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This Supplementary Material provides technical proofs for Proposition

1 and Theorems 1 and 2 in the paper.

S1. Technical proof

S1.1 Proof of Proposition 1

Proof. Note that each stage is a single-stage outcome weighted learning

problem. By verifying that the entropy loss satisfies the two sufficient con-

ditions given in Section 2.1, we have d∗T (ST ) = sgn(fT (XT )). Using the

same arguments backwards through t = T −1, . . . , 1, we would sequentially

obtain that d∗t (St) = sgn(ft(Xt)) for t = T − 1, . . . , 1.
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S1.2 Proof of Theorem 1

Before we proceed to prove Theorem 1, we introduce two technical lemmas.

Lemma 1. Let Φ and φ be the cumulative distribution function and density

function of a standard Gaussian random variable. For any x ≥ 1 we have

φ(x)

2x
≤ Φ(−x) ≤ φ(x)

x
.

Proof. Using integration by parts we have for x ≥ 1:

Φ(−x) =
φ(x)

x
−
∫ +∞

x

1

u2
φ(u)du ≤ φ(x)

x
− Φ(−x).

Lemma 1 is then proved immediately from the above inequality.

Lemma 2. Under assumptions A1 and A2, there exist positive constants

CT1, CT1, CT3 such that

P (|β̂T − β0
T |∞ > CT1ε) ≤ CT2 exp{−CT3C2

T1nε
2}.

Proof. First of all it is easy to see that β̂T is consistent in estimating βT .

Note that for stage T ,

0 =
∂lT (β̂T )

∂βT
=
∂lT (β0

T )

∂βT
+
∂2lT (β0

T )

∂β2
T

(β̂T − β0
T ) +O(|β̂T − β0

T |21),

where
∂lT (β0

t )

∂βT
and

∂2lT (β0
T )

∂β2
T

can be written as means of i.i.d. random observa-

tions. Consequently, using Bernstein’s inequality (Bennett, 1962), we have
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there exist positive constants c1, c2, c3 such that

P
(∣∣∣∂2lT (β0

T )

∂β2
T

− IT (βT )
∣∣∣
∞
> c1ε

)
≤ c2 exp{−c3c21nε2}.

Similarly there exist positive constants c4, c5, c6 such that

P
(∣∣∣∂lT (β0

T )

∂βT

∣∣∣
∞
> c4ε

)
≤ c5 exp{−c6c24nε2}.

Consequently, there exists a large enough constant CT1 such that, when n

is large enough,

P (|β̂T − β0
T |∞ < 2CT1|I−1T (β0

T )|1,∞ε)

≥ 1− c2 exp{−c3c21nε2} − c5 exp{−c6c24nε2}.

This proves the lemma.

Proof of Theorem 1

Proof. For simplicity we use p to denote the dimension of the covariates Xt

for all stages t. We break the proof into two steps:

(i) We show that this theorem holds for t = T ;

(ii) Given that the theorem holds for stage t + 1, . . . , T , we show that

it also holds for stage t;

(i) For stage T , (3.1) and (3.4) can be obtained directly from Lemma 2

and its proof. We next show that (3.2) and (3.3) hold for stage T . In what
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follows we use β̂T,−{i} to denote the estimator obtained by leaving the ith

sample ST i out.

Proof of (3.3) for stage T :

From Lemma 2 and the boundness of XT i, we have that there exists a large

enough constants C > 0 such that

P

(
|X∗>T i β̂T −X∗>T i β

0
T |∞ > C

√
log n

n

)
= o
( log n

n

)
. (S1.1)

