Supplement Material for
 'Entropy Learning for Dynamic Treatment Regimes'

Binyan Jiang ${ }^{1}$, Rui Song ${ }^{2}$, Jialiang Li^{3} and Donglin Zeng ${ }^{4}$
The Hong Kong Polytechnic University ${ }^{1}$, North Carolina State University ${ }^{2}$ National University of Singapore ${ }^{3}$ and University of North Carolina ${ }^{4}$

This Supplementary Material provides technical proofs for Proposition 1 and Theorems 1 and 2 in the paper.

S1. Technical proof

S1.1 Proof of Proposition 1

Proof. Note that each stage is a single-stage outcome weighted learning problem. By verifying that the entropy loss satisfies the two sufficient conditions given in Section 2.1, we have $d_{T}^{*}\left(\mathbf{S}_{T}\right)=\operatorname{sgn}\left(f_{T}\left(\mathbf{X}_{T}\right)\right)$. Using the same arguments backwards through $t=T-1, \ldots, 1$, we would sequentially obtain that $d_{t}^{*}\left(\mathbf{S}_{t}\right)=\operatorname{sgn}\left(f_{t}\left(\mathbf{X}_{t}\right)\right)$ for $t=T-1, \ldots, 1$.

S1.2 Proof of Theorem 1

Before we proceed to prove Theorem 1, we introduce two technical lemmas.

Lemma 1. Let Φ and ϕ be the cumulative distribution function and density function of a standard Gaussian random variable. For any $x \geq 1$ we have

$$
\frac{\phi(x)}{2 x} \leq \Phi(-x) \leq \frac{\phi(x)}{x}
$$

Proof. Using integration by parts we have for $x \geq 1$:

$$
\Phi(-x)=\frac{\phi(x)}{x}-\int_{x}^{+\infty} \frac{1}{u^{2}} \phi(u) d u \leq \frac{\phi(x)}{x}-\Phi(-x)
$$

Lemma 1 is then proved immediately from the above inequality.

Lemma 2. Under assumptions A1 and A2, there exist positive constants $C_{T 1}, C_{T 1}, C_{T 3}$ such that

$$
P\left(\left|\hat{\beta}_{T}-\beta_{T}^{0}\right|_{\infty}>C_{T 1} \epsilon\right) \leq C_{T 2} \exp \left\{-C_{T 3} C_{T 1}^{2} n \epsilon^{2}\right\}
$$

Proof. First of all it is easy to see that $\hat{\beta}_{T}$ is consistent in estimating β_{T}. Note that for stage T,

$$
\mathbf{0}=\frac{\partial l_{T}\left(\hat{\beta}_{T}\right)}{\partial \beta_{T}}=\frac{\partial l_{T}\left(\beta_{T}^{0}\right)}{\partial \beta_{T}}+\frac{\partial^{2} l_{T}\left(\beta_{T}^{0}\right)}{\partial \beta_{T}^{2}}\left(\hat{\beta}_{T}-\beta_{T}^{0}\right)+O\left(\left|\hat{\beta}_{T}-\beta_{T}^{0}\right|_{1}^{2}\right)
$$

where $\frac{\partial l_{T}\left(\beta_{t}^{0}\right)}{\partial \beta_{T}}$ and $\frac{\partial^{2} l_{T}\left(\beta_{T}^{0}\right)}{\partial \beta_{T}^{2}}$ can be written as means of i.i.d. random observations. Consequently, using Bernstein's inequality (Bennett, 1962), we have
there exist positive constants c_{1}, c_{2}, c_{3} such that

$$
P\left(\left|\frac{\partial^{2} l_{T}\left(\beta_{T}^{0}\right)}{\partial \beta_{T}^{2}}-\mathrm{I}_{T}\left(\beta_{T}\right)\right|_{\infty}>c_{1} \epsilon\right) \leq c_{2} \exp \left\{-c_{3} c_{1}^{2} n \epsilon^{2}\right\}
$$

Similarly there exist positive constants c_{4}, c_{5}, c_{6} such that

$$
P\left(\left|\frac{\partial l_{T}\left(\beta_{T}^{0}\right)}{\partial \beta_{T}}\right|_{\infty}>c_{4} \epsilon\right) \leq c_{5} \exp \left\{-c_{6} c_{4}^{2} n \epsilon^{2}\right\}
$$

Consequently, there exists a large enough constant $C_{T 1}$ such that, when n is large enough,

$$
\begin{aligned}
& P\left(\left|\hat{\beta}_{T}-\beta_{T}^{0}\right|_{\infty}<2 C_{T 1}\left|\mathrm{I}_{T}^{-1}\left(\beta_{T}^{0}\right)\right|_{1, \infty} \epsilon\right) \\
\geq & 1-c_{2} \exp \left\{-c_{3} c_{1}^{2} n \epsilon^{2}\right\}-c_{5} \exp \left\{-c_{6} c_{4}^{2} n \epsilon^{2}\right\}
\end{aligned}
$$

This proves the lemma.

