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Abstract: Empirical likelihood is a popular tool for incorporating auxiliary infor-

mation and constructing nonparametric confidence intervals. In survey sampling,

sample elements are often selected by using an unequal probability sampling method

and the empirical likelihood function needs to be modified to account for the un-

equal probability sampling. Wu and Rao (2006) proposed a way of constructing

confidence regions using the pseudo empirical likelihood of Chen and Sitter (1999).

In this paper, we propose using empirical likelihood in survey sampling based

on the so-called population empirical likelihood (POEL). In the POEL approach, a

single empirical likelihood is defined for the finite population. The sampling design

can be incorporated into the constraint in the optimization of the POEL. For some

special sampling designs, the proposed method leads to optimal estimation and

does not require artificial adjustment for constructing likelihood ratio confidence

intervals. Furthermore, because a single empirical likelihood is defined for the finite

population, it naturally incorporates auxiliary information obtained from multiple

surveys. Results from two simulation studies are presented to show the finite sample

performance of the proposed method.

Key words and phrases: Calibration estimation, optimal estimation, regression es-

timation, Wilk’s theorem.

1. Introduction

The empirical likelihood method, Owen (1988, 1990), provides a useful tool

for obtaining nonparametric confidence regions for statistical functionals. Even

though the empirical likelihood method is a nonparametric approach in the sense

that it does not require a parametric model for the underlying distribution of the

sample observations, the empirical likelihood method shares most of the desirable

properties of the likelihood-based method. Using a nonparametric likelihood

function, the empirical likelihood method can easily incorporate both known

constraints on parameters and prior information about parameters obtained from

other sources. For example, Chen and Qin (1993), Qin (2000), and Chaudhuri,

Handcock, and Rendall (2008) discussed combining information using empirical

likelihood. Qin and Lawless (1994) considered the situation when the parameter

of interest is the solution to an estimating equation. A comprehensive overview

of the empirical likelihood method is provided by Owen (2001).

http://dx.doi.org/10.5705/ss.2011.294
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When the sample is selected by an unequal probability sampling method

from the finite population, the empirical likelihood needs to be modified to in-

corporate the sampling design. Chen and Sitter (1999) considered the pseudo

empirical likelihood estimator that uses the sampling weight in the empirical

log-likelihood function. Kim (2009) considered an alternative empirical likeli-

hood function based on the biased sampling likelihood of Vardi (1985) and Qin

(1993). In either case, the resulting empirical likelihood estimator naturally in-

corporates the available population information and achieves optimality under

some limited situations. Because the empirical likelihood function is changed

to incorporate the unequal probability sampling design, the resulting confidence

interval based on the likelihood ratio does not have a limiting chi-square distri-

bution and often extra computations, as discussed in Wu and Rao (2006), are

required to obtain a Wilk-type confidence region. Furthermore, the sample-based

empirical likelihood approach can be problematic if we want to combine informa-

tion from two independent surveys, since there are different empirical likelihood

functions associated with each sample.

In this paper, we propose a novel approach for the empirical likelihood in

survey sampling based on the so-called population empirical likelihood (POEL).

In this POEL approach, a single empirical likelihood is defined for the finite

population and the sampling design can be incorporated as a constraint in the

empirical likelihood. For some sampling designs, such as the Poisson sampling

or the rejective Poisson sampling of Fuller (2009a), the proposed method leads

to optimal estimation and the likelihood ratio follows a chi-square distribution

in the limit if the sampling rate is negligible. Thus, unlike the pseudo empiri-

cal likelihood method, a Wilk-type confidence interval based on the POEL can

be constructed without any artificial adjustment. Furthermore, because a sin-

gle empirical likelihood is defined for the entire finite population, it naturally

incorporates the setup of combining multiple surveys. The resulting empirical

likelihood estimator is asymptotically equivalent to the optimal estimator ob-

tained by the generalized method of moments (GMM), but it avoids the burden

of computing the variance-covariance matrix for the GMM computation.

The rest of this paper is organized as follows. In Section 2, basic setup

is introduced and the population empirical likelihood method is presented. In

Section 3, some asymptotic properties of the proposed estimator are discussed

under Poisson sampling. The proposed method is extended to the rejective Pois-

son sampling in Section 4, and extended to the problem of combining independent

surveys in Section 5. Results from two limited simulation studies are presented

in Section 6. Concluding remarks are made in Section 7. All technical details

are given in the Supplementary Material.
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2. Population Empirical Likelihood

Consider a finite population (xi, yi) of known size N . Suppose we are inter-

ested in estimating a parameter θ0 that is defined by solving

N∑
i=1

U(xi, yi; θ) = 0, (2.1)

for θ. Many finite-population parameters can be defined as the solutions to (2.1).

Thus, if the parameter of interest is the population total Y =
∑N

i=1 yi, we can

take θ = Nµy and µy through (2.1) with U(X,Y ;µy) = (Y − µy). Without loss

of generality, we assume that the solution θ0 to (2.1) is unique.

Suppose now that a sample of size n is selected from the population using

a probability sampling design. Let s be the index set of the sample and πi =

Pr (i ∈ s), the known first-order inclusion probabilities of unit i, for all units

in the population. Let di = π−1
i be the design weight of unit i in the sample.

A design-consistent estimator of θ0 can be obtained by solving the estimating

equation

N−1
∑
i∈s

diU (xi, yi; θ) = 0 (2.2)

for θ. Binder (1983) discussed some theories for the estimators defined from the

solution to the estimating equation (2.2) under complex sampling.

If we know aggregate population information on x, such as the population

mean X̄N , then we can incorporate it to improve efficiency of the resulting es-

timator of θ0. One way to achieve this efficiency is through calibration. Thus,

instead of solving (2.2), consider solving∑
i∈s

diωiU (xi, yi; θ) = 0, (2.3)

where ωi is determined to minimize
∑

i∈s di (ωi − 1)2 subject to the calibration

constraint ∑
i∈s

diωi(1, x
′
i)
′ = (1, X̄ ′

N )′. (2.4)

For the special case of θ0 = ȲN = N−1
∑N

i=1 yi, Deville and Särndal (1992)

discussed the choice of objective functions that lead to calibration estimators

asymptotically equivalent to the generalized regression (GREG) estimator

θ̂GREG = ȳd − B̂
(
x̄d − X̄N

)
, (2.5)

where (
x̄′d, ȳd

)′
=
(∑

i∈s
di

)−1∑
i∈s

di
(
x′i, yi

)′
,
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B̂ =
∑
i∈s

diyi (xi − x̄d)
′
{∑

i∈s
di (xi − x̄d) (xi − x̄d)

′
}−1

.

