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Abstract: In this paper, we propose a fast, well-performing, and consistent method

for segmenting a piecewise-stationary, linear time series with an unknown number

of breakpoints. The time series model we use is the nonparametric Locally Sta-

tionary Wavelet model, in which a complete description of the piecewise-stationary

second-order structure is provided by wavelet periodograms computed at multiple

scales and locations. The initial stage of our method is a new binary segmenta-

tion procedure, with a theoretically justified and rapidly computable test criterion

that detects breakpoints in wavelet periodograms separately at each scale. This

is followed by within-scale and across-scales post-processing steps, leading to con-

sistent estimation of the number and locations of breakpoints in the second-order

structure of the original process. An extensive simulation study demonstrates good

performance of our method.

Key words and phrases: Binary segmentation, breakpoint detection, locally station-

ary wavelet model, piecewise stationarity, post-processing, wavelet periodogram.

1. Introduction

A stationarity assumption is appealing when analysing short time series. But
it is often unrealistic, for example when observing time series evolving in naturally
nonstationary environments. One such example can be found in econometrics,
where price processes are considered to have time-varying variance in response
to events taking place in the market; Mikosch and Stărică (1999), Kokoszka and
Leipus (2000), and Stărică and Granger (2005), among others, argued in favour
of nonstationary modelling of financial returns. For example, given the explosion
of market volatility during the recent financial crisis, it is unlikely that the same
stationary time series model can accurately describe the evolution of market
prices before and during the crisis.

Piecewise stationarity is a well studied and arguably the simplest form of
departure from stationarity, and one task of interest is to detect breakpoints
in the dependence structure. Breakpoint detection has received considerable
attention and the methods that have been developed can be broadly categorized
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into retrospective (a posteriori) methods and on-line methods. In the interest of
space, we do not review on-line breakpoint detection approaches here but refer
the reader to Lai (2001).

The “a posteriori” approach takes into account the entire set of observations
at once and detects breakpoints which occurred in the past. Our interest here
lies in the “a posteriori” segmentation category, and we propose a retrospec-
tive segmentation procedure that achieves consistency in identifying multiple
breakpoints for a class of nonstationary processes. (Note that we use the term
“segmentation” interchangeably with “multiple breakpoint detection”.)

Early segmentation literature was mostly devoted to testing the existence of
a single breakpoint in the mean or variance of independent observations (Cher-
noff and Zacks (1964), Sen and Srivastava (1975), Hawkins (1977), Hsu (1977),
Worsley (1986)). When the presence of more than one breakpoint is suspected,
an algorithm for detecting multiple breakpoints is needed. In Vostrikova (1981),
a “binary segmentation” procedure was introduced, a computationally efficient
multilevel breakpoint detection procedure that recursively locates and tests for
multiple breakpoints, producing consistent breakpoint estimators for a class of
random processes with piecewise constant means. However, the critical values
of the tests at each stage are difficult to compute in practice due to stochastic-
ity in previously selected breakpoints. Venkatraman (1993) employed the same
procedure to find multiple breakpoints in the mean of independent and normally
distributed variables and showed the consistency of the detected breakpoints with
the tests depending on the sample size only, and thus are easier to compute. The
binary segmentation procedure was also adopted to detect multiple shifts in the
variance of independent observations (Inclán and Tiao (1994), Chen and Gupta
(1997)).

Various multiple breakpoint detection methods have been proposed for time
series of dependent observations. In Lavielle and Moulines (2000), least squares
estimators of breakpoint locations were developed for linear processes with chang-
ing mean, extending the work of Bai and Perron (1998). Adak (1998) and Ombao
et al. (2001) proposed methods that divided the time series into dyadic blocks
and chose the best segmentation according to suitably tailored criteria. Whitcher,
Guttorp, and Percival (2000); Whitcher et al. (2002) and Gabbanini et al. (2004)
suggested segmenting long memory processes by applying the iterative cumula-
tive sum of squares (ICSS) algorithm (proposed in Inclán and Tiao (1994)) to
discrete wavelet coefficients of the process which were approximately Gaussian
and decorrelated. Davis, Lee, and Rodriguez-Yam (2006) developed the Auto-
PARM procedure which found the optimal segmentation of piecewise stationary
AR processes via the minimum description length principle, later extended to the
segmentation of non-linear processes in Davis, Lee, and Rodriguez-Yam (2008).
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In Lavielle and Teyssière (2005), a breakpoint detection method was developed
for weakly or strongly dependent processes with time-varying volatility that min-
imises a penalised contrast function based on a Gaussian likelihood. Andreou and
Ghysels (2002) studied a heuristic segmentation procedure for the GARCH model
with changing parameters, based on the work of Lavielle and Moulines (2000).