Proof of Theorem 1

Proof. For simplicity we use p to denote the dimension of the covariates \mathbf{X}_{t} for all stages t. We break the proof into two steps:
(i) We show that this theorem holds for $t=T$;
(ii) Given that the theorem holds for stage $t+1, \ldots, T$, we show that it also holds for stage t;
(i) For stage $T,(3.1)$ and (3.4) can be obtained directly from Lemma 2 and its proof. We next show that (3.2) and (3.3) hold for stage T. In what
follows we use $\hat{\beta}_{T,-\{i\}}$ to denote the estimator obtained by leaving the i th sample $\mathbf{S}_{T i}$ out.

Proof of (3.3) for stage T :

From Lemma 2 and the boundness of $\mathbf{X}_{T i}$, we have that there exists a large enough constants $C>0$ such that

$$
\begin{equation*}
P\left(\left|\mathbf{X}_{T i}^{* T} \hat{\beta}_{T}-\mathbf{X}_{T i}^{* \top} \beta_{T}^{0}\right|_{\infty}>C \sqrt{\frac{\log n}{n}}\right)=o\left(\frac{\log n}{n}\right) . \tag{S1.1}
\end{equation*}
$$

On the other hand, from the boundness of $R_{T i}$ and $\mathbf{X}_{T i}$, we have there exists a large enough constant C_{l} such that $\left|\hat{\beta}_{T}-\hat{\beta}_{T,-\{i\}}\right|_{\infty} \leq C_{l} n^{-1}$. Consequently we have there exists a constant $B>0$ such that $\operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T}\right)=$ $\operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}\right)$ when $\left.\mid \mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}\right) \mid \geq B n^{-1}$, and from assumption $A 3$, we have $P\left(\left|\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}\right|<B n^{-1}\right) \leq P\left(\left|\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}\right|<B n^{-1}, \mid \hat{\beta}_{T,-\{i\}}-\right.$ $\left.\left.\beta_{T}^{0}\right|_{\infty}<b\right)+P\left(\left|\hat{\beta}_{T,-\{i\}}-\beta_{T}^{0}\right|_{\infty}>b\right)=O\left(n^{-1}\right)$. Consequently, by denoting $\hat{d}_{T,-\{i\}}\left(\mathbf{S}_{T i}\right)=\operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}\right)$ we have

$$
\begin{aligned}
& \mathbb{E}\left|I\left(A_{T i}=\hat{d}_{T}\left(\mathbf{S}_{T i}\right)\right)-I\left(A_{T i}=d_{T}^{*}\left(\mathbf{S}_{T i}\right)\right)\right| \\
= & \mathbb{E}\left|I\left(A_{T i}=\hat{d}_{T,-\{i\}}\left(\mathbf{S}_{T}\right)\right)-I\left(A_{T i}=d_{T}^{*}\left(\mathbf{S}_{T i}\right)\right)\right|+o\left(\frac{\log n}{n}\right) \\
= & \left|P\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}>0, \mathbf{X}_{T i}^{* \top} \beta_{T}^{0} \leq 0\right)-P\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}<0, \mathbf{X}_{T i}^{* \top} \beta_{T}^{0} \geq 0\right)\right| \\
& +o\left(\frac{\log n}{n}\right) .
\end{aligned}
$$

Denote $\hat{Y}=\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}$, by condition A3, we have,

$$
\begin{align*}
& P\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}>0, \mathbf{X}_{T i}^{* \top} \beta_{T}^{0} \leq 0\right) \\
= & \int_{-C \sqrt{\frac{\log n}{n}}}^{0} P(\hat{Y}>0 \mid Y=y) g_{T}(y) d y+o\left(\frac{\log n}{n}\right) \\
= & o\left(\frac{\log n}{n}\right) \tag{S1.2}
\end{align*}
$$

Here the last step is obtained by noticing that $g(y)=o(y)$ as indicated by assumption A3. Similarly we have $P\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i\}}<0, \mathbf{X}_{T i}^{* \top} \beta_{T}^{0} \geq 0\right)=$ $o\left(\frac{\log n}{n}\right)$. This proves 3.3 .

Before we proceed to prove (3.2) for stage T, similar to (3.3) we show that for $1 \leq i \neq j \leq n$,

$$
\begin{align*}
& \mathbb{E}\left[I\left(A_{T i}=\hat{d}_{T}\left(\mathbf{S}_{T i}\right)\right)-I\left(A_{T i}=d_{T}^{*}\left(\mathbf{S}_{T i}\right)\right)\right] \\
& \times\left[I\left(A_{T j}=\hat{d}_{T}\left(\mathbf{S}_{T j}\right)\right)-I\left(A_{T j}=d_{T}^{*}\left(\mathbf{S}_{T j}\right)\right)\right] \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) . \tag{S1.3}
\end{align*}
$$