Chen and Sitter (1999) considered using the pseudo empirical likelihood function

lp(ω) =
∑
i∈s

di log (diωi) (2.6)

as an objective function for the calibration estimation with constraints (2.4).

The resulting pseudo empirical likelihood calibration estimator for θ0 = ȲN is
asymptotically equivalent to the GREG estimator in (2.5). The GREG estimator

has certain optimal properties under the model where the finite population is a
realization of the linear regression model

yi = x′iβ + ei, (2.7)

with Eζ(ei) = 0 and Vζ(ei) = σ2. If the linear regression model (2.7) does not

hold, then the GREG estimator is no longer optimal.
The design optimal regression estimator that minimizes the design variance

among the linear class θ̂ = ȳHT −B(q̄HT − q̄N ) is

θ̂opt = ȳHT − B̂opt (q̄HT − q̄N ) , (2.8)

where
(q̄′HT , ȳHT )

′ = (N−1
∑
i∈s

diq
′
i, N

−1
∑
i∈s

diyi)
′,

qi = (1, x′i)
′, and B̂opt is a consistent estimator of Bopt = Cov (ȳHT , q̄HT )

{Var (q̄HT )}−1 . The design optimal regression estimator has been discussed by
Fuller and Isaki (1981), Montanari (1987), and Rao (1994).

We consider an empirical-likelihood-type estimator that leads to a solution

asymptotically equivalent to the design optimal regression estimator in (2.8).
Instead of assigning weights only for the sample, we propose using the population-

level log-likelihood

l =

N∑
i=1

log (ωi) , (2.9)

∑N
i=1 ωi = 1, as the objective function for the calibration estimation. Because

the final estimator is obtained by solving (2.3) for θ, the final weights diωi in (2.3)

are used to compute the design optimal estimator from the sample observation.
Unlike the pseudo empirical likelihood, the proposed likelihood (2.9), called the

population empirical likelihood (POEL), is defined at the population level. To
incorporate the auxiliary information into the estimation, we use∑

i∈s
diωi(1, x

′
i)
′ = (1, X̄ ′

N )′,
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the constraints in (2.4). For rejective Poisson sampling, in order to remove the ef-

fect of sampling design, we can incorporate additional constraints in the sampling

design, as will be discussed in Section 4.

There are several advantages of the proposed method. First, it naturally

incorporates additional information. For example, if h̄N = N−1
∑N

i=1 h(xi) is

known, h(x) an arbitrary function of x, then we can add the constraint∑
i∈s

diωih(xi) = h̄N ,

into the optimization using the POEL. Thus it is directly applicable in the cali-

bration problem of survey sampling. Given the constraints, it achieves the lower

bound for the asymptotic design variance under some sampling designs. For ex-

ample, if θ0 = ȲN and h(x) = (1, x′)′, we show that the proposed estimator is

asymptotically equal to design optimal regression estimator (2.8) when the sam-

pling rate is negligible. In addition, under some regularity conditions, the POEL

enables us to obtain the likelihood ratio confidence intervals using chi-square

quantiles. Then too, we can combine all sources of information from several sur-

veys by using a single POEL to obtain the optimal estimator, as will be discussed

in Section 5.

3. Main Results

Consider a Poisson sampling setup where independent Bernoulli trials are

used to select the sample. Let Ii be the sample selection indicator that takes the

value one if unit i is selected in the sample and takes the value zero otherwise.

In the Poisson sampling, the Ii are independent Bernoulli (πi) random variables,

where πi are known.

Under Poisson sampling, the POEL approach can be formulated as maxi-

mizing

l =

N∑
i=1

log(ωi), (3.1)

subject to
N∑
i=1

ωi = 1,
N∑
i=1

ωi
Ii
πi
Ui(θ) = 0. (3.2)

Thus, without extra information, we get ωi = N−1 and the POEL estimator

θ̂POEL is the same as that obtained from the solution of (2.2). In order to

incorporate the known population size information, we add the constraint

N∑
i=1

ωi(
Ii
πi

− 1) = 0. (3.3)
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In the constraints (3.2) and (3.3), the observed values of xi in the units with

Ii = 0 are not used. To incorporate the auxiliary information associated with

the non-sampled part of xi, we can impose that

N∑
i=1

ωi
Ii
πi
hi = h̄N , (3.4)

for some function hi = h(xi), where h̄N = N−1
∑N

i=1 h(xi). By (3.2) and (3.3),

(3.4) can be written as
N∑
i=1

ωi
Ii
πi

(
hi − h̄N

)
= 0. (3.5)

To solve for this optimization problem, by the Lagrange multiplier method,

a two-step algorithm can be used. In the first step, the optimal weight that

maximizes (3.1) subject to
∑N

i=1 ωi = 1, (3.3), and (3.5) can be expressed as

ω̂i =
1

N

1

1 + λ̂′gi
,

where gi = ((Iiπ
−1
i − 1), Iiπ

−1
i (hi − h̄N )′)′ and λ̂ is the solution to

1

N

N∑
i=1

gi

1 + λ̂′gi
= 0.

In the second step, we can get the resulting POEL estimator θ̂POEL by solving

N∑
i=1

ω̂i
Ii
πi
Ui(θ) = 0. (3.6)

Because the control function hi in (3.4) does not depend on θ, the POEL estima-

tor is obtained by this two-step algorithm. Such an algorithm was discussed in

Chaudhuri, Handcock, and Rendall (2008). If the control function hi depends on

the unknown parameter θ, say hi = h(xi; θ), then the optimization is computa-

tionally more challenging. In this case, using ĥi = h(xi; θ̂), θ̂ any
√
n-consistent

estimator of θ, in (3.4) leads to the same two-step algorithm for optimization and

the two-step solution is asymptotically equivalent to the original solution.

