary variables X1, . . . ,Xp,

ξ : yk = xT
k β + εk, (2.5)

where ε = (εk, k ∈ U) is a centered random vector with a diagonal variance

matrix whose diagonal elements are 1/qk. Cassel, Särndal and Wretman (1976)

suggested the generalized difference estimator

t̃diffy,x = t̂yd −
(
t̂xd − tx

)T
β̃x, (2.6)

where β̃x = (
∑

k∈U xkx
T
k )

−1
∑

k∈U xkyk is the ordinary least squares estimator of

β. Here t̃diffy,x cannot be computed because β̃x cannot be computed unless we have

observed the whole population. We estimate β̃x by β̂x =
(∑

k∈s dkxkx
T
k

)−1∑
k∈s

dkxkyk and obtain the GREG estimator of ty : t̂yw = t̂yd −
(
t̂xd − tx

)T
β̂x.

Under mild regularity assumptions, Deville and Särndal (1992) showed that

the calibration estimator t̂yw and t̃diffy,x have the same asymptotic distribution. We

CALIBRATION ON PRINCIPAL COMPONENTS 5

have N−1
(
t̂yw − ty

)
= N−1

(
t̃diffy,x − ty

)
+ op(n

−1/2) and, as a result, the asymp-

totic variance of t̂yw is AV (t̂yw) =
∑

k∈U
∑

ℓ∈U (πkℓ − πkπℓ)dkdℓ(yk −xT
k β̃x)(yℓ −

xT
ℓ β̃x), where πkℓ = Pr(k ∈ s & ℓ ∈ s) is the probability that both k and ℓ are

included in the sample s, and πkk = πk. Calibration improves the HT estimator,

AV (t̂yw) ≤ V (t̂yd), if the predicted values xT
k β̃x are close enough to the yk’s,

that is to say if the model (2.5) explains the variable of interest sufficiently well.

Nevertheless, when a large number p of auxiliary variables is used, this no longer

holds (see Silva and Skinner (1997)).

One way to circumvent the problems due to over-calibration, such as ex-

tremely large weights and variance inflation, is to weaken the exact calibration

constraints to approximate ones. Then, the deviation between
∑

k∈swkxk and∑
k∈U xk is controlled by means of a penalty. Bardsley and Chambers (1984), in a

model-based setting, and Chambers (1996) and Rao and Singh (1997) in a design-

based setting, suggested finding weights satisfying (2.2), subject to a quadratic

constraint, as wpen(λ) = argminw Φs(w) + λ−1
(
t̂xw − tx

)T
C
(
t̂xw − tx

)
, where

t̂xw =
∑

k∈swkxk, C = diag(cj)
p
j=1, and cj ≥ 0 is a user-specified cost associated

with the jth calibration constraint. The tuning parameter λ > 0 controls the

trade-off between exact calibration (λ → 0) and no calibration (λ → ∞). With

the chi-square distance, the solution is, for k ∈ s,

wpen
k (λ) = dk − dkx

T
k

(∑
ℓ∈s

dℓxℓx
T
ℓ + λC−1

)−1 (
t̂xd − tx

)
,

and the penalized calibration estimator is a GREG-type estimator, whose re-

gression coefficient is estimated by a ridge-type estimator. For an infinite cost

cj , the jth calibration constraint is satisfied exactly (see Beaumont and Bocci

(2008)). As noted in Bardsley and Chambers (1984), the risk of having nega-

tive weights (in the case of the chi-square distance) is greatly reduced by using

penalized calibration. With an empirical likelihood approach, Chen, Sitter and

Wu (2002) suggested replacing true totals tx with tx +∆(t̂xw − tx), where ∆ is

a diagonal matrix depending on the costs cj and a tuning parameter controlling

the deviation between t̂xw and t̂x.

3. Calibration on Principal Components

We consider another class of approximately calibrated estimators that are

based on dimension reduction through principal components analysis (PCA). In

multivariate statistics, PCA is a popular technique for reducing the dimension

of a set of quantitative variables (see e.g., Jolliffe (2002)) by extracting most of

the variability of the data by projection on a low dimension space. Principal

components analysis consists in transforming the initial data set into a new set

247



6 H. CARDOT, C. GOGA AND M.-A. SHEHZAD

of a few uncorrelated synthetic variables, called principal components (PC), that

are linear combinations of the initial variables with the largest variance. The

principal components are “naturally” ordered, with respect to their contribution

to the total variance of the data, and the reduction of the dimension is then

realized by taking only the first few PCs. PCA is particularly useful when the

correlation among the variables in the dataset is strong. These new variables can

be also used as auxiliary information for calibration, as noted in Goga, Shehzad

and Vanheuverzwyn (2011).

Complete Auxiliary Information

We suppose without loss of generality that the auxiliary variables are cen-

tered, N−1tx = 0 and, for simplicity, we do not include an intercept term in the

model. In applications, an intercept term should be included. We suppose the

p-dimensional vector xk is known for all units k ∈ U .

Let X be the N × p data matrix having xT
k , k ∈ U as rows. The variance-

covariance matrix of the original variables X1, . . . ,Xp is N−1XTX. Let λ1 ≥
. . . ≥ λp ≥ 0 be the eigenvalues of N−1XTX associated to the corresponding

orthonormal eigenvectors v1, . . . ,vp,

1

N
XTXvj = λjvj , j = 1, . . . , p. (3.1)

For j = 1, . . . , p, the jth principal component, denoted by Zj , is

Zj = Xvj = (zkj)k∈U . (3.2)

The variable Zj has a (population) variance equal to N−1
∑

k∈U z2kj = λj . We

consider the first r (with r < p) principal components, Z1, . . . ,Zr. In the survey

sampling framework, our goal is not to interpret Z1, . . . ,Zr but to use them as

a tool to obtain calibration weights that are more stable than the calibration

weights obtained with the full set of auxiliary variables. We take the principal

component (PC) calibration estimator t̂pcyw(r) =
∑

k∈sw
pc
k (r)yk, with the vector

of weights wpc
k (r), k ∈ s, that solve the optimization problem (2.2) subject to∑

k∈sw
pc
k (r)zkr =

∑
k∈U zkr, where zTkr = (zk1, . . . , zkr) is the vector containing

the values of the first r PCs computed for the kth individual. The PC calibra-

tion weights are wpc
k (r) = dk − dkz

T
kr

(∑
ℓ∈s dℓzℓrz

T
ℓr

)−1
(t̂zrd − tzr), k ∈ s, where

t̂zrd =
∑

k∈s dkzkr is the HT estimator of the total tzr = (0, . . . , 0) since we have

supposed that the original variables have mean zero.