On the other hand, from the boundness of RT i and XT i, we have there

exists a large enough constant Cl such that |β̂T − β̂T,−{i}|∞ ≤ Cln
−1. Con-

sequently we have there exists a constant B > 0 such that sgn(X∗>T i β̂T ) =

sgn(X∗>T i β̂T,−{i}) when |X∗>T i β̂T,−{i})| ≥ Bn−1, and from assumption A3,

we have P (|X∗>T i β̂T,−{i}| < Bn−1) ≤ P (|X∗>T i β̂T,−{i}| < Bn−1, |β̂T,−{i} −

β0
T |∞ < b) + P (|β̂T,−{i} − β0

T |∞ > b) = O(n−1). Consequently, by denoting

d̂T,−{i}(ST i) = sgn(X∗>T i β̂T,−{i}) we have

E
∣∣∣I(AT i = d̂T (ST i))− I(AT i = d∗T (ST i))

∣∣∣
= E

∣∣∣I(AT i = d̂T,−{i}(ST ))− I(AT i = d∗T (ST i))
∣∣∣+ o

( log n

n

)
= |P (X∗>T i β̂T,−{i} > 0,X∗>T i β

0
T ≤ 0)− P (X∗>T i β̂T,−{i} < 0,X∗>T i β

0
T ≥ 0)|

+o
( log n

n

)
.
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Denote Ŷ = X∗>T i β̂T,−{i}, by condition A3, we have,

P (X∗>T i β̂T,−{i} > 0,X∗>T i β
0
T ≤ 0)

=

∫ 0

−C
√

logn
n

P (Ŷ > 0|Y = y)gT (y)dy + o
( log n

n

)
= o

( log n

n

)
. (S1.2)

Here the last step is obtained by noticing that g(y) = o(y) as indicated

by assumption A3. Similarly we have P (X∗>T i β̂T,−{i} < 0,X∗>T i β
0
T ≥ 0) =

o
(

logn
n

)
. This proves (3.3).

Before we proceed to prove (3.2) for stage T , similar to (3.3) we show

that for 1 ≤ i 6= j ≤ n,

E[I(AT i = d̂T (ST i))− I(AT i = d∗T (ST i))]

×[I(ATj = d̂T (STj))− I(ATj = d∗T (STj))]

= o

(
log2 n

n2

)
. (S1.3)

For k = i, j, denote d̂T,−{i,j}(STk) = sgn(X>Tkβ̂T,−{i,j}), where β̂T,−{i,j} is the

estimator of β0
T obtained by leaving the ith and jth samples. We have,

EΠk=i,j[I(ATk = d̂T (STk))− I(ATk = d∗T (STk))]

= EΠk=i,j[(2I(ATk = d̂T (STk))− 1)I(d̂T (STk) 6= d̂T,−{i,j}(STk))

+I(ATk = d̂T,−{i,j}(STk))− I(ATk = d∗T (STk))].
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Similar to the proof in (S1.2), we have there exists a large enough constant

C such that sgn(X∗T iβ̂T ) = sgn(X∗>T i β̂T,−{i,j}) when |X∗>T i β̂T,−{i,j})| ≥ Cn−1.

Consequently,

EI(d̂T (ST i) 6= d̂T,−{i,j}(ST i)) · I(d̂T (STj) 6= d̂T,−{i,j}(STj))

≤ P
(
|X∗>T i β̂T,−{i,j}| < Cn−1, |X∗>Tj β̂T,−{i,j}| < Cn−1)

= O(n−2) + P (|β̂T,−{i,j} − β0
T |∞ > b)

= O(n−2).

Similarly, it can be shown that

E
{
I(d̂T (ST i) 6= d̂T,−{i,j}(ST i))

×I(ATj = d̂T,−{i,j}(STj))− I(ATj = d∗T (STj))]
}

= o

(
log n

n2

)
,

EΠk=i,jI(ATk = d̂T,−{i,j}(STk))− I(ATk = d∗T (STk))] = o

(
log2 n

n2

)
.

We thus conclude that (S1.3) holds for stage T .

Proof of (3.2) for stage T :

Denote

hi(β) =
RT i

π(AT i,ST i)

[
.5(AT i + 1)− exp(X∗>T i β)

1 + exp(X∗>T i β)

]
X∗T i.

