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Abstract: Estimation based on data with nonignorable nonresponse is considered

when the joint distribution of the study variable y and covariate x is nonpara-

metric and the nonresponse probability conditional on y and x has a parametric

form. The likelihood based on observed data may not be identifiable even when

the joint distribution of y and x is parametric. We show that this difficulty can be

overcome by utilizing a nonresponse instrument, an auxiliary variable related to y

but not related to the nonresponse probability conditional on y and x. Under some

conditions we can apply the generalized method of moments (GMM) to obtain es-

timators of the parameters in the nonresponse probability and the nonparametric

joint distribution of y and x. Consistency and asymptotic normality of GMM es-

timators are established. Simulation results and an application to a data set from

the Korean Labor and Income Panel Survey are also presented.
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1. Introduction

Nonresponse at an appreciable rate exists in many applications. Let y be the

value of a study variable subject to nonresponse, δ be the response indicator of y

(δ = 1 if y is observed and δ = 0 otherwise), and x be a vector of covariates that

are always observed, where x is either deterministic or random with inference

conditional on values of x. We assume that an independent sample of size n

is obtained with (yi, δi,xi) being the realized value of (y, δ,x) for sampled unit

i = 1, . . . , n, where yi is observed if and only if δi = 1. Let p(y|x) be the

conditional density of y given x and p(y) be the marginal density of y. The joint

distribution of y and δ given x is determined by p(y|x) and the nonresponse

mechanism P (δ = 1|y,x). Nonresponse is said to be ignorable if the nonresponse

mechanism is a function of the observed data (Little and Rubin (2002)). Since

(y1, δ1,x1), . . . , (yn, δn,xn) are independent, ignorable nonresponse in this case
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means that P (δ = 1|y,x) = P (δ = 1|x). For ignorable nonresponse, there is

a rich literature on deriving valid estimators of unknown parameters in p(y|x)
or p(y). When P (δ = 1|y,x) depends on y that may be missing, which is the

focus of this paper, nonresponse is nonignorable and the construction of valid

estimators is a challenging problem.

Greenlees, Reece, and Zieschang (1982) and Baker and Laird (1988) proposed

likelihood methods under some parametric assumptions on both P (δ = 1|y,x)
and p(y|x). However, a fully parametric approach is sensitive to the parametric

model assumptions. Since the population is not identifiable when both P (δ =

1|y,x) and p(y|x) are nonparametric (Robins and Ritov (1997)), efforts have

been made in some cases where one of P (δ = 1|y,x) and p(y|x) is parametric and

the other is nonparametric. Tang, Little, and Raghunathan (2003) considered

the situation where p(y|x) is parametric but P (δ = 1|y,x) is nonparametric,

whereas Qin, Leung, and Shao (2002), Chang and Kott (2008), and Kott and

Chang (2010) focused on the case where P (δ = 1|y,x) is parametric but p(y|x)
is nonparametric. In many applications, such as survey problems, it is difficult

to find a suitable parametric model for p(y|x), but a parametric model for P (δ =

1|y,x) such as the logistic may be reasonable.

Although Greenlees, Reece, and Zieschang (1982), Qin, Leung, and Shao

(2002), Chang and Kott (2008), and Kott and Chang (2010) proposed some esti-

mation methods, their results rely on the assumption that the observed likelihood

is identifiable. Identifiability is necessary for the existence of consistent estima-

tors of parameters (Gelfand and Sahu (1999)). It has been studied in the case

of parametric p(y|x) (Chen (2001)); Tang, Little, and Raghunathan (2003)) and

some semiparametric p(y|x) (Rotnitzky and Robins (1997)), but it is not well

studied in the case of nonparametric p(y|x).
In Section 2, we establish a sufficient condition for the identifiability of ob-

served likelihood assuming a parametric model for P (δ = 1|y,x) but without

assuming parametric model for p(y|x). The key is to utilize a nonresponse in-

strument, a component of x that is related to y but not related to the nonresponse

conditional on y and other components of x. Without such an auxiliary vari-

able, the observed likelihood may be nonidentifiable even when both p(y|x) and
P (δ = 1|y,x) are parametric, as shown in a simple example in Section 2.

When the observed likelihood is identifiable, efforts are still needed to develop

an estimation method for unknown quantities in p(y|x) or p(y). Qin, Leung, and

Shao (2002) applied the empirical likelihood approach, while Kott and Chang

(2010) used calibration. In Section 3, we propose the generalized method of

moments (GMM) for estimation and establish the consistency and asymptotic

normality of the GMM estimators. An advantage of the proposed GMM approach

is that the asymptotic covariance matrices of the estimators can be explicitly
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derived and their consistent estimators can be easily computed, which is useful

for statistical inference such as setting confidence regions.

In Section 4, some simulation results are on the finite sample performance

of the GMM estimators and the related confidence intervals for the population

mean. An application to a data example is also included. Section 5 contains

some concluding remarks. Proofs are given in the Appendix.

2. Identifiability

Since yi is observed if and only if δi = 1, the observed likelihood is∏
i: δi=1

P (δi = 1|yi,xi)p(yi|xi)
∏

i: δi=0

∫
[1− P (δi = 1|y,xi)]p(y|xi)dy, (2.1)

where each of P (δ = 1|y,x) and p(y|x) may be parametric or nonparametric.

It is identifiable if two different populations do not produce the same observed

likelihood. Because the second product in (2.1) involves integrals of the quan-

tities in the first product in (2.1), identifiability comes to whether two different

populations give the same P (δ = 1|y,x)p(y|x) for all possible values of (y,x).

Even if both P (δ = 1|y,x) and p(y|x) are parametric, identifiability under

nonignorable nonresponse is not trivial, as an example indicates.

Example 1. Suppose there is no covariate and p(y) is normal with unknown

mean µ and variance σ2. Let P (δ = 1|y) = [1 + exp(α + βy)]−1 with unknown

real-valued α and β. Nonresponse is ignorable if and only if β = 0. Here

P (δ = 1|y)p(y) = exp[−(y − µ)2/2σ2]√
2πσ[1 + exp(α+ βy)]

.

The observed likelihood is not identifiable if (α, β, µ, σ) and (α′, β′, µ′, σ′) produce

exp[−(y − µ)2/2σ2]

σ[1 + exp(α+ βy)]
=

exp[−(y − µ′)2/2σ′2]

σ′[1 + exp(α′ + β′y)]
for all y. (2.2)

But (2.2) holds if σ = σ′, α′ = −α, β′ = −β, α = (µ′2 − µ2)/2σ2, and β =

(µ′ − µ)/σ2. Hence, the observed likelihood is not identifiable unless β = β′ = 0

(ignorable nonresponse).