The aim of our work is to propose a well-performing, theoretically tractable,
and fast procedure for detecting breakpoints in the second-order structure of a
piecewise stationary time series that is linear but otherwise does not follow any
particular parametric model. The nonparametric model we use for this purpose is
the Locally Stationary Wavelet (LSW) model first proposed by Nason, von Sachs,
and Kroisandt (2000) and later studied by Fryzlewicz and Nason (2006) and
Van Bellegem and von Sachs (2008). Detailed justification of our model choice
is given in Section 2. In the LSW model, the piecewise constant second-order
structure of the process is completely described by local wavelet periodograms
at multiple scales, and it is those basic statistics that we use as a basis of our
segmentation procedure.

To achieve the multiple breakpoint detection, we propose a binary segmen-
tation method that is applied to wavelet periodograms separately at each scale,
and followed by a within-scale and across-scales post-processing procedure to
obtain consistent estimators of breakpoints in the second-order structure of the
process. We note that wavelet periodograms follow a multiplicative statistical
model, but our binary segmentation procedure is different from previously pro-
posed binary segmentation methods for multiplicative models (Inclán and Tiao
(1994), Chen and Gupta (1997)) in that it allows for correlated data, which
is essential when working with wavelet periodograms. We note that Kouamo,
Moulines, and Roueff (2010) proposed a CUSUM-type test for detecting a single
change in the wavelet variance at one or several scales that also permits cor-
relation in the data. We emphasise other unique ingredients of our breakpoint
detection procedure which lead to its good performance and consistency in prob-
ability: the theoretical derivation of our test criterion (which only depends on
the length of the time series and is thus fast to compute); the novel across-scales
post-processing step, essential in combining the results of the binary segmenta-
tion procedures performed for each wavelet periodogram scale separately. We
note that our method can simultaneously be termed “multiscale” and “multi-
level”, as the basic time series model used for our purpose is wavelet-based and
thus is a “multiscale” model, and the core methodology to segment each scale
of the wavelet periodogram in the model is based on binary segmentation and is
thus a “multilevel” procedure.

The paper is organised as follows. Section 2 explains the LSW model and
justifies its choice. Our breakpoint detection methodology (together with the
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post-processing steps) is introduced in Section 3, where we also demonstrate its
theoretical consistency in estimating the total number and locations of break-
points. In Section 4, we describe the outcome of an extensive simulation study
that demonstrates the good performance of our method. In Section 5, we ap-
ply our technique to the segmentation of the Dow Jones index and this results
in the discovery of two breakpoints: one coinciding with the initial period of
the recent financial crisis, and the other coinciding with the collapse of Lehman
Brothers, a major financial services firm. The proofs of our theoretical results
are provided in the online supplementary material. Software (an R script) im-
plementing our methodology is available from: http://personal.lse.ac.uk/

choh1/msml_technique.html.

2. Locally Stationary Wavelet Time Series

In this section, we define the Locally Stationary Wavelet (LSW) time series
model (noting that our definition is a slight modification of that of Fryzlewicz
and Nason (2006)), describe its properties, and justify its choice as an attractive
framework for developing our time series segmentation methodology.