The total ty is again estimated by a GREG-type estimator that uses Z1, . . . ,Zr

as auxiliary variables,

t̂pcyw(r) =
∑
k∈s

wpc
k (r)yk = t̂yd −

(
t̂zrd − tzr

)T
γ̂z(r), (3.3)

where

CALIBRATION ON PRINCIPAL COMPONENTS 7

γ̂z(r) =

(∑
k∈s

dkzkrz
T
kr

)−1∑
k∈s

dkzkryk. (3.4)

If r = 0, we do not take auxiliary information into account, then t̂pcyw(0) is

simply the HT estimator (or the Hájek estimator if the intercept term is included

in the model) whereas if r = p, we get the calibration estimator that takes account

of all the auxiliary variables.

A Model-Assisted Point of View

Consider the superpopulation model ξ presented in (2.5) and denote by G =

(v1, . . . ,vp) the matrix whose jth column is the jth eigenvector vj . We can

write,

ξ : yk = zTk γ + εk,

where γ = GTβ and zTk = (zk1, . . . , zkp), where zkj is the value of Zj for the kth

unit. Principal components regression consists of considering a reduced linear

regression model, denoted by ξr, that uses as predictors the first r principal

components, Z1, . . . ,Zr,

ξr : yk = zTkrγ(r) + εkr, (3.5)

where γ(r) is a vector of r elements composed of the first r elements of γ and

εkr is the appropriate error term of mean zero. The least squares estimation, at

the population level, of γ(r), is

γ̃z(r) =

(∑
k∈U

zkrz
T
kr

)−1 ∑
k∈U

zkryk, (3.6)

which in turn can be estimated, on a sample s, by the design-based estimator

γ̂z(r) given by (3.4). Thus the PC calibration estimator given in (3.3) is a GREG-

type estimator assisted by the reduced model ξr described in (3.5). Since the

principal components are centered and uncorrelated, the matrix
(∑

k∈U zkrz
T
kr

)
is diagonal, with diagonal elements (λ1N, . . . , λrN).

When there is a strong multicollinearity among the auxiliary variables, the

ordinary least squares estimator of β is sensitive to small changes in xk and yk and

has a large variance (see e.g., Hoerl and Kennard (1970)). To see how small eigen-

values can affect β̃x, Gunst and Mason (1977) write the least squares estimator

as: β̃x =
(
N−1

∑
k∈U xkx

T
k

)−1
(N−1

∑
k∈U xkyk) =

∑p
j=1(1/λj)[v

T
j (N

−1
∑

k∈U
xkyk)]vj . Approximating the covariance matrix N−1

∑
k∈U xkx

T
k = N−1XTX by

the rank r matrix
(∑r

j=1 λjvjv
T
j

)
leads to considering the regression estimator

based on the first r principal components,
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of a few uncorrelated synthetic variables, called principal components (PC), that
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1

N
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k (r), k ∈ s, that solve the optimization problem (2.2) subject to∑

k∈sw
pc
k (r)zkr =

∑
k∈U zkr, where zTkr = (zk1, . . . , zkr) is the vector containing
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T
kr
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T
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)−1
(t̂zrd − tzr), k ∈ s, where

t̂zrd =
∑

k∈s dkzkr is the HT estimator of the total tzr = (0, . . . , 0) since we have

supposed that the original variables have mean zero.

The total ty is again estimated by a GREG-type estimator that uses Z1, . . . ,Zr

as auxiliary variables,

t̂pcyw(r) =
∑
k∈s

wpc
k (r)yk = t̂yd −

(
t̂zrd − tzr

)T
γ̂z(r), (3.3)

where
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If r = 0, we do not take auxiliary information into account, then t̂pcyw(0) is

simply the HT estimator (or the Hájek estimator if the intercept term is included

in the model) whereas if r = p, we get the calibration estimator that takes account

of all the auxiliary variables.

A Model-Assisted Point of View

Consider the superpopulation model ξ presented in (2.5) and denote by G =

(v1, . . . ,vp) the matrix whose jth column is the jth eigenvector vj . We can

write,

ξ : yk = zTk γ + εk,

where γ = GTβ and zTk = (zk1, . . . , zkp), where zkj is the value of Zj for the kth

unit. Principal components regression consists of considering a reduced linear

regression model, denoted by ξr, that uses as predictors the first r principal

components, Z1, . . . ,Zr,

ξr : yk = zTkrγ(r) + εkr, (3.5)

where γ(r) is a vector of r elements composed of the first r elements of γ and

εkr is the appropriate error term of mean zero. The least squares estimation, at

the population level, of γ(r), is

γ̃z(r) =

(∑
k∈U

zkrz
T
kr

)−1 ∑
k∈U

zkryk, (3.6)

which in turn can be estimated, on a sample s, by the design-based estimator

γ̂z(r) given by (3.4). Thus the PC calibration estimator given in (3.3) is a GREG-

type estimator assisted by the reduced model ξr described in (3.5). Since the

principal components are centered and uncorrelated, the matrix
(∑

k∈U zkrz
T
kr

)
is diagonal, with diagonal elements (λ1N, . . . , λrN).