The observed likelihood in Example 1 is identifiable when there is a covariate

z such that the conditional distribution of y given z depends on the value of z,

and P (δ = 1|y, z) does not depend on z.

Theorem 1. The observed likelihood (2.1) is identifiable under the following

conditions.
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(C1) The covariate x has two components, x = (u, z), such that

P (δ = 1|y,x) = P (δ = 1|y,u) = Ψ(αu + βuy), (2.3)

where αu and βu are unknown parameters not depending on z but may

depend on u, Ψ is a known, strictly monotone, and twice differentiable

function from R to (0, 1], and, for any given u, there exist two values of z,

z1 and z2 (which may depend on u), such that p(y|u, z1) ̸= p(y|u, z2).

(C2) For any given u, p(y|u, z) has a Lebesgue density f(y|u, z) with a monotone

likelihood ratio.

When a covariate x∗ associated with a study variable y∗ is measured with

error, valid estimators of regression parameters can be obtained by utilizing an

instrument z that is correlated with x∗ but independent of y∗ conditioned on x∗.

In (C1), we decompose the covariate vector x into u and z, such that z is corre-

lated with x∗ = (y,u), a “covariate” associated with the “study variable” y∗ = δ,

and z is independent of y∗ = δ conditioned on x∗ = (y,u). Unconditionally, z

may still be related to δ. Since y is subject to nonresponse, not measurement

error, we call z a nonresponse instrument, it helps to identify the observed like-

lihood so that valid estimators of unknown quantities can be obtained (Section

3). The existence of z1 and z2 such that p(y|u, z1) ̸= p(y|u, z2) means that z is

associated with y even in the presence of u.

The nonresponse mechanism in (2.3) has a parametric model. Popular para-

metric models are the logistic model with Ψ(t) = [1 + exp(t)]−1, and the probit

model with Ψ the distribution function of the standard normal.

Here f(y|u, z) in (C2) is nonparametric, since its form is not specified. The

monotone likelihood ratio property in (C2) is satisfied for many Lebesgue density

families, for example, many one-parameter exponential families, the logistic dis-

tribution with location parameter zj , and the uniform distribution on the interval

(zj ,zj + 1). The following result provides another example in which condition

(C2) holds.

Corollary 1. Suppose (C1) holds and ∂ log(f(y|u, z))/∂y is a monotone function

on the support of f(y|u, z), where f(y|u, z) is given in (C2). The observed

likelihood (2.1) is identifiable if

(i) f(y|u, z) = f(y − φ) with a parameter φ ∈ R and a Lebesgue density f

(which may be unknown), or

(ii) f(y|u, z) = φjf(φy) with a parameter φ > 0 and a Lebesgue density f (which

may be unknown), and either f(y) = 0 or f(y) = f(−y) for y ≤ 0.
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3. Estimation

Using the data with nonresponse and a parametric p(y|x), we can estimate

parameters by maximizing the observed likelihood (2.1). Here we consider non-

parametric p(y|x) and the GMM (Hansen (1982); Hall (2005)) for estimation.

The key idea of the GMM is to construct a set of L estimating functions

gl(ϑ, y, δ,x), l = 1, . . . , L, ϑ ∈ Θ,

where Θ is the parameter space containing the true parameter value θ, L ≥ the

dimension of Θ, the gl’s are non-constant functions with E[gl(θ, y, δ,x)] = 0 for

all l, and are not linearly dependent. Let

G(ϑ) =
( 1

n

∑
i

g1(ϑ, yi, δi,xi), . . . ,
1

n

∑
i

gL(ϑ, yi, δi,xi)
)T
, ϑ ∈ Θ, (3.1)

where aT denotes the transpose of the vector a. If L is the same as the dimension

of Θ, then we may be able to find a θ̂ such that G(θ̂) = 0. If L is larger than

the dimension of Θ, however, a solution to G(ϑ) = 0 may not exist. A GMM

estimator of θ can be obtained using a two-step algorithm.

1. Obtain θ̂(1) by minimizing GT (ϑ)G(ϑ) over ϑ ∈ Θ.

2. Let Ŵ be the inverse matrix of the L × L matrix whose (l, l′) element is

n−1
∑

i gl(θ̂
(1), yi, δi,xi)gl′(θ̂

(1), yi, δi,xi). The GMM estimator θ̂ is obtained

by minimizing GT (ϑ)ŴG(ϑ) over ϑ ∈ Θ.

We first consider the situation where x=(u, z), z=(t, z) has a q-dimensional

continuous component t and a discrete component z taking values 1, . . . , J , and

u is a continuous p-dimensional covariate.

Although the observed likelihood (2.1) is identifiable under (C1) and (C2)

αu and βu in (2.3) depend on values of u and, hence, there may be uncountably

many parameters for the case of continuous u. We assume therefore a condition

to replace (2.3):

P (δ = 1|y,x) = P (δ = 1|y,u) = Ψ(α+ βy + γuT ), (3.2)

where Ψ is as in (2.3), and (α, β, γ) is a (p+2)-dimensional unknown parameter

not depending on values of x. A similar assumption to (3.2) was made in Qin,

Leung, and Shao (2002) and Kott and Chang (2010).

To estimate (α, β, γ), the GMM can be applied with the L = p + q + J

functions

g(ϑ, y, δ,x) =

dT [δw(ϑ)− 1]

tT [δw(ϑ)− 1]

uT [δw(ϑ)− 1]

 , (3.3)
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where d is the J-dimensional row vector whose lth component is I(z = l), I(A)

the indicator function of A, w(ϑ) = [Ψ(ϑ1+ϑ2y+ϑ3u
T )]−1, and ϑ = (ϑ1, ϑ2, ϑ3).

The function g is motivated by the fact that, when θ is the true parameter value,

E[g(θ, y, δ,x)] = E {ξ [δw(θ)− 1]}
= E (E {ξ [δw(θ)− 1] |y, z,u})

= E

{
ξ

[
E(δ|y, z,u)

P (δ = 1|y, z,u)
− 1

]}
= 0,

where ξ = (d, t,u)T . We need q + J ≥ 2. If q = 0, the requirement J ≥ 2 is

satisfied if z is not a constant.

Take G as at (3.1) with gl the lth function of g, Ŵ given by the two-step

algorithm, and θ̂ = (α̂, β̂, γ̂) the two-step GMM estimator of θ = (α, β, γ).

Theorem 2. As n → ∞, the following conclusions hold under (C1) with (2.3)

replaced by (3.2), and (C3)−(C4).