For $k=i, j$, denote $\hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T k}\right)=\operatorname{sgn}\left(\mathbf{X}_{T k}^{\top} \hat{\beta}_{T,-\{i, j\}}\right)$, where $\hat{\beta}_{T,-\{i, j\}}$ is the estimator of β_{T}^{0} obtained by leaving the i th and j th samples. We have,

$$
\begin{aligned}
& \mathbb{E} \Pi_{k=i, j}\left[I\left(A_{T k}=\hat{d}_{T}\left(\mathbf{S}_{T k}\right)\right)-I\left(A_{T k}=d_{T}^{*}\left(\mathbf{S}_{T k}\right)\right)\right] \\
= & \mathbb{E} \Pi_{k=i, j}\left[\left(2 I\left(A_{T k}=\hat{d}_{T}\left(\mathbf{S}_{T k}\right)\right)-1\right) I\left(\hat{d}_{T}\left(\mathbf{S}_{T k}\right) \neq \hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T k}\right)\right)\right. \\
& \left.+I\left(A_{T k}=\hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T k}\right)\right)-I\left(A_{T k}=d_{T}^{*}\left(\mathbf{S}_{T k}\right)\right)\right] .
\end{aligned}
$$

Similar to the proof in (S1.2), we have there exists a large enough constant C such that $\operatorname{sgn}\left(\mathbf{X}_{T i}^{*} \hat{\beta}_{T}\right)=\operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i, j\}}\right)$ when $\left.\mid \mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i, j\}}\right) \mid \geq C n^{-1}$. Consequently,

$$
\begin{aligned}
& \mathbb{E} I\left(\hat{d}_{T}\left(\mathbf{S}_{T i}\right) \neq \hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T i}\right)\right) \cdot I\left(\hat{d}_{T}\left(\mathbf{S}_{T j}\right) \neq \hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T j}\right)\right) \\
\leq & P\left(\left|\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T,-\{i, j\}}\right|<C n^{-1},\left|\mathbf{X}_{T j}^{* \top} \hat{\beta}_{T,-\{i, j\}}\right|<C n^{-1}\right) \\
= & O\left(n^{-2}\right)+P\left(\left|\hat{\beta}_{T,-\{i, j\}}-\beta_{T}^{0}\right|_{\infty}>b\right) \\
= & O\left(n^{-2}\right)
\end{aligned}
$$

Similarly, it can be shown that

$$
\begin{aligned}
& \mathbb{E}\left\{I\left(\hat{d}_{T}\left(\mathbf{S}_{T i}\right) \neq \hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T i}\right)\right)\right. \\
& \left.\left.\times I\left(A_{T j}=\hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T j}\right)\right)-I\left(A_{T j}=d_{T}^{*}\left(\mathbf{S}_{T j}\right)\right)\right]\right\}=o\left(\frac{\log n}{n^{2}}\right), \\
& \left.\mathbb{E} \Pi_{k=i, j} I\left(A_{T k}=\hat{d}_{T,-\{i, j\}}\left(\mathbf{S}_{T k}\right)\right)-I\left(A_{T k}=d_{T}^{*}\left(\mathbf{S}_{T k}\right)\right)\right]=o\left(\frac{\log ^{2} n}{n^{2}}\right) .
\end{aligned}
$$

We thus conclude that (S1.3) holds for stage T.

Proof of (3.2) for stage T :

Denote

$$
h_{i}(\beta)=\frac{R_{T i}}{\pi\left(A_{T i}, \mathbf{S}_{T i}\right)}\left[.5\left(A_{T i}+1\right)-\frac{\exp \left(\mathbf{X}_{T i}^{* \top} \beta\right)}{1+\exp \left(\mathbf{X}_{T i}^{* \top} \beta\right)}\right] \mathbf{X}_{T i}^{*}
$$

We have $\sum_{i=1}^{n} h_{i}\left(\hat{\beta}_{T}\right)=\mathbf{0}$ and $\mathbb{E} h_{i}\left(\beta_{T}^{0}\right)=\mathbf{0}$. Note that, $h_{i j}(\beta)$, the j th element of $h_{i}(\beta)$, is bounded and there exists $\beta_{T}^{*} \in\left[\beta_{T}^{0}, \hat{\beta}_{T}\right]$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} h_{i j}\left(\beta_{T}^{0}\right)=\sum_{i=1}^{n} h_{i j}\left(\beta_{T}^{0}\right)-\sum_{i=1}^{n} h_{i j}\left(\hat{\beta}_{T}\right)=\left(\beta_{T}^{0}-\hat{\beta}_{T}\right)^{\top} \sum_{i=1}^{n} h_{i j}^{\prime}\left(\beta_{T}^{*}\right) \tag{S1.4}
\end{equation*}
$$

Since $\mathbb{E} h_{i j}^{\prime \prime}\left(\beta_{T}^{0}\right)$ is finite, by Lemma 2, we have with probability larger than $1-o\left(\frac{\log n}{n}\right)$,