When there is a strong multicollinearity among the auxiliary variables, the

ordinary least squares estimator of β is sensitive to small changes in xk and yk and

has a large variance (see e.g., Hoerl and Kennard (1970)). To see how small eigen-

values can affect β̃x, Gunst and Mason (1977) write the least squares estimator

as: β̃x =
(
N−1

∑
k∈U xkx

T
k

)−1
(N−1

∑
k∈U xkyk) =

∑p
j=1(1/λj)[v

T
j (N

−1
∑

k∈U
xkyk)]vj . Approximating the covariance matrix N−1

∑
k∈U xkx

T
k = N−1XTX by

the rank r matrix
(∑r

j=1 λjvjv
T
j

)
leads to considering the regression estimator

based on the first r principal components,
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β̃pc
x (r) =

r∑
j=1

1

λj

[
vT
j

( 1

N

∑
k∈U

xkyk

)]
vj . (3.7)

Here β̃pc
x (r) is obtained by subtracting from β̃x the part of the data that be-

longs to the p − r dimensional space with the smallest variance and performing

the regression in the r-dimensional space that contains most of the variabil-

ity of the data. Ridge-regression (Hoerl and Kennard (1970)), an alternative

way of dealing with the multicollinearity issue, consists of adding a positive

term λ to all eigenvalues λj , j = 1, . . . , p, with β̃x(λ) = (N−1
∑

k∈U xkx
T
k +

λIp)
−1

(
N−1

∑
k∈U xkyk

)
=

∑p
j=1[1/(λ+ λj)]

[
vT
j

(
N−1

∑
k∈U xkyk

)]
vj , where

Ip is the p-dimensional identity matrix. Both the ridge regression estimator

β̃x(λ) and the principal components estimator β̃pc
x (r) are biased for β under the

model ξ (Gunst and Mason (1977)).

The PC regression estimator β̃pc
x (r) can be estimated under the sampling

design by

β̂pc
x (r) = Grγ̂z(r), (3.8)

where γ̂z(r) is given in (3.4) and Gr is the p× r matrix whose jth column is vj .

Using (3.8) and the fact that Zj = Xvj , we obtain that
(
t̂zrd − tzr

)T
γ̂z(r) =(

t̂xd − tx
)T

β̂pc
x (r). Consequently t̂pcyw(r) can also be written as t̂pcyw(r) = t̂yd −(

t̂xd − tx
)T

β̂pc
x (r), and t̂pcyw(r) may be seen as a GREG-type estimator assisted

by the model ξ when β is estimated by β̂pc
x (r).

Calibration on the second moment of the PC variables

With complete auxiliary information, Särndal (2007) stated that “we are

invited to consider x2kj , j = 1, . . . , p and other functions of x2kj for inclusion

in xk” especially when “the relationship to the study variable is curved”. In

our case, the PC variables Zj satisfy N−1ZT
j Zj = N−1

∑
k∈U z2kj = λj , for all

j = 1, . . . , p. Thus in the presence of complete auxiliary information, the totals of

squares of the PCs are known. As a consequence, if we keep the first r variables

Z1, . . . ,Zr corresponding to the largest r eigenvalues, we can consider r addi-

tional calibration constraints on the second moment of these PCs. We look for

the calibration weights wpc(r) solving (2.2) subject to
∑

k∈sw
pc
k (r)

(
zkr, z

2
kr

)T
=∑

k∈U
(
zkr, z

2
kr

)T
, where z2kr = (z2k1, . . . , z

2
kr).

The estimator derived in this way is expected to perform better than the es-

timator calibrated only on the first moment of the principal components, though

calibration on the second moment of the PCs requires r additional calibration

constraints.

CALIBRATION ON PRINCIPAL COMPONENTS 9

4. Calibration on Estimated Principal Components

We have assumed that the values of the auxiliary variables are known for all

units in the population but in practice, it often happens that these variables are

only known for the sampled individuals, while their population totals are known.

Here we present a way to perform principal components calibration when the

auxiliary variables are only observed for the units belonging to the sample.

Let Γ = N−1XTX be the variance-covariance matrix, estimated by

Γ̂ =
1

N̂

∑
k∈s

dk(xk − X̂)(xk − X̂)T =
1

N̂

∑
k∈s

dkxkx
T
k − X̂X̂

T
, (4.1)

where N̂ =
∑

k∈s dk and X̂ = N̂−1
∑

k∈s dkxk. Let λ̂1 ≥ . . . ≥ λ̂p ≥ 0 be the

sorted eigenvalues of Γ̂ and v̂1, . . . , v̂p the corresponding orthonormal eigenvec-

tors,

Γ̂v̂j = λ̂jv̂j , j = 1, . . . , p. (4.2)

The λ̂j and v̂j are the design-based estimators of λj and vj , respectively, for j =

1, . . . , p. It is shown in Cardot et al. (2010) that, with large samples and under

classical assumptions on the first and second order inclusion probabilities πk, πkl
as well as on the variables Xj , (see the assumptions (A1)−(A6) in Section 5),

the estimators λ̂j and v̂j are asymptotically design unbiased and consistent for

λj and vj .

The unknown population principal components Zj defined in (3.2) can be

approximated as Ẑj = Xv̂j , with Ẑj = (ẑkj)k∈U only known for the units in the

sample. Nevertheless, the population total tẐj
=

∑
k∈U ẑkj is known to be zero

since tẐj
= tTx v̂j = 0, j = 1, . . . , p. The Ẑj are not exactly the principal com-

ponents associated with the variance-covariance matrix Γ̂ because the original

variables are centered in the population but not necessarily in the sample.