(i) There exists {θ̂} such that P (s(θ̂) = 0) → 1 and θ̂ →p θ as n → ∞, where

s(ϑ) = −∂[GT (ϑ)ŴG(ϑ)]/∂ϑ and →p denotes convergence in probability.

(ii) For any sequence {θ̃} satisfying s(θ̃) = 0 and θ̃ →p θ,

√
n(θ̃ − θ) →d N

(
0, (ΓTΣ−1Γ)−1

)
,

where →d denotes convergence in distribution, Γ is given in (C4), and Σ

is the positive definite matrix with E[gl(θ, y, δ,x)gl′(θ, y, δ,x)] as its (l, l′)th

element, 1 ≤ l, l′ ≤ p+ q + J .

(iii) If Γ̂ is the (p+ q + J)× (p+ 2) matrix whose lth row is

1

n

∑
i

∂gl(ϑ, yi, δi,xi)

∂ϑ

∣∣∣∣
ϑ=θ̂

and Σ̂ is the L× L matrix whose (l, l′)th element is

1

n

∑
i

gl(θ̂, yi, δi,xi)gl′(θ̂, yi, δi,xi),

Γ̂T Σ̂−1Γ̂ →p Γ
TΣ−1Γ.

(C3) The parameter space Θ containing the true value θ is an open subset of

Rp+2, E(∥u∥2 + ∥t∥2) <∞, and there is a neighborhood N of θ such that

E

[
δ sup
ϑ∈N

{
(1+∥t∥2+∥u∥2)w2(ϑ) + (1+|y|+∥u∥1)(1+∥t∥1+∥u∥1)|w′(ϑ)|
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+(1+y2+∥u∥2)(1+∥t∥1+∥u∥1)|w′′(ϑ)|
}]

<∞,

where ∥ · ∥ is the L2-norm, ∥ · ∥1 is the L1-norm, w(ϑ) = [Ψ(ϑ1 + ϑ2y +

ϑ3u
T )]−1, and w′ and w′′ are the first and second order derivatives of w(·).

(C4) The (p+ q + J)× (p+ 2) matrix

Γ =

E[δdTw′(θ)] E[δydTw′(θ)] E[δdTuw′(θ)]

E[δtTw′(θ)] E[δytTw′(θ)] E[δtTuw′(θ)]

E[δuTw′(θ)] E[δyuTw′(θ)] E[δuTuw′(θ)]


is of full rank.

The asymptotic covariance matrix (ΓTΣ−1Γ)−1 is much simpler than that

of the empirical likelihood estimator in Qin, Leung, and Shao (2002), which en-

ables us to obtain an easy-to-compute covariance matrix estimator (Γ̂T Σ̂−1Γ̂)−1.

Kott and Chang (2010) also derived the asymptotic normality of the calibration

estimator and its asymptotic covariance matrix, but they required that y given

x follows a linear model.

Consider some special cases in which (C3) or (C4) can be simplified. First,

consider that x = z is a discrete nonresponse instrument. Then (C4) can be

simplified to the condition that there exist at least j1 and j2 in {1, . . . , J} such

that
E[yw′(θ)|δ = 1, z = j1]

E[w′(θ)|δ = 1, z = j1]
̸= E[yw′(θ)|δ = 1, z = j2]

E[w′(θ)|δ = 1, z = j2]
. (3.4)

This condition can be empirically checked using observed yi’s and the covariate

di’s. In this case, if Ψ(t) = [1 + exp(t)]−1 is logistic, then (C3) simplifies to

E(δy2) <∞ and E[δ exp({2β ± ϵ}y)] <∞ for some ϵ > 0.

A second special case has z = z discrete and u = u a univariate continuous

covariate. The full rank assumption on Γ is the key for the results in Theorem 2

and it is implied by any of the following conditions.

(1) J ≥ 3 and the points (aj , bj), j = 1, . . . , J , are not on the same line, where

aj =
E[yw′(θ)|δ = 1, z = j]

E[w′(θ)|δ = 1, z = j]
and bj =

E[uw′(θ)|δ = 1, z = j]

E[w′(θ)|δ = 1, z = j]
. (3.5)

(2) Condition (3.4) holds, E[uw′(θ)|δ = 1] ̸= 0, and the points (aj , bj), j = 1, . . .,

J+1, are not on the same line, where aJ+1 = E[yuw′(θ)|δ = 1]/E[uw′(θ)|δ =
1], bJ+1 = E[u2w′(θ)|δ = 1]/E[uw′(θ)|δ = 1], and aj and bj , j = 1, . . . , J , are

given in (3.5).
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(3) Condition (3.4) holds, E[uw′(θ)|δ = 1] = 0, and either E[yuw′(θ)|δ = 1] = 0

or
E[u2w′(θ)|δ = 1]

E[yuw′(θ)|δ = 1]
̸= bj1 − bj2
aj1 − aj2

,

where j1 and j2 are given in (3.4) and aj and bj are given in (3.5).

Any of (1)−(3) can be empirically checked using observed data.

Once θ̂ = (α̂, β̂, γ̂) is obtained, we can estimate the marginal distribution of

y by the empirical distribution putting mass pi on each observed yi, where pi is

proportional to δi/Ψ(α̂+ β̂yi + γ̂uT
i ).

We consider the estimation of the population mean µ = E(y). Once we have

estimators α̂, β̂ and γ̂, µ can be estimated by

µ̃1 =
1

n

∑
i

δiyi

Ψ(α̂+ β̂yi + γ̂uT
i )

(3.6)

or by

µ̃2 =
∑
i

δiyi

Ψ(α̂+ β̂yi + γ̂uT
i )

/∑
i

δi

Ψ(α̂+ β̂yi + γ̂uT
i )
. (3.7)

When the number of functions in (3.3) is more than the number of parameters,

we can actually obtain a better estimator of µ using the GMM after adding the

function h(µ, ϑ, y, δ,x) = µ − δyw(ϑ), to (3.3). The parameters in this GMM

are µ, α, β, and γ, and the number of equations is L = p + q + J + 1. The

resulting GMM estimators α̂, β̂, and γ̂ are the same as those obtained by solving

R = p + q + J equations, but µ̂ is different from µ̃1 in (3.6) or µ̃2 in (3.7). The

difference is due to the weight matrix in the second step of the GMM. Let WR

be the optimal weight matrix for the GMM based on the R functions in (3.3).