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} h_{i j}^{\prime}\left(\beta_{T}^{*}\right)-\frac{1}{n} \sum_{i=1}^{n} h_{i j}^{\prime}\left(\beta_{T}^{0}\right)\right|_{\infty}=O\left(\sqrt{\frac{\log n}{n}}\right) \tag{S1.5}
\end{equation*}
$$

Again, using Bernstein's inequality we have for a large enough constant C_{1},

$$
\begin{equation*}
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} h_{i}^{\prime}\left(\beta_{T}^{0}\right)-E h_{i}^{\prime}\left(\beta_{T}^{0}\right)\right|_{\infty}>C_{1} \sqrt{\frac{\log n}{n}}\right)=o\left(\frac{\log n}{n}\right) \tag{S1.6}
\end{equation*}
$$

where $h_{i}^{\prime}(\beta)=\left(h_{i 1}^{\prime}(\beta), \ldots, h_{i p}^{\prime}(\beta)\right)$. Write $F:=\mathbb{E} h_{i}^{\prime}\left(\beta_{T}^{0}\right)$. From S1.4, S1.5 and S1.6 we have with probability greater than $1-o\left(\frac{\log n}{n}\right)$,

$$
\left|\hat{\beta}_{T}-\beta_{T}^{0}+n^{-1}\left(F F^{\top}\right)^{-1} F \sum_{i=1}^{n} h_{i}\left(\beta_{T}^{0}\right)\right|_{\infty}=O\left(\frac{\log n}{n}\right)
$$

Given \mathbf{X}_{T}^{*}, we denote

$$
W_{T}^{2}=\mathbb{V} \operatorname{ar}\left\{\sqrt{n} \mathbf{X}_{T}^{* \top}\left(\beta_{T}^{0}-\hat{\beta}_{T}\right)\right\}=\mathbb{V} \operatorname{ar}\left\{\mathbf{X}_{T}^{* \top}\left(F F^{\top}\right)^{-1} F h_{i}\left(\beta_{T}^{0}\right)\right\}+O\left(\frac{\log n}{n}\right)
$$

So far the order terms in the above derivation are obtained from Bernstein's inequality as in the proof of Lemma 2, and depends on the bounds of R_{T}, \mathbf{X}_{T} and C only. From Lemma 1 and classical Cramer-Petrov type large deviation results (see for example Lin and Lu $(\sqrt{2013})$, $\overline{\text { Petrov }}(\overline{1996)})$, we have for $x=o(\sqrt{n})$ and $x>1$, as $n \rightarrow \infty$, for any $j=1, \ldots, p$,

$$
\begin{align*}
& P\left(\frac{\sum_{i=1}^{n} \mathbf{X}_{T}^{* \top}\left(F F^{\top}\right)^{-1} F h_{i}\left(\beta_{T}^{0}\right)}{\sqrt{n} W_{T}} \geq x\right) \\
= & \left\{1+O\left(\frac{x^{3}}{\sqrt{n}}\right)\right\}[1-\Phi(x)]+O\left(\sqrt{\frac{\log n}{n}}\right) \tag{S1.7}
\end{align*}
$$

where $\Phi(x)$ is the CDF of the standard normal distribution. Consequently we have when n is large enough,

$$
\begin{aligned}
& P\left(\mathbf{X}_{T}^{* \top}\left(\beta_{T}^{0}-\hat{\beta}_{T}\right)>\frac{x W_{T}}{\sqrt{n}}\right) \\
= & P\left(\left[\frac{\sum_{i=1}^{n} \mathbf{X}_{T}^{* \top}\left(F F^{\top}\right)^{-1} F h_{i}\left(\beta_{T}^{0}\right)}{n}+O\left(\frac{\log n}{n}\right)\right]>\frac{x W_{T}}{\sqrt{n}}\right)+o\left(\frac{\log n}{n}\right) \\
= & P\left(\frac{\sum_{i=1}^{n} \mathbf{X}_{T}^{* \top}\left(F F^{\top}\right)^{-1} F h_{i}\left(\beta_{T}^{0}\right)}{\sqrt{n} W_{T}} \geq x+O\left(\frac{\log n}{\sqrt{n}}\right)\right)+o\left(\frac{\log n}{n}\right) \\
= & \left\{1+O\left(\frac{x^{3}}{\sqrt{n}}\right)\right\}[1-\Phi(x)]+O\left(\frac{\log n}{\sqrt{n}}\right),
\end{aligned}
$$

Similarly, we have
$P\left(\mathbf{X}_{T}^{* \top}\left(\beta_{T}^{0}-\hat{\beta}_{T}\right)<-\frac{x W_{T}}{\sqrt{n}}\right)=\left\{1+O\left(\frac{x^{3}}{\sqrt{n}}\right)\right\}[1-\Phi(x)]+O\left(\frac{\log n}{\sqrt{n}}\right)$.
This proves (3.2) for stage T.
(ii) Now suppose Theorem 1 holds for stage $t+1, \ldots, T$ and (S1.3) hold for stage $t+1$ in that for any $1 \leq i \neq l \leq n$,

$$
\begin{align*}
& \mathbb{E} \Pi_{k=i, l}\left[\prod_{j=t+1}^{T} I\left(A_{j k}=\hat{d}_{j}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t+1}^{T} I\left(A_{j k}=d_{j}^{*}\left(\mathbf{S}_{j k}\right)\right)\right] \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) . \tag{S1.8}
\end{align*}
$$

We complete the proof of this theorem by showing that (3.4), (3.1), (3.2) (3.3) and (S1.8) hold for stage t respectively.