Consider now the first r estimated principal components, Ẑ1, . . . , Ẑr, cor-

responding to the r largest eigenvalues, λ̂1 ≥ . . . ≥ λ̂r ≥ 0, and suppose that

λ̂r > 0. but, for ease of notation, we will use the same r. The estimated principal

component (EPC) calibration estimator of ty is t̂epcyw (r) =
∑

k∈sw
epc
k (r)yk, where

the EPC calibration weights wepc
k , k ∈ s are the solution of the optimization

problem (2.2) subject to the constraints
∑

k∈sw
epc
k (r)ẑkr =

∑
k∈U ẑkr, where

ẑTkr = (ẑk1, . . . , ẑkr) is the vector of values of Ẑj , j = 1, . . . , r recorded for the

kth unit. With the chi-square distance function Φs, the EPC calibration weights

wepc
k (r) are given by

wepc
k (r) = dk − dkẑ

T
kr

(∑
ℓ∈s

dℓẑℓrẑ
T
ℓr

)−1

(t̂ẑrd − tẑr), (4.3)
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β̃pc
x (r) =

r∑
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1

λj
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vT
j

( 1

N

∑
k∈U

xkyk

)]
vj . (3.7)

Here β̃pc
x (r) is obtained by subtracting from β̃x the part of the data that be-

longs to the p − r dimensional space with the smallest variance and performing

the regression in the r-dimensional space that contains most of the variabil-

ity of the data. Ridge-regression (Hoerl and Kennard (1970)), an alternative

way of dealing with the multicollinearity issue, consists of adding a positive
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∑
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=
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[
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(
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∑
k∈U xkyk
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vj , where

Ip is the p-dimensional identity matrix. Both the ridge regression estimator

β̃x(λ) and the principal components estimator β̃pc
x (r) are biased for β under the

model ξ (Gunst and Mason (1977)).

The PC regression estimator β̃pc
x (r) can be estimated under the sampling

design by

β̂pc
x (r) = Grγ̂z(r), (3.8)

where γ̂z(r) is given in (3.4) and Gr is the p× r matrix whose jth column is vj .

Using (3.8) and the fact that Zj = Xvj , we obtain that
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)T
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x (r), and t̂pcyw(r) may be seen as a GREG-type estimator assisted

by the model ξ when β is estimated by β̂pc
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With complete auxiliary information, Särndal (2007) stated that “we are

invited to consider x2kj , j = 1, . . . , p and other functions of x2kj for inclusion

in xk” especially when “the relationship to the study variable is curved”. In

our case, the PC variables Zj satisfy N−1ZT
j Zj = N−1

∑
k∈U z2kj = λj , for all

j = 1, . . . , p. Thus in the presence of complete auxiliary information, the totals of

squares of the PCs are known. As a consequence, if we keep the first r variables

Z1, . . . ,Zr corresponding to the largest r eigenvalues, we can consider r addi-

tional calibration constraints on the second moment of these PCs. We look for

the calibration weights wpc(r) solving (2.2) subject to
∑

k∈sw
pc
k (r)

(
zkr, z
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(
zkr, z
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The estimator derived in this way is expected to perform better than the es-

timator calibrated only on the first moment of the principal components, though
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approximated as Ẑj = Xv̂j , with Ẑj = (ẑkj)k∈U only known for the units in the
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since tẐj
= tTx v̂j = 0, j = 1, . . . , p. The Ẑj are not exactly the principal com-

ponents associated with the variance-covariance matrix Γ̂ because the original

variables are centered in the population but not necessarily in the sample.
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responding to the r largest eigenvalues, λ̂1 ≥ . . . ≥ λ̂r ≥ 0, and suppose that

λ̂r > 0. but, for ease of notation, we will use the same r. The estimated principal

component (EPC) calibration estimator of ty is t̂epcyw (r) =
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k (r)yk, where

the EPC calibration weights wepc
k , k ∈ s are the solution of the optimization
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∑
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epc
k (r)ẑkr =
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k∈U ẑkr, where

ẑTkr = (ẑk1, . . . , ẑkr) is the vector of values of Ẑj , j = 1, . . . , r recorded for the

kth unit. With the chi-square distance function Φs, the EPC calibration weights
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k (r) are given by
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ℓ∈s

dℓẑℓrẑ
T
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where t̂ẑrd =
∑

k∈s dkẑkr is the HT estimator of the total tẑr =
∑

k∈U ẑkr =

0. The EPC calibration estimator for ty is t̂epcyw (r) =
∑

k∈U wepc
k (r)yk = t̂yd −(

t̂ẑrd − tẑr
)T

γ̂ẑ(r), where γ̂ẑ(r) =
(∑

k∈s dkẑkrẑ
T
kr

)−1∑
k∈s dkẑkryk. The EPC

calibration estimator can also be written with respect to the population totals

of the original variables, X1, . . . ,Xp, as t̂
epc
yw (r) = t̂yd −

(
t̂xd − tx

)T
β̂epc
x (r), where

β̂epc
x (r) = �Grγ̂ẑ(r) and �Gr is the p× r matrix whose jth column is equal to �vj .

5. Some Asymptotic Properties of the Principal Components

Calibration Estimators

We adopt in this section the asymptotic framework of Isaki and Fuller (1982),

considering a sequence of growing and nested populations UN with size N tending

to infinity and a sequence of samples sN of size nN drawn from UN according

to the fixed-size sampling designs pN (sN ). The sequence of subpopulations is

an increasing nested one, whereas the sample sequence is not. For simplicity of

notation, we drop the subscript N in the following when there is no ambiguity.

The number pN of auxiliary variables, as well as the number rN of principal

components, is allowed to tend to infinity. We need some assumptions.

(A1) limN→∞ n/N = π ∈ (0, 1).

(A2) πk > δ > 0 for all k ∈ UN ; limN→∞nmaxk ̸=l |πkl − πkπl| < ∞.

(A3) There is a constant Cy such that for all N , (1/N)
∑

UN
y4k < Cy.