We have
∑n

i=1 hi(β̂T ) = 0 and Ehi(β0
T ) = 0. Note that , hij(β), the jth

element of hi(β), is bounded and there exists β∗T ∈ [β0
T , β̂T ] such that

n∑
i=1

hij(β
0
T ) =

n∑
i=1

hij(β
0
T )−

n∑
i=1

hij(β̂T ) = (β0
T − β̂T )>

n∑
i=1

h′ij(β
∗
T ). (S1.4)
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Since Eh′′ij(β0
T ) is finite, by Lemma 2, we have with probability larger than

1− o
(

logn
n

)
,∣∣∣∣∣ 1n

n∑
i=1

h′ij(β
∗
T )− 1

n

n∑
i=1

h′ij(β
0
T )

∣∣∣∣∣
∞

= O
(√ log n

n

)
. (S1.5)

Again, using Bernstein’s inequality we have for a large enough constant C1,

P

(∣∣∣ 1
n

n∑
i=1

h′i(β
0
T )− Eh′i(β0

T )
∣∣∣
∞
> C1

√
log n

n

)
= o
( log n

n

)
, (S1.6)

where h′i(β) = (h′i1(β), . . . , h′ip(β)). Write F := Eh′i(β0
T ). From (S1.4),

(S1.5) and (S1.6) we have with probability greater than 1− o
(

logn
n

)
,∣∣∣∣∣β̂T − β0

T + n−1(FF>)−1F
n∑
i=1

hi(β
0
T )

∣∣∣∣∣
∞

= O

(
log n

n

)
.

Given X∗T , we denote

W 2
T = Var{

√
nX∗>T (β0

T − β̂T )} = Var{X∗>T (FF>)−1Fhi(β
0
T )}+O

( log n

n

)
.

So far the order terms in the above derivation are obtained from Bernstein’s

inequality as in the proof of Lemma 2, and depends on the bounds of

RT ,XT and C only. From Lemma 1 and classical Cramer-Petrov type large

deviation results (see for example Lin and Lu (2013), Petrov (1996)), we

have for x = o(
√
n) and x > 1, as n→∞, for any j = 1, . . . , p,

P

(∑n
i=1X

∗>
T (FF>)−1Fhi(β

0
T )√

nWT

≥ x

)
=

{
1 +O

( x3√
n

)}
[1− Φ(x)] +O

(√
log n

n

)
, (S1.7)
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where Φ(x) is the CDF of the standard normal distribution. Consequently

we have when n is large enough,

P

(
X∗>T (β0

T − β̂T ) >
xWT√
n

)
= P

([∑n
i=1 X

∗>
T (FF>)−1Fhi(β

0
T )

n
+O

( log n

n

)]
>
xWT√
n

)
+ o
( log n

n

)
= P

(∑n
i=1X

∗>
T (FF>)−1Fhi(β

0
T )√

nWT

≥ x+O
( log n√

n

))
+ o
( log n

n

)
=

{
1 +O

( x3√
n

)}
[1− Φ (x)] +O

( log n√
n

)
,

Similarly, we have

P

(
X∗>T (β0

T − β̂T ) < −xWT√
n

)
=

{
1 +O

( x3√
n

)}
[1− Φ (x)] +O

( log n√
n

)
.

This proves (3.2) for stage T .

(ii) Now suppose Theorem 1 holds for stage t+1, . . . , T and (S1.3) hold

for stage t+ 1 in that for any 1 ≤ i 6= l ≤ n,

EΠk=i,l

[
T∏

j=t+1

I(Ajk = d̂j(Sjk))−
T∏

j=t+1

I(Ajk = d∗j(Sjk))

]

= o

(
log2 n

n2

)
. (S1.8)

We complete the proof of this theorem by showing that (3.4), (3.1), (3.2)

(3.3) and (S1.8) hold for stage t respectively.