After adding h(µ, ϑ, y, δ,x), we can easily show that (µ̃1, α̂, β̂, γ̂) is the GMM

estimators based on R+ 1 equations and the weight matrix

W̃R+1 =

[
WR 0

0 1

]
. (3.8)

The weight matrix in (3.8) is not necessarily optimal. If (µ̂, α̂, β̂, γ̂) is the GMM

estimator obtained using the two-step algorithm with the L = R + 1 functions,

then the following result holds and µ̂ is asymptotically more efficient than µ̃1
unless W̃R+1 in (3.8) is optimal.

Corollary 2. Assume the conditions in Theorem 2, E(y2) <∞, and

E
[
δ sup
ϑ∈N

{
y2w2(ϑ) + y2|w′(ϑ)|+ |y|3|w′′(ϑ)|

} ]
<∞.
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Let (µ̂, α̂, β̂, γ̂) be the GMM estimator obtained using the two-step algorithm after

adding h(µ, ϑ, y, δ,x) = µ − δyw(ϑ) to the set of functions in (3.3). Then the

result in Theorem 2 holds with θ and θ̂ replaced by (µ, α, β, γ) and (µ̂, α̂, β̂, γ̂),

respectively.

Consider now the general situation where both z and u may have continuous

and discrete components. Let u = (v, s) and z = (t, z), where v and t are con-

tinuous and s and z are discrete taking values 1, . . . ,K and 1, . . . , J , respectively.

Assume (C1) with (2.3) replaced by

P (δ = 1|y,x) = Ψ(αs + βsy + γsv
T ).

For each k = 1, . . . ,K, we consider the category defined by s = k and apply the

GMM for the estimation of θk = (αk, βk, γk) using

g(ϑ, y, δ,x) =

dT [δw(ϑ)− 1]

tT [δw(ϑ)− 1]

vT [δw(ϑ)− 1]

 ,

where d is defined by (3.3) , w(ϑ) = [Ψ(ϑ1+ϑ2y+ϑ3v
T )]−1, and ϑ = (ϑ1, ϑ2, ϑ3).

Let nk be the number of sample units in the category defined by s = k.

The unconditional distribution of y can be estimated by the weighted average

of these K empirical distributions with weights proportional to nk. Using these

estimated distributions, we can estimate parameters in p(y|x) or p(y). Asymp-

totic results for these estimators similar to those in Theorem 2 and Corollary 2

can be established.

4. Empirical Results

We present some results from a simulation study with normally distributed

data. Then we apply the proposed method to a data set from the Korean Labor

and Income Panel Survey (KLIPS). Finally, we consider another simulation study

using a similar population to the real data set. In the two-step algorithm of

GMM for the estimation of α, β, γ, and the overall mean µ = E(y), we used the

MATLAB function fminsearch to minimize the objective functions G(ϑ)TG(ϑ)

and G(ϑ)T ŴG(ϑ). In all numerical studies, the initial values for α, β, and γ

were 0, and the initial value of µ was the naive estimate µ̌, the sample mean

of the observed yi’s. For the estimation of µ, we compared the proposed GMM

estimator µ̂ (Corollary 2), the naive estimate µ̌, the estimators µ̃1 and µ̃2 given in

(3.6) and (3.7), respectively, and µ̂EL , the estimator of µ based on the empirical

likelihood method in Qin, Leung, and Shao (2002). The MATLAB function

fsolve was used to solve the empirical likelihood estimation equations.
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4.1. Simulation from normal populations

We considered n = 500 or 2,000 and three populations, each with two sets of

parameter values. In the first population, we took x = z as a discrete nonresponse

instrument having J = 2 categories with P (z = 1) = 0.4 and P (z = 2) = 0.6.

Conditional on z, y ∼ N(20 + 10z, 42) with unconditional mean 36. Given the

generated data, the nonrespondents were generated according to P (δ = 1|y, z) =
[1+exp(α+βy)]−1, where (α, β) = (1,−0.05) or (−2.6, 0.05). These values were

chosen so that β had different signs. The unconditional nonresponse probability

was approximately between 30% and 40%.

The second population was similar. The discrete nonresponse instrument z

had J = 3 categories with P (z = 1) = 0.3, P (z = 2) = 0.3, and P (z = 3) = 0.4.

Given z, y ∼ N(20 + 10z, 42), with unconditional mean 41. The nonresponse

mechanism is P (δ = 1|y, z) = [1+ exp(α+βy)]−1, where (α, β) = (1.2,−0.05) or

(−2.6, 0.05).

In the last population, a continuous covariate u was added, x = (u, z),

while z was the same as in the second case. Given z, u ∼ N(100z, 402). Given

z = 1 and u, y ∼ N(u, 202); given z = 2 and u, y ∼ N(1.5u, 202); given z = 3

and u, y ∼ N(300 + 0.5u, 202). The unconditional mean of y was 300. The

nonresponse mechanism was P (δ = 1|y, u, z) = [1 + exp(α+ βy + γu)]−1, where

(α, β, γ) = (0.4,−0.002,−0.003) or (−2, 0.002, 0.003).

Table 1 reports the following, based on 2,000 simulations: the bias of the

GMM estimates, α̂, β̂, γ̂ (for the last case only), µ̂, the naive estimate µ̌, µ̃1
in (3.6), µ̃2 in (3.7), and the empirical likelihood estimate µ̂EL (Qin, Leung, and

Shao (2002)); the standard deviation (SD) of GMM estimates, µ̌, µ̃1, µ̃2 and µ̂EL ;

the standard error (SE) for GMM estimates, the estimated SD using the squared

root of the diagonal elements in the matrix n−1(Γ̂T Σ̂−1Γ̂)−1 given in Theorem

2(iii), and for µ̌ using the sample standard deviation; the coverage probability

(CP) of the approximate 95% confidence intervals [µ̂ − 1.96SE, µ̂ + 1.96SE] and

[µ̌ − 1.96SE, µ̌ + 1.96SE]. The values of parameters and J are also included in

Table 1.

The simulation results in Table 1 support the asymptotic results for the

GMM estimators as well as the consistency of the variance estimators. When

there is no covariate u, the GMM estimators work well for J = 2 and J = 3,

although performance is generally better when J = 3. The coverage probabilities

of the confidence intervals based on µ̂ are all close to the nominal level 95%.