(A4) The largest eigenvalue λ1N of ΓN is bounded, λ1N ≤ Cλ.

(A5) There is a contant c > 0 and a non decreasing sequence of integers (rN )

such that, for all N ≥ N0, we have λrN ≥ c.

(A6) There is a constant C4 such that, ∀v ∈ RpN satisfying ∥v∥ = 1, we have

N−1
∑

k∈UN
|⟨xk,v⟩|4 ≤ C4.

Conditions (A1), (A2) and (A3) are classical hypotheses for asymptotics in sur-

vey sampling. Condition (A4) is closely related to a moment condition on xk, for

k ∈ UN . If (A4) is fulfilled, (1/N)
∑

k∈UN
∥xk∥2 =

∑pN
j=1 λjN ≤ CλpN . Assump-

tion (A5) ensures that there is no identifiability issue for the sequence β̃pc
x (rN )

of regression coefficients defined at the population level. It only deals with λrN

and does not prevent λpN from being equal to zero or from being very small. The

conditions (A4) and (A6) indicate that the vectors xk cannot be too concentrated

in one direction (see Vershynin (2012) for examples in a classical statistical in-

ference context). The proofs of Proposition 1 and Proposition 2 are given in a

Supplementary file.
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We first show that the estimator based on the true principal components is

consistent and we give its asymptotic variance. Note that the assumption on the

eigenvalues λr > λr+1 ≥ 0 ensures that there is no identifiability problem of the

eigenspace generated by the eigenvectors associated to the r largest eigenvalues.

The condition r3N/n → 0 prevents the number of principal components from

being too large and ensures that the remainder term, whose order is r
3/2
N /n,

tends to zero and is negligible compared to the main term whose order is 1/
√
n.

Proposition 1. If (A1)−(A6), λr > λr+1 ≥ 0 and r3N/n → 0 as N goes to

infinity, then

N−1(t̂pcyw(rN )− ty) =N−1
(
t̃diffy,x(rN )− ty

)
+Op

(
r
3/2
N

n

)
,

and

t̃diffy,x(rN ) = t̂yd −
(
t̂xd − tx

)T
β̃pc
x (rN )

satisfies

N−1
(
t̃diffy,x(rN )− ty

)
= Op

(
1√
n

)
.

The condition r3N/n → 0 could certainly be relaxed for particular sampling

designs with high entropy under additional moment assumptions. Note that

the asymptotic variance of t̂pcyw(r) is given by AV (t̂pcyw(r)) =
∑

k∈U
∑

l∈U (πkl −
πkπl)

(
yk − xT

k β̃
pc
x (r)

)(
yl − xT

l β̃
pc
x (r)

)
.

Before stating a consistency result for calibration on estimated principal com-

ponents, we introduce an additional condition on the spacing between adjacent

eigenvalues.

(A7) There is a constant cλ > 0 such that minj=1,...,rN+1(λjN − λj+1,N ) ≥ cλrN .

This assumption ensures that the rN largest eigenvalues are nearly equidis-

tributed in [c, Cλ].

Proposition 2. If (A1)−(A7) hold, and p3Nr3N/n → 0 as N goes to infinity, then

N−1(t̂epcyw (rN )− ty) = N−1
(
t̃diffy,x(rN )− ty

)
+Op

(
p
3/2
N r

3/2
N

n

)
.

A more restrictive condition on how rN may go to infinity is imposed when

the principal components are estimated: p3Nr3N/n → 0 ensures that the remainder

term of order p
3/2
N r

3/2
N /n is negligible compared to 1/

√
n. If pN is bounded, one

gets back to classical
√
n-rates of convergence whether the population principal

components are known or not.
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where t̂ẑrd =
∑

k∈s dkẑkr is the HT estimator of the total tẑr =
∑

k∈U ẑkr =

0. The EPC calibration estimator for ty is t̂epcyw (r) =
∑

k∈U wepc
k (r)yk = t̂yd −(

t̂ẑrd − tẑr
)T

γ̂ẑ(r), where γ̂ẑ(r) =
(∑

k∈s dkẑkrẑ
T
kr

)−1∑
k∈s dkẑkryk. The EPC

calibration estimator can also be written with respect to the population totals

of the original variables, X1, . . . ,Xp, as t̂
epc
yw (r) = t̂yd −

(
t̂xd − tx

)T
β̂epc
x (r), where

β̂epc
x (r) = �Grγ̂ẑ(r) and �Gr is the p× r matrix whose jth column is equal to �vj .

5. Some Asymptotic Properties of the Principal Components

Calibration Estimators
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(A3) There is a constant Cy such that for all N , (1/N)
∑

UN
y4k < Cy.

(A4) The largest eigenvalue λ1N of ΓN is bounded, λ1N ≤ Cλ.
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N−1
∑

k∈UN
|⟨xk,v⟩|4 ≤ C4.
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∑

k∈UN
∥xk∥2 =

∑pN
j=1 λjN ≤ CλpN . Assump-
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x (rN )
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.

A more restrictive condition on how rN may go to infinity is imposed when

the principal components are estimated: p3Nr3N/n → 0 ensures that the remainder

term of order p
3/2
N r

3/2
N /n is negligible compared to 1/

√
n. If pN is bounded, one

gets back to classical
√
n-rates of convergence whether the population principal
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If all the second-order inclusion probabilities πkℓ are strictly positive, the

asymptotic variance of t̂pcyw(r) can be estimated by the Horvitz-Thompson vari-

ance estimator for the residuals yk − xT
k β̂

pc
x (r), k ∈ s,

�V ar(t̂pcyw(r)) =
∑
k∈s

∑
ℓ∈s

πkℓ − πkπℓ
πkℓ

dkdℓ

(
yk − xT

k β̂
pc
x (r)

)(
yℓ − xT

ℓ β̂
pc
x (r)

)
,

while the asymptotic variance of t̂epcyw (r) can be estimated by the Horvitz-Thompson

variance estimator for the residuals yk − xT
k β̂

epc
x (r), k ∈ s :

�V ar(t̂epcyw (r)) =
∑
k∈s

∑
ℓ∈s

πkl − πkπl
πkl

dkdℓ(yk − xT
k β̂

epc
x (r))(yℓ − xT

ℓ β̂
epc
x (r)).