To discuss asymptotic properties, we first assume a sequence of finite popu-

lations and samples satisfying regularity conditions

(C1) θ0 ∈ Θ is the unique solution to N−1
∑N

i=1 U(Xi, Yi; θ0) = 0, Θ is a compact

set in p-dimensional Euclidean space, and U(X,Y ; θ) is uniformly continu-

ous in Θ.
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(C2) The partial derivative U̇ (θ) = ∂U(X,Y ; θ)/∂θ is a continuous function of θ

in the neighborhood of θ0 almost surely, and ∂U(θ0)/∂θ is nonsingular.

(C3) With gi =
(
Iiπ

−1
i − 1, Iiπ

−1
i (hi − h̄N )′

)′
, as nB → ∞,

n
1/2
B

(
N−1

N∑
i=1

Iiπ
−1
i U ′

i(θ0), N
−1

N∑
i=1

g′i

)′ d→N(0, V ),

where nB = E(n) and V is a positive definite matrix.

(C4) ||∂U(x, y; θ)/∂θ||, ||U(x, y; θ)||4, and ||h(x)||4 are bounded by K(x, y) in Θ,

and limN→∞N−1
∑N

i=1K(xi, yi) = µK where µK > 0.

(C5) maxi∈s ||hi|| = op(n
1/2
B ) and maxi∈s ||Ui(θ0)|| = op(n

1/2
B ).

(C6) C1 < πiNn−1
B < C2, i = 1, 2, . . . , N, for some constants 0 < C1 < C2.

Condition (C1) and (C2) ensure the identifiability of parameter θ0 and the

smoothness properties of function U(θ). Condition (C3) ensures the asymptotic

normality of Horvitz-Thompson type estimator under Poisson sampling. The-

orem 1.3.3 of Fuller (2009b) provides sufficient conditions for (C3). Condition

(C4) is the usual moment condition in survey sampling. Condition (C5) is one

of the typical conditions to enable λ̂ = Op(n
−1/2
B ) and Taylor expansion, while

(C6) controls the behavior of the first order inclusion probabilities.

Theorem 1. If (C1)−(C6) hold, the population empirical likelihood (POEL)

estimator θ̂POEL at (3.6) has the asymptotic expansion

θ̂POEL − θ0 = −τ
{ 1

N

N∑
i=1

Ii
πi
Ui(θ0)−B∗(

1

N

N∑
i=1

Ii
πi
ηi − η̄N )

}
+ op(n

−1/2
B ), (3.7)

where τ =
[
N−1

∑N
i=1 ∂Ui(θ0)/∂θ

]−1
, η = (1, (h − h̄N )′)′, h = h(x), and B∗ =

Ω1Ω
−1
2 , with

Ω1 =
( 1

N2

N∑
i=1

(
1

πi
− 1)Ui,

1

N2

N∑
i=1

1

πi
Ui(hi − h̄N )′

)
, (3.8)

Ω2 =

(
N−2

∑N
i=1(π

−1
i − 1) N−2

∑N
i=1(π

−1
i − 1)(hi − h̄N )′

N−2
∑N

i=1(π
−1
i − 1)(hi − h̄N ) N−2

∑N
i=1 π

−1
i (hi − h̄N )⊗2

)
, (3.9)

where X⊗2 = XX ′. We have

V
−1/2
h

(
θ̂POEL − θ0

)
d→N(0, I), (3.10)
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and Vh = τΩhτ
′ with

Ωh =N−2V
{ N∑

i=1

Ii
πi
Ui −B∗(

N∑
i=1

Ii
πi
ηi −

N∑
i=1

ηi)
}
.

Remark 1. For θ0 = ȲN , h = x, and U = y − θ, (3.7) is

θ̂POEL = ȲN +
1

N

N∑
i=1

Ii
πi
(yi − ȲN )−B∗

1(
N̂

N
− 1)

−B∗
2{

1

N

N∑
i=1

Ii
πi
(xi − X̄N )}+ op(n

−1/2
B ), (3.11)

where N̂ =
∑N

i=1 Iiπ
−1
i , (B∗

1 , B
∗
2) = Ω1Ω

−1
2 with Ω1 and Ω2 at (3.8) and (3.9). If

nB/N → 0, under Poisson sampling,

Ω1 = Cov
(
N−1

N∑
i=1

Iiπ
−1
i Ui, N

−1
N∑
i=1

Iiπ
−1
i qi

)
+ op(n

−1
B )

and Ω2 = Var (N−1
∑N

i=1 Iiπ
−1
i qi) + op(n

−1
B ) with qi = (1, (xi − X̄N )′)′. Here

θ̂POEL is obtained by minimizing the first order asymptotic variance of the esti-
mators in the class of (3.11). Thus, it is asymptotically equivalent to the optimal
estimator (2.8).

In Theorem 1, the sampling design is not necessarily Poisson sampling,
though the optimality result in Remark 1 is established under Poisson sampling.
By Theorem 1, the consistent estimator of Vh can be written as V̂h = τ̂ Ω̂hτ̂

′,

where τ̂ =
{
N−1

∑N
i=1 Iiπ

−1
i ∂Ui(θ̂)/∂θ

}−1
, Ω̂h = N−2

∑N
i=1 Ii(1 − πi)π

−2
i r̂⊗2

i ,

r̂i = Ui(θ̂)− B̂∗ηi, B̂
∗ = Ω̂1Ω̂

−1
2 ,

Ω̂1 =
( 1

N2

N∑
i=1

Ii(1− πi)π
−2
i Ui(θ̂),

1

N2

N∑
i=1

Iiπ
−2
i Ui(θ̂)(hi − h̄N )′

)
,

Ω̂2 =

(
N−2

∑N
i=1 Ii(1− πi)π

−2
i N−2

∑N
i=1 Ii(1− πi)π

−2
i (hi − h̄N )′

N−2
∑N

i=1 Ii(1− πi)π
−2
i (hi − h̄N ) N−2

∑N
i=1 Iiπ

−2
i (hi − h̄N )⊗2

)
,

with θ̂ = θ̂POEL.
By Theorem 1, we can construct a Wald-type confidence interval for θ0 using

the asymptotic normality.

Theorem 2. Under the assumptions of Theorem 1, if Rn(θ0) = 2{l(θ̂POEL) −
l(θ0)} where l(θ) =

∑N
i=1 log (ωi) with ωi satisfying (3.2), (3.3), and (3.5), then,

as nB → ∞ and nB/N → 0, Rn(θ0)
d→χ2

p, where p is the dimension of θ.
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According to Theorem 2, under some regularity conditions, a Wilk-type con-

fidence interval for θ0 can be constructed with a chi-square distribution as the

limiting distribution when the sampling rate nB/N is negligible.