Note that for stage t,

$$
\mathbf{0}=\frac{\partial l_{t}\left(\hat{\beta}_{t}\right)}{\partial \beta_{t}}=\frac{\partial l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}}+\frac{\partial^{2} l\left(\beta_{t}^{0}\right)}{\partial \beta_{t}^{2}}\left(\hat{\beta}_{t}-\beta_{t}^{0}\right)+O\left(\left|\hat{\beta}_{t}-\beta_{t}^{0}\right|_{1}^{2}\right),
$$

where

$$
\begin{align*}
& \frac{\partial l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}} \tag{S1.9}\\
&=-\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \prod_{j=t+1}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)}\right. \\
& \times {\left.\left[.5\left(A_{t i}+1\right)-\frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}{1+\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}\right]\right\} \mathbf{X}_{t i}^{*} } \\
&-\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \Delta_{t i}\left(d^{*}, \hat{d}\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)}\left[.5\left(A_{t i}+1\right)-\frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}{1+\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}\right]\right\} \mathbf{X}_{t i}^{*}, \\
&= \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{t i}^{*}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \prod_{j=t+1}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)}\right. \tag{S1.10}\\
&\left.\left.\left.\quad \times \frac{\exp \left(\mathbf{X}_{t i}^{* \top}\right)}{\left[1+\exp \left(\mathbf{X}_{t i}^{* \top}\right)\right.} \beta_{t}^{0}\right)\right]^{2}\right\} \mathbf{X}_{t i}^{* \top} \\
&+\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{t i}^{*}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \Delta_{t i}\left(d^{*}, \hat{d}\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)} \cdot \frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}^{0}\right)}{\left[1+\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}^{0}\right)\right]^{2}}\right\} \mathbf{X}_{t i}^{* \top},
\end{align*}
$$

where $\Delta_{t i}\left(d^{*}, \hat{d}\right)=\prod_{j=t+1}^{T} I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)-\prod_{j=t+1}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)$.

Proof of (3.4) for stage t

By Slutsky's theorem, it suffices to show that
(ii.1) $\sqrt{n} \frac{\partial l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}}$ converges in distribution to $N\left(\mathbf{0}, \Gamma_{t}\right)$.
(ii.2) $\frac{\partial^{2} l\left(\beta_{t}^{0}\right)}{\partial \beta_{t}^{2}}$ converges to $\mathbf{I}_{t}\left(\beta_{t}^{0}\right)$ in probability.

We look at (ii.1) first:
Note that the first term in the right hand side of (S1.9) is a mean of independent random variables. By Slutsky's theorem, it suffices to show that
the second term in the right hand side of S 1.9 is $o_{p}\left(n^{-\frac{1}{2}}\right)$. By the boundness of of $R_{j i}$ and $\mathbf{X}_{j i}$ and Markov's inequality, it suffices to show that for $1 \leq l, k \leq n$,

$$
\begin{equation*}
\mathbb{E} \Delta_{t l}^{2}\left(d^{*}, \hat{d}\right)=o(1), \quad \mathbb{E}\left[\Delta_{t l}\left(d^{*}, \hat{d}\right) \cdot \Delta_{t k}\left(d^{*}, \hat{d}\right)\right]=o\left(n^{-1}\right) \tag{S1.11}
\end{equation*}
$$

On the other hand, by the assumption that (3.3) and (S1.8) hold for stage $t+1$, we immediately have $\mathbb{E} \Delta_{t l}^{2}\left(d^{*}, \hat{d}\right)=\mathbb{E}\left|\Delta_{t l}\left(d^{*}, \hat{d}\right)\right|=o\left(\frac{\log n}{n}\right)$ and $\mathbb{E}\left[\Delta_{t l}\left(d^{*}, \hat{d}\right) \cdot \Delta_{t k}\left(d^{*}, \hat{d}\right)\right]=O\left(\frac{\log ^{2} n}{n^{2}}\right)=o\left(n^{-1}\right)$. This proves (ii.1). The proof for (ii.2) is similar to that for (ii.1): the first term on the right hand side of S1.10 tends to $\mathbf{I}_{t}\left(\beta_{t}^{0}\right)$ almost surely by the law of large numbers, and the second term is $o_{p}\left(n^{-\frac{1}{2}}\right)$.