The naive estimator µ̌ has a positive bias when β < 0 (larger y has smaller

nonresponse probability) and has a negative bias when β > 0 (larger y has larger

nonresponse probability). Although the bias of µ̌ may be small compared with

the value of µ, it is not small compared with the SD so that it leads to a poor

performance of the confidence interval based on µ̌. The performance of µ̃1, µ̃2
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Table 1. Simulation results for normal populations.

n = 2, 000
Parameter Estimate

J µ α β γ µ̂ µ̌ µ̃1 µ̃2 µ̂EL α̂ β̂ γ̂

2 36 1 -0.05 0 Bias 0.0054 0.6217 -0.0148 3.7/104

SD 0.1607 0.1646 0.3671 0.0104

SE 0.1616 0.1675 0.3523 0.0100
CP 94.3% 4.8%

2 36 -2.6 0.05 0 Bias 0.0018 -0.6115 -0.0222 4.7/104

SD 0.1657 0.1743 0.3908 0.0105

SE 0.1622 0.1708 0.3847 0.0103
CP 94.3% 4.8%

3 41 1.2 -0.05 0 Bias -0.0026 1.2686 -0.0210 -0.0055 -0.0052 -0.0063 1.2/104

SD 0.2207 0.2371 0.2243 0.2214 0.2208 0.2395 0.0061
SE 0.2169 0.2417 0.2426 0.0061
CP 94.8% 0.0%

3 41 -2.6 0.05 0 Bias 0.0025 -1.5214 -0.0125 0.0066 0.0025 -0.0321 6.4/104

SD 0.2227 0.2539 0.2225 0.2225 0.2210 0.2717 0.0062
SE 0.2207 0.2581 0.2564 0.0059
CP 94.1% 0.0%

3 300 0.4 -0.002 -0.003 Bias -0.0591 26.9383 -0.2354 -0.0729 -0.0596 0.0086 5.8/105 -1.5/104

SD 3.4081 3.8300 3.4295 3.4091 3.4032 0.1447 0.0018 0.0030
SE 3.4389 3.8950 0.1429 0.0018 0.0029
CP 94.6% 0.0%

3 300 -2 0.002 0.003 Bias -0.2169 -26.5431 -0.3235 -0.2149 -0.2213 -0.0057 3.3/105 5.8/105

SD 3.3770 4.1205 3.2911 3.4084 3.2961 0.1626 0.0016 0.0024
SE 3.4413 4.1872 0.1442 0.0015 0.0024
CP 95.2% 0.0%

n = 500

2 36 1 -0.05 0 Bias 0.0228 0.6249 -0.0452 0.0011
SD 0.3189 0.3429 0.7003 0.0198
SE 0.3224 0.3345 0.7110 0.0201
CP 94.2% 55.4%

2 36 -2.6 0.05 0 Bias 0.0025 -0.6166 -0.0517 0.0012
SD 0.3354 0.3420 0.7858 0.0209
SE 0.3247 0.3418 0.7744 0.0207
CP 94.3% 4.8%

3 41 1.2 -0.05 0 Bias 0.0338 1.2961 -0.0400 0.0195 0.0218 0.0198 -6.7/104

SD 0.4259 0.4775 0.4368 0.4258 0.4240 0.4914 0.0123
SE 0.4324 0.4818 0.4916 0.0123
CP 95.5% 23.5%

3 41 -2.6 0.05 0 Bias -0.0039 -1.5356 -0.0642 0.0015 -0.0087 -0.0701 0.0014
SD 0.4382 0.5138 0.4485 0.4448 0.4380 0.5683 0.0130
SE 0.4410 0.5165 0.5374 0.0120

CP 94.7% 15.1%
3 300 0.4 -0.002 -0.003 Bias -0.1934 26.704 -0.8013 -0.2047 -0.1449 0.0192 2.9/104 -7.6/104

SD 6.7338 7.4839 6.7379 6.7295 6.7148 0.2988 0.0035 0.0059
SE 6.8748 7.8109 0.2900 0.0036 0.0060

CP 95.5% 7.4%
3 300 -2 0.002 0.003 Bias -0.0200 -25.710 -0.3105 0.2197 0.0541 -0.0065 -5.8/105 1.4/104

SD 6.8694 8.1686 6.7988 7.0382 6.7577 0.3376 0.0032 0.0049
SE 6.8721 8.3815 0.2959 0.0031 0.0049

CP 94.3% 12.5%



1108 SHENG WANG, JUN SHAO AND JAE KWANG KIM

and µ̂EL are similar to that of µ̂ in terms of both bias and standard deviation,

indicating that the weight matrix in (3.8) is nearly optimal. When the number

of equations is equal to the number of parameters (J = 2 case), they are all

identical.

4.2. Estimates for the KLIPS data

We applied the proposed method to a data set from the KLIPS. A brief

description of this survey can be found at

http://www.kli.re.kr/klips/en/about/introduce.jsp.

The data set consists of n = 2, 506 regular wage earners. The variable of interest,

y, is the monthly income in 2006. Covariates associated with y are gender, age

group, level of education, and the monthly income in 2005. The variable y has

about 35% missing values while all covariate values are observed.

To apply the proposed method, we first used the income in 2005 as a con-

tinuous covariate u and the age, gender, and education levels as a discrete non-

response instrument z. Thus we assumed that these covariates are related to y

and u but they are not related to the nonresponse once y and u are given. Un-

conditionally, these covariates may still be related to the nonresponse. We took

age<35, 35≤age<51, and age≥51, gender as male and female, and education up

to high school or beyond. Therefore, z had 3×2×2=12 categories. We assumed

model (3.2) with Ψ(t)=[1+exp(t)]−1. The naive estimate µ̌, the GMM estimates,

their SE’s, µ̃1 in (3.6), µ̃2 in (3.7), and the empirical likelihood estimator µ̂EL

were as follows.

µ̌ µ̂ α̂ β̂ γ̂ µ̃1 µ̃2 µ̂EL

Estimate 205.71 184.55 0.6932 −0.0072 −0.0004 183.85 184.77 184.59

SE 2.7407 2.8468 0.1685 0.0024 0.0016

Here µ̂, µ̃1, µ̃2, and µ̂EL are close together but they are significantly different

from µ̌. Since γ̂ is not significantly different from 0, we set γ = 0 in (3.2) and

(3.3) and computed the GMM estimates again. The results were as follows.

µ̂ α̂ β̂ µ̃1 µ̃2 µ̂EL

Estimate 184.00 0.7244 −0.0073 183.42 184.35 184.64

SE 2.2735 0.1333 0.0008

Next, we carried out a sensitivity analysis to see whether results were sensi-

tive to different choices of nonresponse instrument z. The following table reports

the mean estimates and SE’s under different cases, with u = (u, s), u and s con-

tinuous and discrete covariates that are related to nonresponse even if y is given,

and z is a discrete nonresponse instrument.

http://www.kli.re.kr/klips/en/about/introduce.jsp
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u s z µ̂ SE

2005 income Age, Education, Gender 184.55 2.8468

2005 income Gender Age, Education 185.54 3.4032

2005 income Age Education, Gender 183.58 3.0727

2005 income Education Age, Gender 183.89 3.3423

2005 income Education, Gender Age 196.56 6.5353

2005 income Age, Education Gender 186.07 4.0512

2005 income Age, Gender Education 188.36 4.7384

The results are about the same except for those when the age group is the

only covariate used as nonresponse instrument. We think that the age group

is not a useful predictor of the 2006 income given 2005 income, education, and

gender. It results in a too large µ̂ as well as a large SE.