Note that for stage t,

0 =
∂lt(β̂t)

∂βt
=
∂lt(β

0
t )

∂βt
+
∂2l(β0

t )

∂β2
t

(β̂t − β0
t ) +O(|β̂t − β0

t |21),
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where

∂lt(β
0
t )

∂βt
(S1.9)

= − 1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d∗j(Sji))∏T
j=t π(Aji,Sji)

×
[
.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti

− 1

n

n∑
i=1

{
(
∑T

j=tRji)∆ti(d
∗, d̂)∏T

j=t π(Aji,Sji)

[
.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti,

∂2l(β0
t )

∂β2
t

(S1.10)

=
1

n

n∑
i=1

X∗ti

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d∗j(Sji))∏T
j=t π(Aji,Sji)

× exp(X∗>ti β
0
t )

[1 + exp(X∗>ti β
0
t )]

2

}
X∗>ti

+
1

n

n∑
i=1

X∗ti

{
(
∑T

j=tRji)∆ti(d
∗, d̂)∏T

j=t π(Aji,Sji)
· exp(X∗>ti β

0
t )

[1 + exp(X∗>ti β
0
t )]

2

}
X∗>ti ,

where ∆ti(d
∗, d̂) =

∏T
j=t+1 I(Aji = d̂j(Sji))−

∏T
j=t+1 I(Aji = d∗j(Sji)).

Proof of (3.4) for stage t

By Slutsky’s theorem, it suffices to show that

(ii.1)
√
n
∂lt(β0

t )

∂βt
converges in distribution to N(0,Γt).

(ii.2)
∂2l(β0

t )

∂β2
t

converges to It(β
0
t ) in probability.

We look at (ii.1) first:

Note that the first term in the right hand side of (S1.9) is a mean of inde-

pendent random variables. By Slutsky’s theorem, it suffices to show that
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the second term in the right hand side of (S1.9) is op(n
− 1

2 ). By the bound-

ness of of Rji and Xji and Markov’s inequality, it suffices to show that for

1 ≤ l, k ≤ n,

E∆2
tl(d
∗, d̂) = o(1), E[∆tl(d

∗, d̂) ·∆tk(d
∗, d̂)] = o(n−1). (S1.11)

On the other hand, by the assumption that (3.3) and (S1.8) hold for stage

t + 1, we immediately have E∆2
tl(d
∗, d̂) = E|∆tl(d

∗, d̂)| = o
(

logn
n

)
and

E[∆tl(d
∗, d̂) · ∆tk(d

∗, d̂)] = O

(
log2 n
n2

)
= o(n−1). This proves (ii.1). The

proof for (ii.2) is similar to that for (ii.1): the first term on the right hand

side of (S1.10) tends to It(β
0
t ) almost surely by the law of large numbers,

and the second term is op

(
n−

1
2

)
.

Proof of (3.1) for stage t

Let ei be the ith column of the p× p identity matrix and denote

νtn = − 1

n

n∑
i=1

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d∗j(Sji))∏T
j=t π(Aji,Sji)

×
[
.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti,

µtn = − 1

n

n∑
i=1

{
(
∑T

j=tRji)∆ti(d
∗, d̂)∏T

j=t π(Aji,Sji)

×
[
.5(Ati + 1)− exp(X∗>ti βt)

1 + exp(X∗>ti βt)

]}
X∗ti.

Hence we have e>i
∂lt(β0

t )

∂βt
= e>i νtn + e>i µtn. Due to the boundness of Rji and

Xji and Markov’s inequality, and the fact that (3.3), (S1.8) holds for stage
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t+ 1, we have

P

(∣∣e>i µtn∣∣ >√ log n

n

)
≤ E{(e>i µtn)2}

logn
n

= o

(
log n

n

)
. (S1.12)

On the other hand, by Bernstein’s inequality, there exist positive constants

c1, c2, c3, depending on the bounds of Rj and Xj, j = t, . . . , T only, such

that,

P
(∣∣∣e>i νtn∣∣∣ > c1ε

)
≤ c2 exp{−c3c21nε2}. (S1.13)

Consequently, by choosing c1 to be large enough, we have

P
(∣∣∣e>i ∂lt(β0

t )

∂βt

∣∣∣ > (1 + c1)

√
log n

n

)
= o

(
log n

n

)
. (S1.14)

Similarly it can be shown that for some large enough constant c4,

P

(∣∣∣∂2lt(β0
t )

∂β2
t

− It(βt)
∣∣∣
∞
> (1 + c4)

√
log n

n

)
= o

(
log n

n

)
. (S1.15)

Similar to the proof of Lemma 2, from (S1.14) and (S1.15) we have (3.1)

holds for stage t.