The variance of the POEL estimator depends on the choice of the control

function hi in constraint (3.4). The optimal choice of hi requires some superpop-

ulation model for the conditional distribution of yi on xi. Because the mode of

inference is purely design-based in our paper, we do not pursue this topic.

Remark 2. The sample empirical likelihood (SEL) estimator θ̂SEL can be ob-

tained by maximizing le =
∑

i∈s log(ωi) subject to∑
i∈s

ωi = 1,
∑
i∈s

ωiπ
−1
i Ui(θ) = 0, (3.12)∑

i∈s
ωiπ

−1
i (hi − h̄N ) = 0. (3.13)

The resulting SEL estimator is algebraically equivalent to the nonparametric

likelihood estimator proposed by Kim (2009). Furthermore, under certain con-

ditions, it can be shown that

Rn(θ0) = 2
{
le(θ̂SEL)− le(θ0)

}
d→χ2

1.

For θ = E(Y ), if n/N → 0, the SEL estimator θ̂SEL with h = x is asymp-

totically equivalent to the optimal estimator

θ̂opt1 = ȳd − B̂(x̄d − X̄N ), (3.14)

where

(x̄′d, ȳd) =

∑
i∈s π

−1
i x′i,

∑
i∈s π

−1
i yi∑

i∈s π
−1
i

,

B̂ = Ĉ(ȳd, x̄d){V̂ (x̄d)}−1, and Ĉ(ȳd, x̄d) and V̂ (x̄d) are design consistent estima-

tor of Cov (ȳd, x̄d) and V ar(x̄d), respectively. Comparing (3.14) with (2.8), the

POEL estimator is more efficient than the SEL estimator.

4. Extension to Rejective Poisson Sampling

We now extend the results in Section 3 to other sampling designs. In particu-

lar, we consider rejective Poisson sampling, which covers simple random sampling

and stratified random sampling as special cases. Rejective Poisson sampling has

been studied by Hájek (1964), Hájek (1981), and Fuller (2009a). Hájek (1964)

considered the linear design constraint

N∑
i=1

δi
pi
zi =

N∑
i=1

zi, (4.1)
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with zi = pi and
∑N

i=1 pi = n, where pi and δi are the inclusion probabilities and

sampling indicators for the initial sampling design, respectively. Fuller (2009a)

considered a rejective sampling with constraints

Q̂p,n = (z̄p − Z̄N )′V −1
z̄z̄ (z̄p − Z̄N ) < γ2, (4.2)

for some γ2 > 0, where z̄p = N−1
∑N

i=1 δip
−1
i zi and Vz̄z̄ = Vpoi(z̄p), Vpoi denoting

the variance calculated under Poisson sampling design. Since (4.1) is a special

case of (4.2), we consider only (4.2). We consider the following rejective Poisson

sampling procedure.

Step 1 For i = 1, . . . , N , generate δi ∼ Bernoulli(pi) independently.

Step 2 Check if (4.2) holds. If it does not hold, then go to [Step 1]. If the

constraint is satisfied, then set (I1, . . . , IN ) = (δ1, . . . , δN ). The final

sample consists of elements with Ii = 1.

Even if δi are generated independently, the realized sampling indicators

I1, . . . , IN are no longer independent. The initial selection probabilities pi(i =

1, 2, . . . , N) for Poisson sampling are not equal to the target inclusion probabil-

ities πi(i = 1, 2, . . . , N). The POEL estimator can be obtained by maximizing

(3.1) subject to

N∑
i=1

ωi = 1,
N∑
i=1

ωi(
Ii
pi

− 1) = 0,
N∑
i=1

ωi(
Ii
pi

− 1)zi = 0, (4.3)

N∑
i=1

ωi
Ii
pi
(hi − h̄N ) = 0,

N∑
i=1

ωi
Ii
pi
Ui(θ) = 0. (4.4)

In (4.3), the constraint
∑N

i=1 ωi(Iip
−1
i −1)zi = 0 is added to account for the design

constraint in (4.2). Suppose (C1)-(C3) and (C5) hold with πi and gi replaced by

pi and g∗i , respectively, where g∗i = ((Iip
−1
i − 1)z∗i , Iip

−1
i (h′i − h̄′N ))′, z∗i = (1, z′i)

′.

Let GN (γ2) = Pr(Q̂p,n ≤ γ2), GN(i)(γ
2) = Pr(Q̂p,n ≤ γ2|i ∈ s), GN(ij)(γ

2) =

Pr(Q̂p,n ≤ γ2|i, j ∈ s).

(C7) |nBN
−1p−1

i |, zi are bounded.

(C8) ||∂M(θ)/∂θ||and||M(θ)||4 are bounded by K(x, y) in Θ, and limN→∞N−1∑N
i=1K(xi, yi) = µK for some µK > 0, where Mi(θ) = (U ′

i(θ), z
∗′
i , h′i −

h̄′N )′.

(C9) GN(i)(γ
2) = GN (γ2) + g1N (γ2)γ2ηi + op(n

−1
B ), where ηi = nBN

−2(1 −
pi)p

−1
i z2i and g1N (γ2) is a bounded sequence.

(C10) GN(ij)(γ
2) = GN (γ2) + g1N (γ2)γ2(ηi + ηj) + op(n

−1
B ).
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(C11) V
−1/2
z̄z̄ (z̄p − Z̄N )

d→N(0, I).

Condition (C7) is used to control the behavior of the first order inclusion proba-

bilities and the boundness of zi. Condition (C8) is the usual moment condition in

survey sampling. Conditions (C9) and (C10) are similar to Assumption 8 in Fuller

(2009a), while (C11) holds for Poisson sampling under the moment conditions

specified in Theorem 1.3.3 of Fuller (2009b). For motivation of (C9) and (C10),

without loss of generality assume z̄N = 0 and nBN
−2
∑N

i=1(1 − pi)p
−1
i z2i = 1.