6. Partial Calibration on Principal Components

Our calibration estimators are not designed to give the exact finite population

totals of the original variables Xj , j = 1, . . . , p. In practice, it is often desired

to have this property satisfied for a few important socio-demographical variables

such as sex, age, or socio-professional category.

We can adapt our method to fulfill this requirement. We split the auxiliary

matrix X into two blocks: a first block X̃1 containing p1 important variables,

with p1 small compared to p, and a second block X̃2 containing the remaining

p2 = p− p1 variables. We have X = (X̃1, X̃2). The constant term will generally

belong to the first block of variables.

The goal is to get calibration weights such that the totals of the p1 auxil-

iary variables in X̃1 are estimated exactly while the totals of the p2 remaining

variables are estimated only approximately. The idea is to calibrate directly on

the auxiliary variables from X̃1 and on the first principal components of X̃2,

after having taken into account the fact that the variables in X̃1 and all their

linear combinations are perfectly estimated. For that, we introduce the ma-

trix IN , the N -dimensional identity matrix, and PX̃1
= X̃1(X̃

T
1 X̃1)

−1X̃T
1 the

orthogonal projection onto the vector space spanned by the column vectors of

matrix X̃1. We take A =
(
IN −PX̃1

)
X̃2, the projection of X̃2 onto the or-

thogonal space spanned by the column vectors of X̃1. Matrix A represents the

residual part of X̃2 that is not “calibrated”. We define the residual covari-

ance matrix N−1ATA = N−1X̃T
2

(
IN −PX̃1

)
X̃2, and denote by λ̃1 ≥ . . . λ̃p2

its eigenvalues and by ṽ1, . . . , ṽp2 the corresponding orthonormal eigenvectors.

Consider Z̃j = Aṽj , for j = 1, . . . , p2, the principal components of A. The

calibration variables are (X̃1, Z̃1, . . . , Z̃r) of zero totals and the partial principal

component (PPC) calibration estimator of ty is t̂ppcyw (r) =
∑

k∈sw
ppc
k (r)yk, where

CALIBRATION ON PRINCIPAL COMPONENTS 13

the PPC calibration weights wppc
k (r), for k ∈ s, are the solution of the opti-

mization problem (2.2) subject to
∑

k∈sw
ppc
k (r) (x̃k, z̃kr)

T =
∑

k∈U (x̃k, z̃kr)
T ,

where x̃k = (x̃k1, . . . , x̃kp1) is the vector of the values of the variables in X̃1 and

zTkr = (z̃k1, . . . , z̃kr) is the vector whose elements are the partial principal compo-

nents Z̃1, . . . , Z̃r for unit k. With a different point of view, Breidt and Chauvet

(2012) use, at the sampling stage, similar ideas to perform penalized balanced

sampling.

If we only have a sample s at hand and we know the totals of all the cal-

ibration variables, let X̃s,1 (resp. X̃s,2) be the n × p1 (resp. n × p2) matrix

containing the observed values of the auxiliary variables. We can estimate A

by Â =
(
In − P̂X̃s,1

)
X̃s,2 where P̂X̃s,1

= X̃s,1

(
X̃T

s,1DsX̃s,1

)−1
X̃T

s,1Ds, is the

estimation of the projection onto the space generated by the columns of X̃1, and

Ds is the n × n diagonal matrix with diagonal elements dk, k ∈ s. Then, we

can perform the principal components analysis of the projected sampled data

corresponding to the variables belonging to the second group and compute the

estimated principal components associated to the r largest eigenvalues as in Sec-

tion 4. At last, the total estimator is calibrated on the totals of the variables in

X1 and the first r estimated principal components.

7. Application to the Estimation of the Total Electricity Consumption

Description of the Data

We illustrate on data from the Irish Commission for Energy Regulation

(CER) Smart Metering Project that was conducted in 2009−2010 (CER, 2011).

The data are available on request at:

http://www.ucd.ie/issda/data/commissionforenergyregulation/. In this

project, which focuses on energy consumption and energy regulation, about 6,000

smart meters were installed to collect every half an hour, over a period of about

two years, the electricity consumption of Irish residential and business customers.

We evaluate the interest of employing dimension reduction techniques based

on PCA by considering a period of 14 consecutive days and a population of

N =6,291 smart meters (households and companies). Thus, we have for each

unit k in the population (2 × 7) × 48 = 672 measurement instants and we de-

note by yk(tj), j = 1, . . . 672 the data corresponding to unit k, where yk(tj) is

the electricity consumption (in kW) associated to smart meter k at instant tj .