4.3. Simulation for the KLIPS population

To examine whether estimates for the KLIPS data are adequate, we carried

out a simulation study using a population similar to the KLIPS data set with

2005 income treated as a continuous u and the categorical variable formed by age,

gender and education treated as z. First, we took an independent probability

proportional to 1+exp(α̂+ β̂yi+ γ̂ui) sample M = {(y∗i , u∗i , z∗i ), i = 1, . . . , 2, 506}
with replacement from the set of subjects in the KLIPS data set with observed

yi’s, where α̂, β̂, and γ̂ are the GMM estimates obtained in Section 4.2. Then,

we generated independently n = 2500 vectors, (ỹi, ũi, z̃i), by first taking a simple

random sample S = {(y∗∗i , u∗∗i , z∗∗i ), i = 1, . . . , n} with replacement from M and

then setting ỹi = y∗∗i + ϵyi, ũi = u∗∗i + ϵui, and z̃i = z∗∗i , i = 1, . . . , n, where

ϵyi, ϵui, i = 1, . . . , n, are independent and normally distributed with mean 0 and

standard deviation 10.6 (about 1/10 of the standard deviation of y∗i ’s in M).

The population mean of ỹi is 185.85.

The nonrespondents were generated according to (3.2) with Ψ(t) = [1 +

exp(t)]−1. We first considered two sets of parameter values: α = 0.6932 and

β = −0.0072 as the GMM estimates in Section 4.2; γ = 0 in the first set; and

γ = −0.0004 is the GMM estimate in Section 4.2 in the second set. For each set

of parameters, we computed

I. GMM estimates using (3.2) and (3.3).

II. GMM estimates using (3.2) and (3.3) but setting γ = 0.

Table 2 reports the quantities in Table 1 based on 2,000 simulations. All

GMM estimators performed well when a correct model on the nonresponse mech-

anism was used. When method II was used and γ = 0, the GMM estimators

were more efficient. In the case where γ = −0.0004 but method II was used, the
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Table 2. Simulation results for the KLIPS population (µ = 185.85)

Parameter Estimate

α β γ µ̂ µ̌ µ̃1 µ̃2 µ̂EL α̂ β̂ γ̂

I 0.6932 -0.0072 0 Bias 0.7299 21.293 -0.1416 0.7638 0.5056 -0.0352 0.0010 -0.0010
SD 3.2211 2.7858 3.2246 3.2193 3.2774 0.1639 0.0034 0.0030
SE 3.1050 2.7871 0.1558 0.0031 0.0026
CP 93.8% 0.0%

II 0.6932 -0.0072 0 Bias 0.084 -0.8404 0.126 0.183 -0.019 3.2/105

SD 2.2191 2.2525 2.2242 2.7363 0.1307 0.0008
SE 2.3099 0.1287 0.0008
CP 94.5%

I 0.6932 -0.0072 -0.0004 Bias 0.934 21.359 0.038 0.986 0.659 -0.030 0.0011 -0.0011
SD 3.2087 2.8322 3.2044 3.1994 3.2651 0.1623 0.0033 0.0029
SE 3.0652 2.7514 0.1589 0.0031 0.0026
CP 94.6% 0.0%

II 0.6932 -0.0072 -0.0004 Bias -0.199 -1.1151 -0.0911 0.2340 0.012 -5.7/104

SD 2.4080 2.4304 2.4040 2.8119 0.1362 0.0008
SE 2.2982 0.1325 0.0008

CP 92.2%
I 1.3 -0.003 -0.01 Bias 0.5756 24.669 -0.4070 0.6464 0.2181 -0.0222 -9.0/105 2.3/105

SD 3.2077 2.7148 3.1817 3.2277 3.3850 0.1607 0.0044 0.0043
SE 3.1528 2.6868 0.1606 0.0045 0.0043

CP 94.6% 0.0%
II 1.3 -0.003 -0.01 Bias -5.4613 -6.5258 -4.4156 -1.9204 0.2123 -0.0113

SD 2.2861 2.2974 2.3253 2.6550 0.1587 0.0012
SE 2.3142 0.1714 0.0013

CP 33.4%

I: The GMM using (3.2) and (3.3)
II: The GMM using (3.2) and (3.3) but setting γ = 0

GMM estimators were biased in theory, but still performed well because γ was

very small.

To see the effect of incorrectly setting γ = 0, we carried out the simulation

with another set of parameters, (α, β, γ) = (1.3,−0.003,−0.01). The results

are also included in Table 2. Although the GMM estimator based on method I

performed well, the GMM estimator based on method II had some biases that

resulted in a poor coverage probability of the confidence interval. Similar to the

simulation study in Section 4.1, estimators µ̃1 in (3.6) and µ̃2 in (3.7) have similar

performance compared with µ̂. The empirical likelihood estimator µ̂EL is slightly

worse than the other estimators under this simulation setting. We believe that

this is caused by the fact that the numerical solution in empirical likelihood may

not be stable when the number of equations (constraints in empirical likelihood)

is not small (J = 8 in this study compared with J = 2 or 3 in Section 4.1).

To summarize, the GMM estimators and their standard deviation estima-

tors have good performance when the nonresponse mechanism model is correct.

The naive estimator based on observed yi’s can be seriously biased. The GMM

estimators are in general sensitive to the misspecification of the nonresponse
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mechanism, although, for the KLIPS data, treating γ in (3.2) and (3.3) as 0 does

not create significant biases.

5. Concluding Remarks

We consider parameter estimation under nonignorable nonresponse assuming

a parametric model for the probability P (δ = 1|y,x) but without assuming any

parametric model for p(y|x). The crucial part is to estimate the parameter

θ in the nonresponse mechanism. For ignorable nonresponse, the parameters in

P (δ = 1|y,x) can be consistently estimated using observed data; see, for example,

Nevo (2003) and Chang and Kott (2008). For nonignorable nonresponse, even if

both P (δ = 1|y,x) and p(y|x) are parametric, θ may not be identifiable without

additional auxiliary information. In this paper, we consider the situation where

some auxiliary information is provided by a nonresponse instrument z that is

useful in predicting the study variable y but is conditionally independent of the

response indicator δ given y and values of some other covariates. We show how to

use this nonresponse instrument to construct estimating equations for the GMM

estimators of θ and other parameters. Consistency and asymptotic normality

of the GMM estimators are established. The proposed nonresponse instrument

approach sheds light on how to use an auxiliary variable to avoid the notorious

nonidentifiability problem associated with the nonignorable nonresponse.