After some algebra,

E(z̄p − Z̄N |i ∈ s) =
1

N

1− pi
pi

zi, (4.5)

E(z̄p − Z̄N |i, j ∈ s) =
1

N

1− pi
pi

zi +
1

N

1− pj
pj

zj , (4.6)

V ar(z̄p − Z̄N |i ∈ s) = n−1
B − 1

N2

1− pi
pi

z2i , (4.7)

V ar(z̄p − Z̄N |i, j ∈ s) = n−1
B − 1

N2

1− pi
pi

z2i −
1

N2

1− pj
pj

z2j . (4.8)

According to (C11), GN is the CDF of the Chi-square distribution and GN(i)

and GN(ij) are the CDF of noncentralized Chi-square distributions. According

to (4.5)-(4.8), we have

E(Q̂p,n|i ∈ s) = 1− ηi + op(n
−1
B ), E(Q̂p,n|i, j ∈ s) = 1− ηi − ηj + op(n

−1
B ),

where ηi = nBN
−2(1− pi)p

−1
i z2i . So, we can write

GN(i)(γ
2) = Pr(Q̂p,n ≤ γ2|i ∈ s) = Pr

{
(1− ηi)

−1Q̂p,n ≤ (1− ηi)
−1γ2|i ∈ s

}
= GN

{
(1− ηi)

−1γ2
}
+ op(n

−1
B )

= GN ((1 + ηi)γ
2) + op(n

−1
B )

= GN (γ2) + g1N (γ2)γ2ηi + op(n
−1
B ),

where g1N is the density of the Chi-square distribution. Similarly,

GN(ij)(γ
2) = GN (γ2) + g1N (γ2)γ2(ηi + ηj) + op(n

−1
B ).

Theorem 3. Consider a rejective Poisson sampling with the design constraint

in (4.2). Let θ̂POEL be the population empirical likelihood estimator obtained by

maximizing (3.1) subject to constraints (4.3) and (4.4). If (C1)−(C3), (C5) and

(C6), and (C7)−(C11) hold,

θ̂POEL − θ0 = −τ
{ 1

N

N∑
i=1

Ii
πi
Ui(θ0)−B(

1

N

N∑
i=1

Ii
πi
ηi − η̄N )

}
+ op(n

−1/2
B ), (4.9)
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where τ =
{
N−1

∑N
i=1 ∂Ui(θ0)/∂θ

}−1
, ηi = (z∗

′
i , (hi − h̄N )′)′, hi = h(xi), z

∗
i =

(1, z′i)
′, B = Ω1Ω

−1
2 , where

Ω1 =
( 1

N2

N∑
i=1

(
1

πi
− 1)Uiz

∗′
i ,

1

N2

N∑
i=1

1

πi
Ui(hi − h̄N )′

)
, (4.10)

Ω2 =

(
N−2

∑N
i=1(π

−1
i − 1)z∗⊗2

i N−2
∑N

i=1(π
−1
i −1)z∗i (hi−h̄N )′

N−2
∑N

i=1(π
−1
i −1)(hi−h̄N )z∗

′
i N−2

∑N
i=1 π

−1
i (hi − h̄N )⊗2

)
. (4.11)

We have

V
−1/2
h

(
θ̂POEL − θ0

)
d→ N(0, I), (4.12)

where Vh = τΩhτ
′ with

Ωh =N−2V
{ N∑

i=1

Ii
πi
Ui −B(

N∑
i=1

Ii
πi
ηi −

N∑
i=1

ηi)
}

= Vpoi(ˆ̄ep),

Vpoi denotes the variance under Poisson sampling design, and ˆ̄ep = N−1∑N
i=1 Iip

−1
i ei with ei = Ui −Bηi.

Remark 3. For θ̂0 = ȲN and h = x, (4.9) simplifies to

θ̂POEL = ȲN +
1

N

N∑
i=1

Ii
πi
(yi − ȲN )−B1(

1

N

N∑
i=1

Ii
πi

− 1)z∗i

−B2{
1

N

N∑
i=1

Ii
πi
(xi − X̄N )}+ op(n

−1/2
B ),

where (B1, B2) = Ω1Ω
−1
2 with Ω1 and Ω2 defined at (4.10) and (4.11). If γ = o(1)

in (4.2), then

z̄HT − Z̄N = op(n
−1/2
B ), (4.13)

with z̄HT = N−1
∑N

i=1 Iiπ
−1
i zi. When nB/N → 0, by (4.13), we have

θ̂POEL = ȲN +
1

N

N∑
i=1

Ii
πi
(yi − ȲN )−B∗

1(
1

N

N∑
i=1

Ii
πi

− 1)

−B∗
2{

1

N

N∑
i=1

Ii
πi
(xi − X̄N )}+ op(n

−1/2
B ),
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where z∗i = (1, z′i)
′, (B∗

1 , B
∗
2) = Ω∗

1Ω
∗−1
2 ,

Ω∗
1 =N−2

N∑
i=1

(1− πi)π
−1
i (yi − ȲN )q′i −

{
N−2

N∑
i=1

(1−πi)π
−1
i (yi−ȲN )z′i

}
×
{ N∑

i=1

(1−πi)π
−1
i ziz

′
i

}−1{ N∑
i=1

(1−πi)π
−1
i ziq

′
i

}
,

Ω∗
2 =N−2

N∑
i=1

(1− πi)π
−1
i qiq

′
i

−
{
N−2

N∑
i=1

(1− πi)π
−1
i qiz

′
i

}{ N∑
i=1

(1− πi)π
−1
i ziz

′
i

}−1
{

N∑
i=1

(1− πi)ziq
′
i},

with qi = (1, (xi−X̄N )′)′. Under some regularity conditions, it can be shown that

Ω∗
1 = Cov (N−1

∑N
i=1 Iiπ

−1
i Ui, N

−1
∑N

i=1 Iiπ
−1
i qi) + op(n

−1
B ) and Ω∗

2 = Var (N−1∑N
i=1 Iiπ

−1
i qi) + op(n

−1
B ). Thus, by using a similar argument as in Remark 1, we

have θ̂POEL = θ̂opt + op(n
−1/2
B ), θ̂opt defined at (2.8).

