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The online supplememntary material includes the definitions of the Brownian sheet, pinned

Brownian sheet, and Brownian pillow, the defintions of (F1, F2)-functional Brownian pillow and

(p1, p2)-standard Brownian pillow. It contains the proofs of Theorem 1, Theorem 2, Theorem

3, Corollary 1, and Theorem 4, as well as the associated lemmas.

S1 Definitions of Brownian Sheet, Pinned Brownian

Sheet, and Brownian Pillow

A Brownian pillow is a mean zero Gaussian process on [0, 1]p with a covariance function given

by

E[Wp(t)Wp(t
′)] =

p∏
j=1

(tj ∧ t′j − tjt
′
j)

for any t = (t1, · · · , tp) and t′ = (t′1, · · · , t′p) in [0, 1]p. Related concepts toWp are the (standard)

Brownian sheet (denoted by Bp) and the (standard) pinned Brownian sheet (denoted by W̃p)

(Yeh (1960)), where Bp is a mean zero Gaussian process on Rp
+ = [0,∞)p and W̃p is a mean

zero Gaussian process on [0, 1]p. The covariance function of Bp is

E[Bp(t)Bp(t
′)] =

p∏
j=1

tj ∧ t′j , t, t
′ ∈ Rp

+.

The covariance function of W̃p is

E[W̃p(t)W̃p(t
′)] =

p∏
j=1

tj ∧ t′j −
p∏

j=1

tjt
′
j , t, t

′ ∈ [0, 1]p.

Both W̃p and Wp can be derived using Bp. For example if p = 2, there are

W̃2(t) = B2(t1, t2)− t1t2B2(1, 1)

and

W2(t) = B2(t1, t2)− t1B2(1, t2)− t2B2(t1, 1) + t1t2B2(1, 1)
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for any t1, t2 ∈ [0, 1]. Since the sample paths of Bp are continuous with probability one (Czörgö

and Révécs (1981); Dalang (2003); Orey and Pruitt (1973); Walsh (1982)), the sample paths of

W̃p and Wp are also continuous with probability one.

S2 Definitions of (F1, F2)-Functional Brownian Pillow

and (p1, p2)-Standard Brownian Pillow

A mean zero Gaussian process BF is called an F -functional Brownian sheet on Rp, where F is

a CDF on Rp, if its covariance function is

E[BF (t)BF (t
′)] = F (t1 ∧ t′1, · · · , tp ∧ t′p),

where t = (t1, · · · , tp) ∈ Rp and t′ = (t′1, · · · , t′p) ∈ Rp.

A mean zero Gaussian process WF1,F2 is called an (F1, F2)-functional Brownian pillow on

Rp1 × Rp2 , where F1 is a CDF on Rp1 and F2 is a CDF on Rp2 , if its covariance function is

E[WF1,F2(t1, t2)WF1,F2(t
′
1, t

′
2)]

=[F1(t11 ∧ t′11, · · · , t1p1 ∧ t1p1)− F1(t1, · · · , t1p1)F1(t
′
1, · · · , t′1p1)]

× [F2(t21 ∧ t′21, · · · , t2p2 ∧ t′2p2)− F2(t21, · · · , t2p2)F2(t
′
21, · · · , t′2p2)],

where t1 = (t11, · · · , t1p1) ∈ Rp1 , t2 = (t21, · · · , t2p2) ∈ Rp2 , t′1 = (t′11, · · · , t′1p1) ∈ Rp1 , and

t′2 = (t′21, · · · , t′2p2) ∈ Rp2 .

If F1 and F2 are marginal CDFs of F , then WF1,F2 can be defined using BF with

WF1,F2(t1, t2) = BF (t1, t2)−F1(t1)BF (∞p1 , t2)−F2(t2)BF (t1,∞p2)+F (t1, t2)BF (∞p1 ,∞p2),

where ∞p is the p-dimensional vector with all elements equal to ∞. Since the sample path of

BF is continuous, the sample path of WF1,F2 is also continuous.

A mean zero Gaussian process Wp1,p2 is called the (p1, p2)-standard Brownian pillow on

[0, 1]p1 × [0, 1]p2 if F1 and F2 are the uniform distributions on [0, 1]p1 and [0, 1]p2 in WF1,F2 ,

respectively. The (p1, p2)-standard Brownian pillow is a mean zero process with the covariance

function given by

E[Wp1,p2(t1, t2)Wp1,p2(t
′
1, t

′
2)]

=

[
p1∏
i=1

(t1i ∧ t′1i)−
p1∏
i=1

(t1it
′
1i)

][
p2∏
i=1

(t2i ∧ t′2i)−
p2∏
i=1

(t2it
′
2i)

]
.

If Bp is the standard Brownian sheet on Rp
+ with p = p1 + p2, then

Wp1,p2(t1, t2) =Bp(t
′
1, t

′
2)− Bp(1p1 , t2)

p1∏
i=1

t1i

− Bp(t1,1p2)

p2∏
i=1

t2i + Bp(1p1 ,1p2)(

p1∏
i=1

t1i)(

p2∏
i=1

t2i),

where 1p represents the vector with all elements 1. Therefore, the sample path of Wp1,p2 is

continuous.



S3. PROOFS

S3 Proofs

Lemma 1. Let P be a probability measure on (Ω,F ). Then P is uniquely determined by its

restriction on G = {C =
∑∞

n=0 C
(n) : C(n) ∈ X n} or its restriction on F = {C =

∑∞
n=0 C

(n) :

C(n) = A(n) ×B(n), A(n) ∈ S n, B(n) ∈ M n}.