We consider a multipurpose setting and aim to estimate the mean electricity

consumption of each day of the second week. For each day ℓ of the week, with

ℓ ∈ {1, . . . , 7}, the outcome variable is ykℓ =
∑336+ℓ×48

j=336+(ℓ−1)×48 yk(tj) and our

target is the corresponding population total, tℓ =
∑

k∈U ykℓ.
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k β̂

pc
x (r), k ∈ s,

�V ar(t̂pcyw(r)) =
∑
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(
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,
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belong to the first block of variables.
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iary variables in X̃1 are estimated exactly while the totals of the p2 remaining

variables are estimated only approximately. The idea is to calibrate directly on

the auxiliary variables from X̃1 and on the first principal components of X̃2,

after having taken into account the fact that the variables in X̃1 and all their

linear combinations are perfectly estimated. For that, we introduce the ma-

trix IN , the N -dimensional identity matrix, and PX̃1
= X̃1(X̃

T
1 X̃1)

−1X̃T
1 the

orthogonal projection onto the vector space spanned by the column vectors of

matrix X̃1. We take A =
(
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)
X̃2, the projection of X̃2 onto the or-

thogonal space spanned by the column vectors of X̃1. Matrix A represents the

residual part of X̃2 that is not “calibrated”. We define the residual covari-
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(
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X̃2, and denote by λ̃1 ≥ . . . λ̃p2
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Consider Z̃j = Aṽj , for j = 1, . . . , p2, the principal components of A. The

calibration variables are (X̃1, Z̃1, . . . , Z̃r) of zero totals and the partial principal
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∑
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zTkr = (z̃k1, . . . , z̃kr) is the vector whose elements are the partial principal compo-

nents Z̃1, . . . , Z̃r for unit k. With a different point of view, Breidt and Chauvet

(2012) use, at the sampling stage, similar ideas to perform penalized balanced

sampling.

If we only have a sample s at hand and we know the totals of all the cal-

ibration variables, let X̃s,1 (resp. X̃s,2) be the n × p1 (resp. n × p2) matrix

containing the observed values of the auxiliary variables. We can estimate A

by Â =
(
In − P̂X̃s,1

)
X̃s,2 where P̂X̃s,1

= X̃s,1

(
X̃T

s,1DsX̃s,1

)−1
X̃T

s,1Ds, is the

estimation of the projection onto the space generated by the columns of X̃1, and

Ds is the n × n diagonal matrix with diagonal elements dk, k ∈ s. Then, we

can perform the principal components analysis of the projected sampled data

corresponding to the variables belonging to the second group and compute the

estimated principal components associated to the r largest eigenvalues as in Sec-

tion 4. At last, the total estimator is calibrated on the totals of the variables in

X1 and the first r estimated principal components.

7. Application to the Estimation of the Total Electricity Consumption

Description of the Data

We illustrate on data from the Irish Commission for Energy Regulation

(CER) Smart Metering Project that was conducted in 2009−2010 (CER, 2011).

The data are available on request at:

http://www.ucd.ie/issda/data/commissionforenergyregulation/. In this

project, which focuses on energy consumption and energy regulation, about 6,000

smart meters were installed to collect every half an hour, over a period of about

two years, the electricity consumption of Irish residential and business customers.

We evaluate the interest of employing dimension reduction techniques based

on PCA by considering a period of 14 consecutive days and a population of

N =6,291 smart meters (households and companies). Thus, we have for each

unit k in the population (2 × 7) × 48 = 672 measurement instants and we de-

note by yk(tj), j = 1, . . . 672 the data corresponding to unit k, where yk(tj) is

the electricity consumption (in kW) associated to smart meter k at instant tj .

We consider a multipurpose setting and aim to estimate the mean electricity

consumption of each day of the second week. For each day ℓ of the week, with

ℓ ∈ {1, . . . , 7}, the outcome variable is ykℓ =
∑336+ℓ×48

j=336+(ℓ−1)×48 yk(tj) and our

target is the corresponding population total, tℓ =
∑

k∈U ykℓ.
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The auxiliary information is the load electricity curve of the first week. This

means that we have p = 336 auxiliary variables, the consumption electricity

levels at each of the p = 336 half hours of the first week. The condition number

of the matrix N−1XTX, the ratio λ1/λ336, is equal to 67,055.78. The matrix

is ill-conditioned and there may exist strong correlations between some of the

variables used for calibration. Indeed, the first principal component explains

about 63% of the variance of the 336 original variables, and about 83% of the

total variability of the data is preserved by projection onto the subspace spanned

by the first ten principal components.

Comparison of the estimators

To make comparisons, we drew I =1,000 samples of size n = 600 (the sam-

pling fraction is about 0.095) according to a simple random sampling design

without replacement and we estimated the total consumption tℓ over each day ℓ

of the second week with the Horvitz-Thompson estimators, the calibration esti-

mators, denoted by t̂ℓw, that take account of all the p = 336 auxiliary variables

plus the intercept term, and the estimators calibrated on the principal compo-

nents in the population (resp. in the sample) plus the constant term, denoted by

t̂pcℓw(r) (resp. t̂
epc
ℓw (r)), for different values of the dimension r.

When performing principal components calibration, the dimension r plays

the role of a tuning parameter. We also studied the performances of an automatic

and data-drive simple rule for selecting the dimension r, selecting the largest

dimension r̂ such that all the calibrated principal component weights remain

positive. This selection strategy is the analogue of the strategy suggested in

Bardsley and Chambers (1984) for choosing the tuning parameter in a ridge

regression context.

The distribution of the coefficient of variation (CV) of the calibration weights

for the I=1,000 Monte Carlo experiments is presented in Figure 1 for different

values of the dimension r. These weights do not depend on the variable of in-

terest. It is clearly seen that those calibration weights have larger dispersion

as the number of principal components used for calibration increases. Calibrat-

ing with a large number of correlated auxiliary variables may lead to instable

estimations and to a lack of robustness with respect to measurement errors or

misspecification in the data bases. When all the auxiliary variables were used for

calibration, around 25 % of the sampling weights took negatives values, generally

not desirable.

Our benchmarks were the estimators t̂ℓw calibrated on all the p = 336 aux-

iliary variables. For each day ℓ, the performances of an estimator θ̂ of the total

tℓ were measured by considering the relative mean squared error,
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Figure 1. Distribution of the coefficient of variation (CV) of the sampling
weights for different values of the dimension r. The sample size is n = 600.

Rℓ(�θ) =
∑I

i=1(
�θ(i) − tℓ)

2

∑I
i=1(�t(i)ℓw − tℓ)2

, (7.1)

better estimators corresponding to small values of criterion Rℓ(�θ).
The values of this relative error for several values of r, as well as for the esti-

mators obtained with the data-driven dimension selection, are given in Table 1.