A consistent variance estimator of θ̂POEL can be constructed with V̂h =

τ̂ Ω̂hτ̂
′, τ̂ =

{
N−1

∑
i∈s p

−1
i ∂Ui(θ̂)/∂θ

}−1
, and Ω̂h = N−2

∑N
i=1 Ii(1− pi)p

−2
i r̂⊗2

i ,

where r̂i = Ui(θ̂)− B̂∗ηi, B̂
∗ = Ω̂1Ω̂

−1
2 and

Ω̂1 =
( 1

N2

N∑
i=1

Ii(1− pi)p
−2
i Ui(θ̂)z

∗′
i ,

1

N2

N∑
i=1

Iip
−2
i Ui(θ̂)(hi − h̄N )′

)
,

Ω̂2 =

(
N−2

∑N
i=1 Ii(1− pi)p

−2
i z∗⊗2

i N−2
∑N

i=1 Ii(1−pi)p
−2
i z∗i (hi−h̄N )′

N−2
∑N

i=1 Ii(1−pi)p
−2
i (hi−h̄N )z∗

′
i N−2

∑N
i=1 Iip

−2
i (hi − h̄N )⊗2

)
.

Theorem 4. Suppose the sample is obtained as a rejective Poisson sampling de-

sign and that the regularity conditions in Theorem 3 hold. If Rn(θ0) = 2{l(θ̂POEL)

−l(θ0)}, where l(θ) =
∑N

i=1 log(ωi) with ωi satisfying (4.3) and (4.4), then, as

nB → ∞ and nB/N → 0, Rn(θ0)
d→χ2

p, where p is the dimension of θ.

5. Combining Information from Two Independent Surveys

Consider two independent surveys, survey 1 and survey 2, from the same fi-

nite population, and suppose the auxiliary variable xi is observed in common. In

addition, we observe (z1i, z2i) throughout the population, where z1i is observed

in the survey 1 sample and z2i is observed in the survey 2 sample, and suppose

that an intercept is included in z1i and z2i. This type of sampling design is often

called a non-nested two-phase sampling design (Hidiroglou (2001)). Zieschang
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(1990), Renssen and Nieuwenbroek (1997), and Merkouris (2004) considered us-
ing GREG-type estimators to combine information from different surveys. Wu
(2004) considered the pseudo empirical likelihood method to solve such prob-
lems and showed that the pseudo empirical likelihood estimator is asymptotically
equivalent to the GREG estimator.

We propose using the population empirical likelihood method to combine
information from non-nested two-phase sampling. The proposed population-level
empirical likelihood method is different from the sample-level empirical likelihood
method of Owen (1988) in that we use all the available information and the
proposed estimator is optimal. In addition, under some regularity conditions, we
can construct likelihood ratio type confidence intervals with a chi-square limiting
distribution. The proposed method can be easily extended to combining more
than two surveys.

For simplicity, assume that the sampling designs in two surveys are inde-
pendent Poisson sampling designs. We can easily extend our results to other
sampling designs. Let I1i and I2i be the sample selection indicators for survey 1
and survey 2, respectively, and let π1i and π2i be the corresponding first order
inclusion probabilities.

We are interested in estimating the general parameter at (2.1). The proposed
POEL procedure for combining two surveys can be formulated as maximizing

l =

N∑
i=1

log(ωi),

subject to
N∑
i=1

ωi = 1,

N∑
i=1

ωi(I1iπ
−1
1i − 1)z1i = 0,

N∑
i=1

ωi(I2iπ
−1
2i − 1)z2i = 0,

N∑
i=1

ωi(I1iπ
−1
1i − I2iπ

−1
2i )hi = 0,

N∑
i=1

ωiI2iπ
−1
2i Ui(θ) = 0.

Under the regularity conditions of Theorem 1 for each survey, if n/N → 0, it can
be shown that our proposed estimator θ̂POEL is asymptotically equivalent to the
optimal estimator that minimizes

Q(h̄N , θ) =


z̄HT,1 − Z̄1

h̄HT,1 − h̄N
h̄HT,2 − h̄N
z̄HT,2 − Z̄2

ŪHT,2(θ)


′

V −1
Q


z̄HT,1 − Z̄1

h̄HT,1 − h̄N
h̄HT,2 − h̄N
z̄HT,2 − Z̄2

ŪHT,2(θ)

 , (5.1)

with respect to h̄N and θ, where (z̄HT,1, h̄HT,1) = N−1
∑N

i=1 I1iπ
−1
1i (z1i, hi),

(z̄HT,2, h̄HT,2) = N−1
∑N

i=1 I2iπ
−1
2i (z2i, hi), (Z̄1, Z̄2) = N−1

∑N
i=1(z1i, z2i), h̄N =
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N−1
∑N

i=1 hi, ŪHT,2(θ) = N−1
∑N

i=1 Ii2π
−1
2i Ui(θ), and VQ is the estimated

variance-covariance matrix of (z̄HT,1, h̄HT,1, h̄HT,2, z̄HT,2, ŪHT,2(θ)). The optimal

estimator obtained by minimizing (5.1) is called the generalized method of mo-

ment (GMM) estimator (Hansen (1982)). The GMM estimator is a popular tool

for combining information from several sources in the econometrics literature

(Imbens and Lancaster (1994)); Hirano et al. (1998)). Imbens (2002) showed

the asymptotic equivalence between the empirical likelihood estimator and the

GMM estimator under the single sample setup. To compute the GMM estimator

from (5.1), we need to estimate the variance-covariance matrix. The empirical

likelihood approach avoids the computation for the variance-covariance matrix.

For the special case θ0 = ȲN and hi = xi, the optimal estimator of θ0
minimizing (5.1) can be written as

θ̂opt = ȳHT,2 + B̂1opt(Z̄1 − z̄HT,1) + B̂2opt(Z̄2 − z̄HT,2) + B̂3opt(x̄HT,1 − x̄HT,2),

where ȳHT,2 = N−1
∑N

i=1 I2iπ
−1
2i yi,

x̄HT,t =N−1
N∑
i=1

Itiπ
−1
ti xi, z̄HT,t = N−1

N∑
i=1

Itiπ
−1
ti zti, t = 1, 2,

B̂opt = (B̂1opt, B̂1opt, B̂1opt) = Ĉ(ȳHT,2, S̄HT )
{
V̂ (S̄HT )

}−1
,

with S̄HT = (z̄′HT,1− Z̄ ′
1, z̄

′
HT,2− Z̄ ′

2, x̄
′
HT,2− x̄′HT,1)

′, Ĉ(ȳHT,2, S̄HT ) and V̂ (S̄HT )

consistent estimators of Cov (ȳHT,2, S̄HT ) and V ar(S̄HT ), respectively. Under

some regularity conditions for both surveys, we can get 2{l(θ̂POEL)− l(θ0)}
d→χ2

1,

useful for constructing a Wilk-type confidence interval.