Definition 1. A triangular stochastic array {Xt,T }T−1
t=0 for T = 1, 2, . . . , is in a

class of Locally Stationary Wavelet (LSW) processes if there exists a mean-square
representation

Xt,T =
−1∑

i=−∞

∞∑
k=−∞

Wi(
k

T
)ψi,t−kξi,k (2.1)

with i ∈ {−1,−2, . . .} and k ∈ Z as scale and location parameters, respectively,
the ψi = (ψi,0, . . . , ψi,Li−1) are discrete, real-valued, compactly supported, non-
decimated wavelet vectors with support lengths Li = O(2−i), and the ξi,k are
zero-mean, orthonormal, identically distributed random variables. For each i ≤
−1, Wi(z) : [0, 1] → R is a real-valued, piecewise constant function with a finite
(but unknown) number of jumps. If the Li denote the total magnitude of jumps
in W 2

i (z), the variability of functions Wi(z) is controlled so that

•
∑−1

i=−∞ W 2
i (z) < ∞ uniformly in z,

•
∑−1

i=−I 2−iLi = O(log T ) where I = log2 T .

The reader unfamiliar with basic concepts in wavelet analysis is referred to
the monograph by Vidakovic (1999). By way of example, we recall the simplest
discrete, non-decimated wavelet system: the Haar wavelets. Here

ψi,k = 2i/2I{0,...,2−j−1−1}(k) − 2i/2I{2−j−1,...,2−j−1}(k),

http://personal.lse.ac.uk/choh1/msml_technique.html
http://personal.lse.ac.uk/choh1/msml_technique.html


CONSISTENT SEGMENTATION OF NONSTATIONARY TIME SERIES 211

for i = −1,−2, . . ., k ∈ Z, where IA(k) is 1 if k ∈ A and 0 otherwise. We note that
discrete non-decimated wavelets ψi,k can be shifted to any location defined by the
finest-scale wavelets, and not just to ‘dyadic’ locations (i.e. those with shifts being
multiples of 2−i) as in the discrete wavelet transform. Therefore, discrete non-
decimated wavelets are no longer an orthogonal, but an overcomplete collection
of shifted vectors (Nason, von Sachs, and Kroisandt (2000)).

Throughout, the ξi,k are assumed to follow the normal distribution; ex-
tensions to non-Gaussianity are possible but technically difficult. Comparing
the above definition with the Cramér’s representation of stationary processes,
Wi(k/T ) is a (scale- and location-dependent) transfer function, the wavelet vec-
tors ψi are analogous to the Fourier exponentials, and the innovations ξi,k corre-
spond to the orthonormal increment process. Small negative values of the scale
parameter i denote “fine” scales where the wavelet vectors are the most localised
and oscillatory; large negative values denote “coarser” scales with longer, less os-
cillatory wavelet vectors. By assuming that Wi(z) is piecewise constant, we are
able to model processes with a piecewise constant second-order structure where,
between any two breakpoints in Wi(z), the second-order structure remains con-
stant. The Evolutionary Wavelet Spectrum (EWS) is defined as Si(z) = Wi(z)2,
and it is in a one-to-one correspondence with the time-dependent autocovariance
function of the process c(z, τ) := limT→∞ Cov (X[zT ],T , X[zT ]+τ,T ) (Nason, von
Sachs, and Kroisandt (2000)). We note that Wi(z) is a valid transfer function;
the variance of the resulting time series Xt,T is uniformly bounded over t, and
the one-to-one correspondence between the autocovariance function and Si(z)
leads to model identifiability. Our objective is to develop a consistent method
for detecting breakpoints in the EWS, and consequently to provide a segmenta-
tion of the original time series. The following technical assumption is placed on
the breakpoints present in the EWS.

Assumption 1. The set of locations z where (possibly infinitely many) functions
Si(z) contain a jump, is finite; with B = {z; ∃ i limu→z− Si(u) 6= limu→z+ Si(u)},
then B = |B| < ∞.

We further define the wavelet periodogram of the LSW time series.

Definition 2. Let Xt,T be an LSW process as in (2.1). The triangular stochastic
array

I
(i)
t,T =

∣∣∣ ∑
s

Xs,T ψi,s−t

∣∣∣2 (2.2)

is called the wavelet periodogram of Xt,T at scale i.
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With the autocorrelation wavelets Ψi(τ) :=
∑

k ψi,kψi,k−τ , the wavelet opera-
tor matrix is defined as A = (Ai,k)i,k<0 with Ai,k := 〈Ψi, Ψk〉 =

∑
τ Ψi(τ)Ψk(τ).