Proof of (3.1) for stage t

Let e_{i} be the i th column of the $p \times p$ identity matrix and denote

$$
\begin{aligned}
\nu_{t n}= & -\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \prod_{j=t+1}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)}\right. \\
& \left.\times\left[.5\left(A_{t i}+1\right)-\frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}{1+\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}\right]\right\} \mathbf{X}_{t i}^{*}, \\
\mu_{t n}= & -\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \Delta_{t i}\left(d^{*}, \hat{d}\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)}\right. \\
\times & {\left.\left[.5\left(A_{t i}+1\right)-\frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}{1+\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}\right)}\right]\right\} \mathbf{X}_{t i}^{*} . }
\end{aligned}
$$

Hence we have $e_{i}^{\top} \frac{\partial l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}}=e_{i}^{\top} \nu_{t n}+e_{i}^{\top} \mu_{t n}$. Due to the boundness of $R_{j i}$ and $\mathbf{X}_{j i}$ and Markov's inequality, and the fact that (3.3), (S1.8) holds for stage
$t+1$, we have

$$
\begin{equation*}
P\left(\left|e_{i}^{\top} \mu_{t n}\right|>\sqrt{\frac{\log n}{n}}\right) \leq \frac{E\left\{\left(e_{i}^{\top} \mu_{t n}\right)^{2}\right\}}{\frac{\log n}{n}}=o\left(\frac{\log n}{n}\right) . \tag{S1.12}
\end{equation*}
$$

On the other hand, by Bernstein's inequality, there exist positive constants c_{1}, c_{2}, c_{3}, depending on the bounds of R_{j} and $\mathbf{X}_{j}, j=t, \ldots, T$ only, such that,

$$
\begin{equation*}
P\left(\left|e_{i}^{\top} \nu_{t n}\right|>c_{1} \epsilon\right) \leq c_{2} \exp \left\{-c_{3} c_{1}^{2} n \epsilon^{2}\right\} \tag{S1.13}
\end{equation*}
$$

Consequently, by choosing c_{1} to be large enough, we have

$$
\begin{equation*}
P\left(\left|e_{i}^{\top} \frac{\partial l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}}\right|>\left(1+c_{1}\right) \sqrt{\frac{\log n}{n}}\right)=o\left(\frac{\log n}{n}\right) \tag{S1.14}
\end{equation*}
$$

Similarly it can be shown that for some large enough constant c_{4},

$$
\begin{equation*}
P\left(\left|\frac{\partial^{2} l_{t}\left(\beta_{t}^{0}\right)}{\partial \beta_{t}^{2}}-\mathbf{I}_{t}\left(\beta_{t}\right)\right|_{\infty}>\left(1+c_{4}\right) \sqrt{\frac{\log n}{n}}\right)=o\left(\frac{\log n}{n}\right) \tag{S1.15}
\end{equation*}
$$

Similar to the proof of Lemma 2, from (S1.14) and (S1.15) we have (3.1) holds for stage t.

Proof of (3.2) for stage t

Using the same arguments as in the proof for stage T, we have for $x=o(\sqrt{n})$ and $x>1$,:

$$
\begin{align*}
& P\left(\frac{\sum_{i=1}^{n} \mathbf{X}_{t}^{* \top}\left(F_{t}^{\top} F_{t}\right)^{-1} F_{t}^{\top} h_{t, i}^{\prime}\left(\beta_{t}^{0}\right)}{\sqrt{n} W_{t}} \geq x\right) \\
= & \left\{1+O\left(\frac{x^{3}}{\sqrt{n}}\right)\right\}[1-\Phi(x)]+O\left(\frac{\log n}{n}\right), \tag{S1.16}
\end{align*}
$$

where

$$
W_{t}^{2}=\mathbb{V} \operatorname{ar}\left\{\mathbf{X}_{t}^{* \top}\left(\hat{\beta}_{t}-\beta_{t}^{0}\right)\right\}=\mathbb{V} \operatorname{ar}\left\{\mathbf{X}_{t}^{* \top}\left(F_{t}^{\top} F_{t}\right)^{-1} F_{t}^{\top} h_{t, i}^{\prime}\left(\beta_{t}^{0}\right)\right\}+O\left(\frac{\log n}{n}\right)
$$

and $F_{t}=\mathbb{E} h_{t, i}^{\prime}\left(\beta_{t}^{0}\right)$, with

$$
\begin{aligned}
& h_{t, i}^{\prime}\left(\beta_{t}^{0}\right) \\
= & \mathbf{X}_{t i}^{*}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \prod_{j=t+1}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)} \cdot \frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}^{0}\right)}{\left[1+\exp \left(X_{t i}^{* \top} \beta_{t}^{0}\right)\right]^{2}}\right\} \mathbf{X}_{t i}^{* \top} \\
& +\mathbf{X}_{t i}^{*}\left\{\frac{\left(\sum_{j=t}^{T} R_{j i}\right) \Delta_{t i}\left(d^{*}, \hat{d}\right)}{\prod_{j=t}^{T} \pi\left(A_{j i}, \mathbf{S}_{j i}\right)} \cdot \frac{\exp \left(\mathbf{X}_{t i}^{* \top} \beta_{t}^{0}\right)}{\left[1+\exp \left(X_{t i}^{* \top} \beta_{t}^{0}\right)\right]^{2}}\right\} \mathbf{X}_{t i}^{* \top} .
\end{aligned}
$$