6. Simulation Study

6.1. Simulation one

We performed two limited simulation studies. The first can be described

as a 2 × 3 × 4 factorial design with three factors. The first factor is the model

for generating the finite population; the second is the sampling design; the third

is the estimation method. Two finite populations of (xi, yi, zi), population A

and population B, with size N = 10, 000 were generated. In population A,

the population elements were generated by zi ∼ χ2(2) + 1, xi = ai + zi and

yi = 1 + 1.2(xi − 3) + (xi/4)ei, where ai ∼ N(0, 1), independent of zi, and

ei ∼ χ2(1)− 1, independent of (ai, zi). In population B, (xi, zi) were the same as

in population A, and yi = 0.2(xi−1)2+(xi/4)ei. From each population, n = 200

sample elements were selected repeatedly for B = 2, 000 times. For the sampling

design, three sampling designs were considered: simple random sampling (SRS)

without replacement, Poisson sampling, and rejective Poisson sampling. For the
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Poisson sampling, we used πi = nzi/(
∑N

i=1 zi). In the rejective Poisson sampling,

the fixed-size constraint
∑N

i=1 Ii = n was used with the initial sample selection

probability pi = nzi/(
∑N

i=1 zi). The parameter of interest is the population mean

of y. From each sample, six point estimators were computed.

1. Hájek (HJ) estimator: θ̂HJ =
∑

i∈s π
−1
i yi/

∑
i∈s π

−1
i .

2. Horvitz-Thompson (HT) estimator: θ̂HT = N−1
∑

i∈s π
−1
i yi.

3. Proposed population-level empirical likelihood (POEL1) method without us-

ing x information, obtained by maximizing l =
∑N

i=1 log(ωi) subject to (3.2),

(3.3) and
∑N

i=1 ωi(Ii − pi) = 0 (for SRSWOR and rejective Poisson sampling)

with U = y − θ.

4. Pseudo-empirical likelihood (PEL) method with constraint (2.4).

5. Proposed sample-level empirical likelihood (SEL) method in Remark 2 by

using constraints (3.12), (3.13), and design constraint (for SRSWOR and re-

jective Poisson sampling)
∑

i∈s ωip
−1
i (pi− p̄N ) = 0 with U = y− θ and h = x.

6. Proposed population-level empirical likelihood (POEL2) method using con-

straints (3.2), (3.3), (3.4), and
∑N

i=1 ωi(Ii − pi) = 0 (for SRSWOR and rejec-

tive Poisson sampling) with U = y − θ and h = x.

The first three estimators are computed without using x information while the

other estimators incorporate the population mean of x. In rejective Poisson sam-

pling, the constraint
∑N

i=1 ωi(Iip
−1
i − 1)pi = 0 is added to account for the design

information
∑N

i=1 Ii = n. Based on B = 2, 000 Monte Carlo samples, we have

computed the biases, variances, and mean squared errors of the six estimators.

Table 1 presents the results. The HJ and HT estimators are identical under SRS,

but HT estimator is more efficient than the HJ estimator under other designs.

The PEL estimator performs well in Case A, where the regression model holds

for the finite population, because it is asymptotically equivalent to the GREG

estimator. The POEL1 estimator has the same efficiency as the HJ and HT

estimators under SRS, but it performs better under other designs because it ef-

fectively uses the population size (N) information. The three empirical likelihood

methods (PEL, SEL, POEL2) using x information show similar performances in

both populations under SRS, but SEL and POEL2 are more efficient than the

PEL estimator for other designs because the SEL and POEL2 methods incorpo-

rate the design information more efficiently than the PEL method.

In addition to point estimators, we also computed interval estimators for

the POEL2 method with a 95% nominal coverage. The interval estimators were

computed by the likelihood ratio method based on the results in Theorem 2 and

Theorem 4. Table 2 presents the simulation results of the interval estimators. In

Table 2, Wald-type confidence intervals were constructed as (θ̂−2
√

V̂ , θ̂+2
√
V̂ ),
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Table 1. Monte Carlo biases, variances, and mean squared errors of the point
estimators.

Population Design Method Bias Var MSE

SRSWOR

HJ -0.006 0.046 0.046
HT -0.006 0.046 0.046
POEL1 -0.006 0.046 0.046
PEL -0.003 0.010 0.010
SEL -0.001 0.009 0.009
POEL2 -0.001 0.009 0.009

Poisson

HJ 0.011 0.043 0.043
HT 0.004 0.035 0.035
POEL1 0.004 0.035 0.035

A PEL 0.001 0.008 0.008
SEL 0.003 0.007 0.007
POEL2 0.003 0.007 0.007

Rejective Poisson

HJ 0.000 0.039 0.039
HT -0.004 0.028 0.028
POEL1 -0.002 0.016 0.0165
PEL -0.005 0.008 0.008
SEL -0.002 0.006 0.006
POEL2 -0.002 0.006 0.006

SRSWOR

HJ -0.005 0.070 0.070
HT -0.005 0.070 0.070
POEL1 -0.005 0.070 0.070
PEL -0.005 0.024 0.024
SEL -0.003 0.024 0.024
POEL2 -0.003 0.024 0.024

Poisson

HJ 0.007 0.038 0.038
HT 0.000 0.034 0.034
POEL1 0.000 0.030 0.030

B PEL -0.001 0.022 0.022
SEL -0.001 0.016 0.016
POEL2 -0.002 0.016 0.016

Rejective Poisson

HJ 0.003 0.037 0.037
HT -0.002 0.019 0.019
POEL1 -0.003 0.014 0.014
PEL -0.001 0.022 0.022
SEL -0.004 0.013 0.013
POEL2 -0.004 0.013 0.013

HJ: Hájek estimator, HT: Horvitz-Thompson estimator, PEL: Pseudo Empirical

Likelihood estimator, SEL: Proposed sample EL estimator, POEL1: Proposed pop-

ulation EL estimator (without using x information), POEL2: Proposed population

EL estimator incorporating x information, SRSWOR: Simple Random Sampling

Without Replacement.
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Table 2. Coverage rate and average length comparison for Wald’s and Wilk’s
type 95% confidence intervals of proposed POEL2 method.