Proof of (3.2) for stage t

Using the same arguments as in the proof for stage T , we have for x = o(
√
n)

and x > 1,:

P

(∑n
i=1 X

∗>
t (F>t Ft)

−1F>t h
′
t,i(β

0
t )√

nWt

≥ x

)

=

{
1 +O

( x3√
n

)}
[1− Φ(x)] +O

(
log n

n

)
, (S1.16)
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where

W 2
t = Var{X∗>t (β̂t − β0

t )} = Var{X∗>t (F>t Ft)
−1F>t h

′
t,i(β

0
t )}+O(

log n

n
),

and Ft = Eh′t,i(β0
t ), with

h′t,i(β
0
t )

= X∗ti

{
(
∑T

j=tRji)
∏T

j=t+1 I(Aji = d∗j(Sji))∏T
j=t π(Aji,Sji)

· exp(X∗>ti β
0
t )

[1 + exp(X∗>ti β
0
t )]

2

}
X∗>ti

+X∗ti

{
(
∑T

j=tRji)∆ti(d
∗, d̂)∏T

j=t π(Aji,Sji)
· exp(X∗>ti β

0
t )

[1 + exp(X∗>ti β
0
t )]

2

}
X∗>ti .

The rest of the proof is the same as that in the proof for stage T .

Proof of (3.3) and (S1.8) for stage t

We look at (3.3) first. For simplicity we use (a, b) where a, b ∈ {0, 1}

to denote the event that {
∏T

j=t+1 I(Aji = d̂j(Sji)) = a,
∏T

j=t+1 I(Aji =

d∗j(Sji)) = b}. Since (3.3) holds for stage t+ 1 we have

P ((1, 0)) = o
( log n

n

)
, P ((0, 1)) = o

( log n

n

)
.
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Note that

E
∣∣∣ T∏
j=t

I(Aji = d̂j(Sji))−
T∏
j=t

I(Aji = d∗j(Sji))
∣∣∣

= P
(
I(Ati = d̂t(Sti)) = 1

∣∣∣(1, 0)
)
P ((1, 0))

+P
(
I(Ati = d∗t (Sti)) = 1

∣∣∣(0, 1)
)
P ((0, 1))

+P
(
I(Ati = d̂t(Sti)) = 1, I(Ati = d∗t (Sti)) = 0

∣∣∣(1, 1)
)
P ((1, 1))

+P
(
I(Ati = d̂t(Sti)) = 0, I(Ati = d∗t (Sti)) = 1

∣∣∣(1, 1)
)
P ((1, 1))

≤ o
( log n

n

)
+ P

(
I(Ati = d̂t(Sti)) = 1, I(Ati = d∗t (Sti)) = 0

)
+P
(
I(Ati = d̂t(Sti)) = 0, I(Ati = d∗t (Sti)) = 1

)
= o

( log n

n

)
.

Here the last step can be obtained using (3.1) and similar derivations as in

(S1.2).

For (S1.8), note that

EΠk=i,l

[
T∏
j=t

I(Ajk = d̂j(Sjk))−
T∏
j=t

I(Ajk = d∗j(Sjk))

]

= EΠk=i,l

[ T∏
j=t

I(Ajk = d̂j(Sjk))−
T∏
j=t

I(Ajk = d̂j,−{i,l}(Sjk))

+
T∏
j=t

I(Ajk = d̂j,−{i,l}(Sjk))−
T∏
j=t

I(Ajk = d∗j(Sjk))

]
. (S1.17)

Using the same argument as in the proof of (3.1) we can also show that

P (|β̂t − β0
t | > b) = o

(
log2 n
n2

)
. Consequently, for any t ≤ j1, j2 ≤ T , there
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exists a constant C large enough such that