This relative error was also computed for the ridge-type estimators derived with

the sampling weights wpen given in Section 2 and a penalty λ̂ chosen to be the

smallest value of λ such that all the resulting weights remain positive.

First the naive Horvitz-Thompson estimator can be greatly improved, for all

the days of the week, by considering an over-calibration estimator which takes

account of all the (redundant) auxiliary information. Indeed, the mean square

error of the HT estimator is between five and fourteen times larger than the

MSE of this reference estimator. Reducing the number of effective auxiliary

variables through principal components, estimated on the sample or deduced

from the population, can still improve estimation compared to calibration on all

the variables, and permits to divide by two the MSE. Another remarkable feature

is the stability of the principal components calibration techniques with respect to

the choice of the dimension r. Choosing between 5 and 100 principal components

here permits to divide by two, for all the outcome variables, the MSE compared

to the calibration estimator based on the whole auxiliary information.

The mean number of selected principal components with the data driven

selection rule was equal to 17.3 for the population principal components and

21.3 for the sample principal components, explaining in each case about 85%
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better estimators corresponding to small values of criterion Rℓ(�θ).
The values of this relative error for several values of r, as well as for the esti-

mators obtained with the data-driven dimension selection, are given in Table 1.

This relative error was also computed for the ridge-type estimators derived with

the sampling weights wpen given in Section 2 and a penalty λ̂ chosen to be the

smallest value of λ such that all the resulting weights remain positive.

First the naive Horvitz-Thompson estimator can be greatly improved, for all

the days of the week, by considering an over-calibration estimator which takes

account of all the (redundant) auxiliary information. Indeed, the mean square

error of the HT estimator is between five and fourteen times larger than the

MSE of this reference estimator. Reducing the number of effective auxiliary

variables through principal components, estimated on the sample or deduced

from the population, can still improve estimation compared to calibration on all

the variables, and permits to divide by two the MSE. Another remarkable feature

is the stability of the principal components calibration techniques with respect to

the choice of the dimension r. Choosing between 5 and 100 principal components

here permits to divide by two, for all the outcome variables, the MSE compared

to the calibration estimator based on the whole auxiliary information.

The mean number of selected principal components with the data driven

selection rule was equal to 17.3 for the population principal components and

21.3 for the sample principal components, explaining in each case about 85%
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Table 1. Comparison of the mean relative mean squared errors of the differ-
ent estimators, according to criterion (7.1).

Days
Estimators monday tuesday wednesday thursday friday saturday sunday

Horvitz-
14.4 13.9 11.8 10.8 12.5 6.4 5.4

Thompson

t̂pcℓw r = 1 0.65 0.62 0.50 0.47 0.64 1.17 1.57

t̂pcℓw r = 2 0.64 0.62 0.50 0.47 0.57 0.80 0.63

t̂pcℓw r = 5 0.52 0.47 0.40 0.50 0.51 0.53 0.52

t̂pcℓw r = 50 0.50 0.50 0.43 0.44 0.54 0.48 0.48

t̂pcℓw r =100 0.57 0.60 0.59 0.51 0.58 0.60 0.64

t̂pcℓw r =200 0.60 0.64 0.58 0.66 0.69 0.68 0.63

t̂pcℓw r =300 0.82 0.85 0.83 0.86 0.84 0.85 0.87

t̂epcℓw r = 1 0.75 0.73 0.61 0.56 0.73 1.23 1.59

t̂epcℓw r = 2 0.66 0.64 0.53 0.50 0.61 0.85 0.74

t̂epcℓw r = 5 0.53 0.47 0.40 0.41 0.53 0.59 0.53

t̂epcℓw r = 50 0.45 0.46 0.40 0.41 0.48 0.46 0.47

t̂epcℓw r =100 0.46 0.47 0.42 0.45 0.52 0.49 0.50

t̂epcℓw r =200 0.57 0.55 0.51 0.58 0.62 0.60 0.57

t̂epcℓw r =300 0.78 0.80 0.77 0.84 0.80 0.81 0.83

t̂pcℓw r̂, w(r̂) > 0 0.51 0.49 0.41 0.41 0.52 0.55 0.50

t̂epcℓw r̂, w(r̂) > 0 0.49 0.48 0.41 0.40 0.50 0.53 0.49

Ridge
λ̂ 0.44 0.46 0.40 0.41 0.48 0.48 0.43

Calibration

of the variance of the original variables. As expected, the variability of the

number of selected components was slightly larger when considering calibration

on the estimated principal components (interquartile range of 26 versus 17 for

the population principal components).

As seen in Table 1, the performances of the resulting estimators are good and

comparable to the estimators based on ridge calibration with a selection rule for

λ based on the same principle. The advantage of the principal components is that

it permits to divide by more than 15 the final number of effective variables used

for calibration and it can directly be used in classical survey sampling softwares.

8. Discussion and Concluding Remarks

Some asymptotic justifications of this dimension reduction technique are
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given with the number pN of auxiliary variables and the number rN of principal

components used for calibration allowed to grow to infinity as the population size

N increases. Our conditions on the asymptotic behavior of rN appear to be rather

restrictive and could probably be relaxed (see for example the results presented

in Vershynin (2012) on the estimation of covariance matrices for independent

observations in an infinite population). However, this would require exponential

inequalities for Horvitz-Thompson estimators to very accurately control their

deviations around their target.

Borrowing ideas from Marx and Smith (1990) and Wu and Sitter (2001), it

would be not too difficult to extend our principal component calibration approach

to deal with non-linear model calibration.

Supplementary Materials

The proofs of Propositions 1 and 2 and additional results on the electricity

data are given in the online supplementary material.
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to deal with non-linear model calibration.
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