Population Sampling design Method Coverage rate Average length

SRSWOR
Wald 0.923 0.362
Wilk 0.934 0.379

A
Poisson

Wald 0.931 0.313
Wilk 0.942 0.327

Rejective Poisson
Wald 0.932 0.309
Wilk 0.944 0.322

SRSWOR
Wald 0.923 0.580
Wilk 0.938 0.598

B
Poisson

Wald 0.935 0.486
Wilk 0.944 0.503

Rejective Poisson
Wald 0.936 0.450
Wilk 0.949 0.471

where V̂ was computed by the plug-in method described after Theorem 1 and

Theorem 3. The Wilk-type confidence intervals were computed by the method in

Theorem 2 and Theorem 4. The actual coverage rates of the Wilk-type confidence

intervals are very close to the nominal coverage rates in the simulation study. In

general, the Wilk-type confidence intervals show better coverage properties than

the Wald-type confidence intervals in terms of coverage rates. We found similar

results for the SEL method.

6.2. Simulation two

In the second simulation study, we considered combining information from

the two independent surveys discussed in Section 5. In this simulation, an arti-

ficial finite population of size N = 10, 000 was generated from

yi = 1 + 0.8(zi − 3) + 1.5xi + (
zi
5
)ei,

where the zi were generated from χ2(2) + 1, ei ∼ χ2(1) − 1, and xi ∼ N(2, 1).

From the finite population, we repeatedly generated two independent samples, A1

and A2, with sample sizes n1 = 500 and n2 = 200, respectively, and B = 2, 000

times. The sampling design for survey 1 was simple random sampling without

replacement with sample size n1 = 500. From the survey 1 sample, we only

observe xi. The sampling design for survey 2 was rejective Poisson sampling with

fixed sample size. For the rejective Poisson sampling, we used πi2 = n2zi/
∑N

i=1 zi
for the initial selection probability. From the survey 2 sample, we observe xi and

yi. The parameter of interest is the population mean of y.

From each sample pair generated as above, we computed four point estimates
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Table 3. The Monte Carlo biases, variances, and the mean squared errors
(MSE) of the point estimators in Simulation Two.

Method Bias Var MSE
Pseudo EL 0.009 0.019 0.019

Naive Optimal 0.008 0.017 0.017
Augmented Optimal -0.002 0.006 0.006
Proposed POEL 0.002 0.006 0.006

1. Pseudo empirical likelihood estimator (Wu (2004)), denoted θ̂PEL, and θ̂PEL =∑
j∈s2 q̂jyj , where q̂j is obtained by maximizing l =

∑
i∈s1 d1i log(pi) +

∑
j∈s2

d2j log(qj), subject to
∑

i∈s1 pi =
∑

j∈s2 qj = 1 and
∑

i∈s1 pixi =
∑

j∈s2 qjxj .

2. The naive optimal estimator θ̂opt1 = ȳd,2+(x̄1−x̄d,2)B̂opt, with x̄1=n−1
1

∑
i∈s1 xi,

(x̄d,2, ȳd,2) = (
∑

i∈s2 π
−1
i2 )−1

∑
i∈s2 π

−1
i2 (xi, yi), and B̂opt = {V̂ (x̄1)+V̂ (x̄d,2)}−1

ˆCov (ȳd,2, x̄d,2).

3. The augmented optimal estimator θ̂opt2 = ȳd,2+(x̄1 − x̄d,2) B̂opt1+(π̄2N − π̄d,2)
B̂opt2, where B̂opt = (B̂′

opt1, B̂
′
opt2)

′ = V̂ −1(S̄d) ˆCov (ȳd,2, S̄d), S̄d = [(x̄d,2 −
x̄1), (π̄d,2 − π̄2N )]′, π̄d,2 =

∑N
i=1 I2iπ

−1
2i π2i/

∑N
i=1 I2iπ

−1
2i , π̄2N = N−1

∑N
i=1 π2i.

4. The proposed POEL estimator θ̂POEL using constraints
∑N

i=1 ωi = 1,
∑N

i=1

ωiI1iπ
−1
1i =

∑N
i=1 ωiI2iπ

−1
2i = 1,

∑N
i=1 ωiI1iπ

−1
1i xi =

∑N
i=1 ωiI2iπ

−1
2i xi, and two

design constraints
∑

i∈s1 ωi = n1/N and
∑N

i=1 ωiI2i =
∑N

i=1 ωiπ2i.

The augmented optimal estimator is included to show the effect of incorpo-
rating the inclusion probability into the estimation. Table 3 presents the biases,
variances, and the mean squared errors of the four point estimates. The proposed
POEL estimator is more efficient than the naive optimal estimator because it in-
corporates additional information associated with a fixed sample size for survey
2. The performance of the augmented optimal estimator is close to the proposed
POEL estimator.

7. Concluding Remarks

The objective function (2.9) can be viewed as a population-level nonpara-
metric likelihood when the finite population is treated as a random sample from
a superpopulation model. In the purely design-based approach, the superpopu-
lation model is not assumed and the objective function in (2.9) is regarded as
the negation of a distance function

N∑
i=1

( 1

N

)
log
(1/N

ωi

)
,

where the distance is the Kullback-Leibler divergence from (N−1, . . . , N−1) to
(ω1, . . . , ωN ). The sampling design is incorporated into the constraints, rather
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than into the objective function for optimization, when solving the population

empirical likelihood estimator. Auxiliary information for the population can

also be incorporated into the constraint of the population empirical likelihood

method.

The optimality of the proposed estimator holds when the sampling fraction,

n/N , is negligible. If the sampling rate is not negligible then, instead of (3.4),

we can use
∑N

i=1 ωi(Ii/πi − 1)hi = 0 in the constraint, as suggested by Qin,

Zhang, and Leung (2009) in the context of missing data problems. In this case,

the calibration condition holds only asymptotically, but not exactly. Population

size N is needed to implement the population empirical likelihood method. If

N is unknown, the sample empirical likelihood method discussed in Remark 2,

or the new approach proposed by Berger and De La Riva Torres (2012), can be

used. Further extension of the proposed method, including extension to other

complex sampling designs and variable selection for calibration, is a topic of

future research.
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