The rest of the proof is the same as that in the proof for stage T.
Proof of (3.3) and (S1.8) for stage t
We look at (3.3) first. For simplicity we use (a, b) where $a, b \in\{0,1\}$ to denote the event that $\left\{\prod_{j=t+1}^{T} I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)=a, \prod_{j=t+1}^{T} I\left(A_{j i}=\right.\right.$ $\left.\left.d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)=b\right\}$. Since (3.3) holds for stage $t+1$ we have

$$
P((1,0))=o\left(\frac{\log n}{n}\right), P((0,1))=o\left(\frac{\log n}{n}\right)
$$

Note that

$$
\begin{aligned}
& \mathbb{E}\left|\prod_{j=t}^{T} I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)-\prod_{j=t}^{T} I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)\right| \\
= & P\left(I\left(A_{t i}=\hat{d}_{t}\left(\mathbf{S}_{t i}\right)\right)=1 \mid(1,0)\right) P((1,0)) \\
& +P\left(I\left(A_{t i}=d_{t}^{*}\left(\mathbf{S}_{t i}\right)\right)=1 \mid(0,1)\right) P((0,1)) \\
& +P\left(I\left(A_{t i}=\hat{d}_{t}\left(\mathbf{S}_{t i}\right)\right)=1, I\left(A_{t i}=d_{t}^{*}\left(\mathbf{S}_{t i}\right)\right)=0 \mid(1,1)\right) P((1,1)) \\
& +P\left(I\left(A_{t i}=\hat{d}_{t}\left(\mathbf{S}_{t i}\right)\right)=0, I\left(A_{t i}=d_{t}^{*}\left(\mathbf{S}_{t i}\right)\right)=1 \mid(1,1)\right) P((1,1)) \\
\leq & o\left(\frac{\log n}{n}\right)+P\left(I\left(A_{t i}=\hat{d}_{t}\left(\mathbf{S}_{t i}\right)\right)=1, I\left(A_{t i}=d_{t}^{*}\left(\mathbf{S}_{t i}\right)\right)=0\right) \\
& +P\left(I\left(A_{t i}=\hat{d}_{t}\left(\mathbf{S}_{t i}\right)\right)=0, I\left(A_{t i}=d_{t}^{*}\left(\mathbf{S}_{t i}\right)\right)=1\right) \\
= & o\left(\frac{\log n}{n}\right) .
\end{aligned}
$$

Here the last step can be obtained using (3.1) and similar derivations as in S1.2).

For (S1.8), note that

$$
\begin{align*}
& \mathbb{E} \Pi_{k=i, l}\left[\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t}^{T} I\left(A_{j k}=d_{j}^{*}\left(\mathbf{S}_{j k}\right)\right)\right] \\
= & \mathbb{E} \Pi_{k=i, l}\left[\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j k}\right)\right)\right. \\
& \left.+\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t}^{T} I\left(A_{j k}=d_{j}^{*}\left(\mathbf{S}_{j k}\right)\right)\right] \tag{S1.17}
\end{align*}
$$

Using the same argument as in the proof of (3.1) we can also show that $P\left(\left|\hat{\beta}_{t}-\beta_{t}^{0}\right|>b\right)=o\left(\frac{\log ^{2} n}{n^{2}}\right)$. Consequently, for any $t \leq j_{1}, j_{2} \leq T$, there
exists a constant C large enough such that

$$
\begin{aligned}
& \mathbb{E}\left|I\left(A_{j_{1} i}=\hat{d}_{j_{1}}\left(\mathbf{S}_{j_{1} i}\right)\right)-I\left(A_{j_{1} i}=\hat{d}_{j_{1},-\{i, l\}}\left(\mathbf{S}_{j_{1} i}\right)\right)\right| \\
& \times\left|\left(A_{j_{2}}=\hat{d}_{j_{2}}\left(\mathbf{S}_{j_{2} l}\right)\right)-I\left(A_{j_{2} l}=\hat{d}_{j_{2},-\{i, l\}}\left(\mathbf{S}_{j_{2} l}\right)\right)\right| \\
\leq & P\left(\left|\mathbf{X}_{j_{1} i}^{\top} \hat{\beta}_{j_{1},-\{i, l\}}\right|<C n^{-1},\left|\hat{\beta}_{j_{1},-\{i, l\}}-\beta_{j_{1}}^{0}\right|_{\infty}<b,\right. \\
& \left.\left|\mathbf{X}_{j_{2} l}^{\top} \hat{\beta}_{j_{2},-\{i, l\}}\right|<C n^{-1},\left|\hat{\beta}_{j_{2},-\{i, l\}}-\beta_{j_{2}}^{0}\right|_{\infty}<b\right)+o\left(\frac{\log ^{2} n}{n^{2}}\right) \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) .
\end{aligned}
$$