The use of a nonresponse instrument proposed in this paper is different from

the approach of using a surrogate variable considered in Chen, Leung, and Qin

(2008), which requires that P (δ = 1|y,x, s) = P (δ = 1|x, s) for an observed

surrogate variable s. This requirement means that conditional on the surrogate

variable s, the nonresponse mechanism becomes ignorable, since (x, s) is always

observed. However, it may not be easy to find a suitable surrogate variable to

satisfy the requirement on the nonresponse mechanism.

Once a consistent estimator θ̂ is obtained, consistent estimators of unknown

quantities in p(y|x), such as the mean and the distribution function of y, can be

obtained by a weighted mean where the weights are proportional to the inverse of

the estimated response probabilities. We also show that efficient estimators may

be obtained by applying the GMM with some additional estimating functions

related to the quantities to be estimated.

To apply the proposed method, one needs to carefully choose a nonresponse

instrument z among a set of covariates to meet the conditions (i) z is related to

the study variable y and (ii) z can be excluded from the nonresponse mechanism

when y and some other covariates u are included. In the KLIPS, for example, z =

(age group, gender, level of education) is related to the 2006 monthly income, but

when the 2006 monthly income as well as the 2005 monthly income are included

in the nonresponse mechanism for the 2006 monthly income, it is likely that z
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or part of z is not needed for the nonresponse model and, hence, z can be used

as a nonresponse instrument.

The assumption on the nonresponse mechanism is crucial to the proposed

GMM estimators. Unfortunately, we are not able to check this assumption due

to the presence of missing values. This issue also exists for methods developed

under the ignorable nonresponse assumption, since we are not able to check the

ignorable nonresponse assumption using observed data only. It is then important

to develop methods under various assumptions. The results can be compared in

applications and are useful for a sensitivity analysis.

While the proposed method provides a useful tool for handling the nonignor-

able nonresponse, there is no guarantee that the proposed GMM estimators are

optimal. Since estimating functions for the GMM are not uniquely defined. The

function in (3.3), for example, is related to the first order moments of covariates.

Other moments or characteristics of u and z may provide more information and,

hence, result in more efficient GMM estimators. Finding more efficient GMM

estimators or other types of estimators under the setup of this paper is a topic

of our future research.
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Appendix

Proof of Theorem 1. Since we consider the conditional distribution for given

u, we can treat u as fixed and omit u in the notation. Let f1(y) and f2(y) be the

Lebesgue density functions in (C2). To show identifiability, it suffices to show

that, if

Ψ(α+ βy)f1(y) = Ψ(α′ + β′y)f ′1(y)

Ψ(α+ βy)f2(y) = Ψ(α′ + β′y)f ′2(y)
for all y ∈ R, (A.1)

then α = α′, β = β′, f1 = f ′1, and f2 = f ′2. Since f1, f2, f
′
1, and f

′
2 are density

functions, (A.1) implies∫ [ Ψ(α+ βy)

Ψ(α′ + β′y)
− 1

]
f1(y)dy =

∫ [ Ψ(α+ βy)

Ψ(α′ + β′y)
− 1

]
f2(y)dy = 0. (A.2)

We now show in two steps that (A.2) implies β = β′.
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Step I. We prove that, when β ̸= β′, the function K(y) = [Ψ(α + βy)/Ψ(α′ +

β′y)] − 1 has a single change of sign. Under (C1), Ψ is strictly monotone. We

consider a strictly decreasing Ψ, proof for a strictly increasing Ψ is similar. Now

if one of β and β′ is 0 or if β and β′ have different signs, then K(y) is a strictly

monotone function having a unique root and, hence, it has a single change of

sign.

It remains to consider the case where β and β′ have the same sign, say

β′ > β > 0. Let y∗ = (α−α′)/(β′−β). Since α+βy∗ = α′+β′y∗, we have

K(y∗) = 0. For any y > y∗,

α+ βy = α+ βy∗ + β(y − y∗) < α+ βy∗ + β′(y − y∗) = α′ + β′y. (A.3)

Since Ψ is strictly decreasing, it follows from (A.3) that Ψ(α+βy) > Ψ(α′+β′y)

and, therefore, K(y) = [Ψ(α+βy)/Ψ(α′ + β′y)]− 1 > 0. Similarly, when y < y∗,

K(y) < 0. This proves that K(y) has a single change of sign.

Step II. We prove that, if β ̸= β′ and if the first integral in (A.2) is 0, then

the second integral is not 0. Let X be a random variable having f1 or f2 as its

probability density and let Ej denote the expectation when X has density fj .

We show that if E1[K(X)] = 0, then E2[K(X)] ̸= 0, where K is the function

defined in Step I with β ̸= β′.

Let K(x) < 0 if x < x0 and K(x) > 0 if x > x0, and put

c = sup
x<x0

f2(x)

f1(x)
.

Under (C2), f2(y)/f1(y) is a nondecreasing function of y. Hence, when f1(x0) >

0, c = f2(x0)/f1(x0) <∞. When f1(x0) = 0, because E1[K(X)] = 0, there exists

x1 such that x1 > x0 and f1(x1) > 0, which implies that c ≤ f2(x1)/f1(x1) <∞.

Thus, c <∞. Write

E2(K(X)) =

∫
K(x)f2(x)dx =

∫
A
K(x)f2(x)dx+

∫
B
K(x)f2(x)dx,

where A = {x : f1(x) = 0, f2(x) > 0} and B = {x : f1(x) > 0, f2(x) > 0} ∪ {x :

f1(x) > 0, f2(x) = 0}. If x ∈ A, then f2(x)/f1(x) = ∞ and, therefore, x > x0.

This shows that K(x) > 0 for x ∈ A and
∫
AK(x)f2(x) ≥ 0. Then

E2[K(X)] ≥
∫
B
K(x)f2(x)dx

=

∫
B1

K(x)f2(x)dx+

∫
B2

K(x)f2(x)dx

=

∫
B1

K(x)
f2(x)

f1(x)
f1(x)dx+

∫
B2

K(x)
f2(x)

f1(x)
f1(x)dx

≥
∫
B1

cK(x)f1(x)dx+

∫
B2

cK(x)f1(x)dx
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= cE1[K(X)]

= 0,

where B1 = {x : x ∈ B, x < x0}, B2 = {x : x ∈ B, x > x0}, and the last

inequality follows from the definition of c and the fact that K(x) < 0 for x ∈ B1

and K(x) > 0 for x ∈ B2.