Proof: Since F ⊆ G and σ(Sn × Mn) = X n, σ(G) = σ(F). The theory of Dynkin’s

π-λ theorem (Billingsley (1995)) states that if two probability measures agree on a π-system

(a π-system is a collection of subsets which is closed under interaction) then they agree on the

σ-field of the π-system. If F is a π-system, then P is uniquely determined by F . Therefore, it

is enough to show F is a π-system. The proof is straightforward. For any C, C̃ ∈ F there exist

A(n), Ã(n) ∈ S n and B(n), B̃(n) ∈ M n such that C ∩ C̃ =
∑∞

n=0(C
(n) ∩ C̃(n)) =

∑∞
n=0[(A

(n) ×
Ã(n))∩ (B(n)× B̃(n))]. Since (A(n)× Ã(n))∩ (B(n)× B̃(n)) ∈ S n×M n for any given n, we have

C ∩ C̃ ∈ F and hence F is a π-system. Then, the final conclusion is drawn as F = σ(F).

Proof of Theorem 1: Clearly P ≥ 0 and P (Ω) =
∑∞

n=0 P
(n)(Xn) = 1. If Ck is a disjoint

sequence of sets in F , then there exist A
(n)
k ∈ S n and B

(n)
k ∈ M n satisfying (A

(n)
k × B

(n)
k ) ∩

(A
(n)

k′ × B
(n)

k′ ) = ϕ for any k ̸= k′ such that Ck =
∑∞

n=0 A
(n)
k × B

(n)
k . Thus, P(

∑∞
k=1 Ck) =

P(
∑∞

k=1

∑∞
n=0 A

(n)
k ×B

(n)
k ) =

∑∞
n=0 P

(n)(
∑∞

k=1 A
(n)
k ×B

(n)
k ) =

∑∞
k=1

∑∞
n=0 P

(n)(A
(n)
k ×B

(n)
k ) =∑∞

k=1 P(Ck). Therefore, P is σ-additive and hence a probability measure on F . The uniqueness

of P is directly implied by Lemma 1.

Proof of Theorem 2: Consider the right side of Equation (8). There is

∞∑
n=r

n!

(n− r)!
pnfr,n(x1, · · · ,xr) ≤ Hr(x1, · · · ,xr)E(Nr).

The left side is bounded for every x1, · · · ,xr ∈ X , implying that λr(x1, · · · ,xr) is well-defined

for every r ≤ k.

Proof of Theorem 3: Since λr exists for every r ≤ k, there is

λr(x1, · · · ,xr) = fr(x1, · · · ,xr)

∞∑
n=r

n!

(n− r)!
pn. (S3.1)

For sufficienct, assume N is kth-order independent. For any r ≤ k, there is fr(x1, · · · ,xr) =

fr,m(m1, · · · ,mr)fr,s(s1, · · · ,xr), where fr,m = fr,m|s does not depend on s(r). Therefore,

λr(x1, · · · ,xr) = fr,m(m1, · · · ,mr)fr,s(s1, · · · , sr)
∞∑

n=r

n!

(n− r)!
pn,

implying that N is kth-order separable. For necessity, assume that N is kth-order separable.

Using (S3.1) with any r ≤ k,

λr,s(s1, · · · , sr) = fr,s(s1, · · · , sr)
∞∑

n=r

n!

(n− r)!
pn

and

λr,m(m1, · · · ,mr) = fr,m(m1, · · · ,mr)

∞∑
n=r

n!

(n− r)!
pn.
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Then,

λr(x1, · · · ,xr)

λr,s(s1, · · · , sr)λr,m(m1, · · · ,mr)
=

fr(x1, · · · ,xr)
∑∞

n=r
n!

(n−r)!
pn

fr,s(s1, · · · , sr)fr,m(m1, · · · ,mr)
.

Let cr be the value of the left side of the above equation. Then, cr does not depend on x1, · · · ,xr

for any r ≤ k, and

fr,m|s(m
(r)|s(r)) = cr∑∞

n=r
n!

(n−r)!

fr,m(m1, · · · ,mr).

Therefore, fr,m|s(m
(r)|s(r)) does not depend on s(r), and N is kth-order independent.

Proof of Corollary 1: The conclusion can be directly implied from Theorem 3.

Proof of Theorem 4: Let Ak,η = Sη∩([0, 1]d+k), where k = (k1, · · · , kd) ∈ Zd. Write Nη =

N(Sη×M) and denote κη = E(Nη). For any given k, if η is sufficiently large, then Ak = A+k.

Since Condition (A3) implies that Lemma 1 of Herrdnorf (1984) holds, using Conditions (A1)

and (A2) there is κη/n
P→ 1 as η → 1. Still using Condition (A3), there is supd∈Zd ∥N (Ak,η)∥β <

∞. Therefore, Corollary 1 of Herrdnorf (1984) can be applied, which implies that there exists

σ > 0 such that
√
n[Nη(As ×Bm)/n − F (x)]/σ weakly converges to BF , where BF is a mean

zero Gaussian process with the covariance function given by E[BF (x)BF (x
′)] = F (x ∧ x′),

x,x′ ∈ Rd+q. Note that conditioning on n, m1, · · · ,mn are iid fm(m|s). For any B0 ∈ M ,

NB0(A×B) = Nη(A× (B∩B0)) is an MPP which also satisfies Conditions (A1)–(A5) for NB0 .

For any partition {B1, · · · , BI} of M, the number of events occurred in A×B1, · · · , A×BI are

independent. Given N , (Nη(A×B1), · · · ,Nη(A×BI)) follows a multinomial distribution with

total N and probability vector equal to (π(B1), · · · , π(BI)), where π(B) =
∫
B
fm(u)du. The

rest of the proof is omitted since it is similar to the method used in the proof of Theorem 4 of

Zhang (2014).
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