Consequently, we have

$$
\begin{align*}
& \mathbb{E} \Pi_{k=i, l}\left[\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j k}\right)\right)\right] \\
\leq & \mathbb{E}\left[\sum_{j=t}^{T}\left|I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)-I\left(A_{j i}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j i}\right)\right)\right|\right] \\
& \times\left[\sum_{j=t}^{T}\left|I\left(A_{j l}=\hat{d}_{j}\left(\mathbf{S}_{j l}\right)\right)-I\left(A_{j l}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j l}\right)\right)\right|\right] \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) . \tag{S1.18}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \mathbb{E}\left\{\left[\prod_{j=t}^{T} I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)-\prod_{j=t}^{T} I\left(A_{j i}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j i}\right)\right)\right]\right. \\
& \left.\times\left[\prod_{j=t}^{T} I\left(A_{j l}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j l}\right)\right)-\prod_{j=t}^{T} I\left(A_{j l}=d_{j}^{*}\left(\mathbf{S}_{j l}\right)\right)\right]\right\} \\
\leq & \mathbb{E}\left[\sum_{j=t}^{T}\left|I\left(A_{j i}=\hat{d}_{j}\left(\mathbf{S}_{j i}\right)\right)-I\left(A_{j i}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j i}\right)\right)\right|\right] \\
& \times\left[\sum_{j=t}^{T}\left|I\left(A_{j l}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j l}\right)\right)-I\left(A_{j l}=d_{j}^{*}\left(\mathbf{S}_{j l}\right)\right)\right|\right] \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) . \tag{S1.19}
\end{align*}
$$

And

$$
\begin{align*}
& \mathbb{E} \Pi_{k=i, l}\left[\prod_{j=t}^{T} I\left(A_{j k}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j k}\right)\right)-\prod_{j=t}^{T} I\left(A_{j k}=d_{j}^{*}\left(\mathbf{S}_{j k}\right)\right)\right] \\
\leq & \mathbb{E}\left[\sum_{j=t}^{T}\left|I\left(A_{j i}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j i}\right)\right)-I\left(A_{j i}=d_{j}^{*}\left(\mathbf{S}_{j i}\right)\right)\right|\right] \\
& \times\left[\sum_{j=t}^{T}\left|I\left(A_{j l}=\hat{d}_{j,-\{i, l\}}\left(\mathbf{S}_{j l}\right)\right)-I\left(A_{j l}=d_{j}^{*}\left(\mathbf{S}_{j l}\right)\right)\right|\right] \\
= & o\left(\frac{\log ^{2} n}{n^{2}}\right) . \tag{S1.20}
\end{align*}
$$

(S1.8) is then proved by combing (S1.17), (S1.18), S1.19) and (S1.20).

S1.3 Proof of Theorem 2

Proof. For simplicity, we only prove stage $t=T$. Proofs for stage $t=$ $T-1, \ldots, 1$ are similar to the proofs of (3.4). Note that

$$
\begin{aligned}
& \sqrt{n} \hat{V}_{T} \\
= & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{I\left(A_{T i}=\hat{d}\left(\mathbf{X}_{T i}\right)\right) R_{T i}}{\left(A_{T i} \pi_{T}+\left(1-A_{T i}\right) / 2\right)} \\
= & \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{I\left(A_{T i}=d_{T}\left(\mathbf{X}_{T i}\right)\right) R_{T i}}{\left(A_{T i} \pi_{T}+\left(1-A_{T i}\right) / 2\right)} \\
& +\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\left[I\left(A_{T i}=\hat{d}_{T}\left(\mathbf{X}_{T i}\right)\right)-I\left(A_{T i}=d_{T}\left(\mathbf{X}_{T i}\right)\right)\right] R_{T i}}{\left(A_{T i} \pi_{T}+\left(1-A_{T i}\right) / 2\right)}
\end{aligned}
$$

Using central limit theorem we immediately have

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{I\left(A_{T i}=d_{T}\left(\mathbf{X}_{T i}\right)\right) R_{T i}}{\left(A_{T i} \pi_{T}+\left(1-A_{T i}\right) / 2\right)} \rightarrow N\left(\sqrt{n} V_{T}, \Sigma_{V_{T}}\right)
$$

On the other hand, by Markov's inequality and (3.3) we have

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{I\left(\operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \beta_{T}^{0}\right) \neq \operatorname{sgn}\left(\mathbf{X}_{T i}^{* \top} \hat{\beta}_{T}\right)\right) R_{i}}{\left(A_{T i} \pi_{T}+\left(1-A_{T i}\right) / 2\right)} \rightarrow 0
$$

in probability. Theorem 2 is then proved by Slutsky's theorem.

References

Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Am. Statist. Assoc. 57, 33-45.

Lin, Z. \& Lu, Z. (2013). Strong Limit Theorems, Volume 4. Springer Science \& Business Media.

Petrov, V. (1966). A generalization of cramer's limit theorem. Uspekhi. Mat. Nauk. 9 .