E
∣∣∣I(Aj1i = d̂j1(Sj1i))− I(Aj1i = d̂j1,−{i,l}(Sj1i))

∣∣∣
×
∣∣∣(Aj2 = d̂j2(Sj2l))− I(Aj2l = d̂j2,−{i,l}(Sj2l))

∣∣∣
≤ P (|X>j1iβ̂j1,−{i,l}| < Cn−1, |β̂j1,−{i,l} − β0

j1
|∞ < b,

|X>j2lβ̂j2,−{i,l}| < Cn−1, |β̂j2,−{i,l} − β0
j2
|∞ < b) + o

( log2 n

n2

)
= o

( log2 n

n2

)
.

Consequently, we have

EΠk=i,l

[
T∏
j=t

I(Ajk = d̂j(Sjk))−
T∏
j=t

I(Ajk = d̂j,−{i,l}(Sjk))

]

≤ E

[
T∑
j=t

∣∣∣I(Aji = d̂j(Sji))− I(Aji = d̂j,−{i,l}(Sji))
∣∣∣]

×

[
T∑
j=t

∣∣∣I(Ajl = d̂j(Sjl))− I(Ajl = d̂j,−{i,l}(Sjl))
∣∣∣]

= o
( log2 n

n2

)
. (S1.18)
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Similarly,

E
{[ T∏

j=t

I(Aji = d̂j(Sji))−
T∏
j=t

I(Aji = d̂j,−{i,l}(Sji))

]

×
[ T∏
j=t

I(Ajl = d̂j,−{i,l}(Sjl))−
T∏
j=t

I(Ajl = d∗j(Sjl))

]}

≤ E

[
T∑
j=t

∣∣∣I(Aji = d̂j(Sji))− I(Aji = d̂j,−{i,l}(Sji))
∣∣∣]

×

[
T∑
j=t

∣∣∣I(Ajl = d̂j,−{i,l}(Sjl))− I(Ajl = d∗j(Sjl))
∣∣∣]

= o
( log2 n

n2

)
. (S1.19)

And

EΠk=i,l

[ T∏
j=t

I(Ajk = d̂j,−{i,l}(Sjk))−
T∏
j=t

I(Ajk = d∗j(Sjk))

]

≤ E

[
T∑
j=t

∣∣∣I(Aji = d̂j,−{i,l}(Sji))− I(Aji = d∗j(Sji))
∣∣∣]

×

[
T∑
j=t

∣∣∣I(Ajl = d̂j,−{i,l}(Sjl))− I(Ajl = d∗j(Sjl))
∣∣∣]

= o
( log2 n

n2

)
. (S1.20)

(S1.8) is then proved by combing (S1.17), (S1.18), (S1.19) and (S1.20).
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S1.3 Proof of Theorem 2

Proof. For simplicity, we only prove stage t = T . Proofs for stage t =

T − 1, . . . , 1 are similar to the proofs of (3.4). Note that

√
nV̂T

=
1√
n

n∑
i=1

I(AT i = d̂(XTi))RT i

(AT iπT + (1− AT i)/2)

=
1√
n

n∑
i=1

I(AT i = dT (XT i))RT i

(AT iπT + (1− AT i)/2)

+
1√
n

n∑
i=1

[I(AT i = d̂T (XT i))− I(AT i = dT (XT i))]RT i

(AT iπT + (1− AT i)/2)

Using central limit theorem we immediately have

1√
n

n∑
i=1

I(AT i = dT (XT i))RT i

(AT iπT + (1− AT i)/2)
→ N(

√
nVT ,ΣVT ).

On the other hand, by Markov’s inequality and (3.3) we have

1√
n

n∑
i=1

I(sgn(X∗>T i β
0
T ) 6= sgn(X∗>T i β̂T ))Ri

(AT iπT + (1− AT i)/2)
→ 0,

in probability. Theorem 2 is then proved by Slutsky’s theorem.
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