If A has a positive Lebesgue measure, then
∫
AK(x)f2(x)dx > 0 and, hence,

E2[K(X)] > 0. If A has Lebesgue measure 0, then the support sets of f1 and

f2 are subsets of B. If E2[K(X)] = 0, then f2(x) = cf1(x) a.e. on B. Then,

c = 1 because f1 and f2 are densities. This contradicts (C1). Therefore, we have

E2[K(X)] > 0.

Thus, (A.2) implies β = β′ and reduces to∫ [ Ψ(α+ βy)

Ψ(α′ + βy)
− 1

]
f1(y)dy =

∫ [ Ψ(α+ βy)

Ψ(α′ + βy)
− 1

]
f2(y)dy = 0,

which implies α = α′ since Ψ(x) is a strictly monotone function. These results

and (A.1) imply that f1 = f ′1 and f2 = f ′2, which shows identifiability.

Proof of Theorem 2.

(i) Suppose that W̃ →p W , where W is a positive definite matrix. First, we

prove that there exists θ̄ such that, as n→ ∞,

P (s̃(θ̄) = 0) → 1 and θ̄ →p θ, (A.4)

where s̃(ϑ) = −∂[GT (ϑ)W̃G(ϑ)]/∂ϑ. Since Γ is of full rank and W is positive

definite, ΓTWΓ is positive definite. Therefore, there exists a matrix A such that

A2 = 2ΓTWΓ.

Define Q(ϑ) = GT (ϑ)W̃G(ϑ). To prove (A.4), it suffices to prove that, for

any ϵ > 0, there exists c > 0 such that, for sufficiently large n,

P {Q(θ)−Q(ϑ) < 0 for all ϑ ∈ Bn(c)} ≥ 1− ϵ, (A.5)

where Bn(c) = {ϑ : ∥A(ϑ − θ)∥ = c/
√
n} and ∥A∥ =

√
trace(ATA) for a vector

or matrix A. When n is large enough, Bn(c) is inside the parameter space Θ and

Bn(c) shrinks to θ as n → ∞. By Taylor’s expansion, there exists θ∗ between θ

and ϑ such that

Q(θ)−Q(ϑ) = (ϑ− θ)T s̃(θ) +
1

2
(ϑ− θ)T∇s̃(θ∗)(ϑ− θ)

=
c√
n
λTA−1s̃(θ) +

c2

2n
λTA−1∇s̃(θ∗)A−1λ,

where ∇s̃(ϑ) = ∂s̃(ϑ)/∂ϑ, λ =
√
nA(ϑ− θ)/c, and ∥λ∥ = 1 for ϑ ∈ Bn(c). Using

(C3), W̃ →p W , the proof of Theorem 2.6 in Newey and Mcfadden (1994) and
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the fact that every component in G(ϑ), ∂G(ϑ)/∂ϑ, and ∂2G(ϑ)/∂ϑ∂ϑT is an
average over independent and identically distributed samples, we obtain that

sup
ϑ∈N

∥∇s̃(ϑ)− ψ(ϑ)∥ →p 0,

where ψ(ϑ) = −∂2{E[GT (ϑ)]WE[G(ϑ)]}/∂ϑ∂ϑT . Since ψ(θ) = −2ΓTWΓ,

∥∇s̃(θ∗)− (−2ΓTWΓ)∥ ≤ ∥∇s̃(θ∗)− ψ(θ∗)∥+ ∥ψ(θ∗)− (−2ΓTWΓ)∥
≤ sup

ϑ∈N
∥∇s̃(ϑ)− ψ(ϑ)∥+ ∥ψ(θ∗)− ψ(θ)∥

→p 0

by the continuity of ψ at θ. Hence A−1∇s̃(θ∗)A−1 →p −I2×2. Then,

Q(θ)−Q(ϑ) =
1

n

{
cλTA−1√ns̃(θ)− c2

2
[1 + op(1)]

}
≤ 1

n

{
cmax

λ
[λTA−1√ns̃(θ)]− c2

2
[1 + op(1)]

}
=

1

n

{
c∥A−1√ns̃(θ)∥ − c2

2
[1 + op(1)]

}
. (A.6)

Let ∇G(ϑ) = ∂G(ϑ)/∂ϑ. Then A−1√ns̃(θ) = −2A−1∇G(θ)W̃
√
nG(θ). Under

(C3), ∇G(θ) →p Γ by the Law of Large Numbers and
√
nG(θ) →d N(0,Σ) by

the Central Limit Theorem. By the fact that W̃ →p W ,

A−1√ns̃(θ) →d N(0, 4A−1ΓTWΣWΓA−1).

Therefore, there exists a c such that P (∥A−1√ns̃(θ)∥ < c/4) ≥ 1 − ϵ. Now
∥A−1√ns̃(θ)∥ < c/4 and (A.6) imply Q(θ)−Q(ϑ) < 0 for all ϑ ∈ Bn(c). Hence,
result (A.5) follows and the proof of (A.4) is complete.

By (A.4) with W̃ = IL×L, we obtain that θ̂(1) →p θ, which, combined with
(C3), implies that Ŵ →p Σ−1. Then the result in (i) follows from (A.4) with
W̃ = Ŵ and W = Σ−1, where Σ−1 is a positive definite matrix.
(ii) By Taylor’s expansion, there exists a θ∗ between θ and θ̃ such that G(θ̃) =
G(θ) +∇G(θ∗)(θ̃ − θ), which implies that

[∇G(θ̃)]T ŴG(θ̃) = [∇G(θ̃)]T ŴG(θ) + [∇G(θ̃)]T Ŵ∇G(θ∗)(θ̃ − θ).

Since −2[∇G(θ̃)]T ŴG(θ̃) = s(θ̃) = 0, we obtain that
√
n(θ̃ − θ) = −{[∇G(θ̃)]T Ŵ∇G(θ∗)}−1[∇G(θ̃)]T Ŵ

√
nG(θ). (A.7)

Since θ̃ →p θ, we have θ
∗ →p θ which, together with Ŵ →p Σ

−1 and∇G(θ̃) →p Γ,
imply that

{[∇G(θ̃)]T Ŵ∇G(θ∗)}−1[∇G(θ̃)]T Ŵ →p (Γ
TΣ−1Γ)−1ΓTΣ−1. (A.8)

By the Central Limit Theorem,
√
nG(θ) →d N(0,Σ) which, combined with (A.7)

and (A.8), proves part (ii) of the theorem.
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