Fryzlewicz and Nason (2006) showed that the expectation of a wavelet peri-
odogram EI

(i)
t,T is “close” (in the sense of the integrated squared bias converging

to zero) to the function βi(z) =
∑−1

j=−∞ Sj(z)Ai,j , a piecewise constant func-
tion with at most B jumps, all of which occur in the set B. Thus, there exists
a one-to-one correspondence between EWS, the time-dependent autocovariance
function, and the function βi(z) (being the asymptotic expectation of the wavelet
periodogram). Every breakpoint in the autocovariance structure then results in
a breakpoint in at least one of the βi(z)’s, and is thus detectable, at least with
T → ∞, by analysing the wavelet periodogram sequences. We note that EI

(i)
t,T

itself is piecewise constant by definition, except on the intervals of length C2−i

around the discontinuities occurring in B (C denotes an arbitrary positive con-
stant throughout the paper); given a breakpoint ν ∈ B, the computation of I

(i)
t,T

for t ∈ [ν −C2−i, ν + C2−i] involves observations from two stationary segments,
which results in EI

(i)
t,T being “almost” piecewise constant yet not completely so.

The finiteness of B implies that there exists a fixed index I∗ < blog2 T c such
that each breakpoint in B can be found in at least one of the functions Si(z)
for i = −1, . . . ,−I∗. Thus, from the invertibility of A and the closeness of βi(z)
and EI

(i)
t,T , as noted above, we conclude that every breakpoint is detectable from

the wavelet periodogram sequences at scales i = −1, . . . ,−I∗. Since I∗ is fixed
but unknown, in our theoretical considerations we permit it to increase slowly
to infinity with T , see the supplementary material for further details. A further
reason for disregarding the coarse scales i < −I∗ is that the autocorrelation
within each wavelet periodogram sequence becomes stronger at coarser scales;
similarly, the intervals on which EI

(i)
t,T is not piecewise constant become longer.

Thus, for coarse scales, wavelet periodograms provide little useful information
about breakpoints and can safely be omitted.

We end this section by briefly summarising our reasons behind the choice of
the LSW model as a suitable framework for developing our methodology:

(i) The entire piecewise constant second-order structure of the process is encoded
in the (asymptotically) piecewise constant sequences EI

(i)
t,T .

(ii) Due to the “whitening” property of wavelets, the wavelet periodogram
sequences are often much less autocorrelated than the original process.
In Section 9.2.2 of Vidakovic (1999), the “whitening” property of wavelets
is formalised for a second-order stationary time series Xt,T with a suffi-
ciently smooth spectral density; defining the wavelet coefficient as ri,k :=∑

s Xs,T ψi,s−k, the across-scale covariance of the wavelet coefficients
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E(ri,kri′,k′) vanishes for |i − i′| > 1, is arbitrarily small for |i − i′| = 1, and
decays as o(|k − k′|−1) within each scale, provided the wavelet used is also
sufficiently smooth. However, we emphasise that our segmentation method
permits autocorrelation in the wavelet periodogram sequences, as described
later in Section 3.1.

(iii)The entire array of the wavelet periodograms at all scales is easily and rapidly
computable via the non-decimated wavelet transform.

(iv) The use of the “rescaled time” z = k/T in (2.1) and the associated regularity
assumptions on the transfer functions Wi(z) permit us to establish rigorous
asymptotic properties of our procedure.

3. Binary Segmentation Algorithm

Noting that each wavelet periodogram sequence follows a multiplicative
model, as described in Section 3.1, we introduce a binary segmentation algorithm
for such class of sequences. Binary segmentation is a computationally efficient
tool that searches for multiple breakpoints in a recursive manner (and can be
classed as a “greedy” and “multilevel” algorithm). Venkatraman (1993) applied
the procedure to a sequence of independent normal variables with multiple break-
points in its mean and showed that the detected breakpoints were consistent in
terms of their number and locations. In the following, we aim at extending
these consistency results to the multiplicative model where dependence between
observations is permitted.

3.1. Generic multiplicative model

Recall that each wavelet periodogram ordinate is simply a squared wavelet
coefficient of a zero-mean Gaussian time series, is distributed as a scaled χ2

1

variable, and satisfies I
(i)
t,T = EI

(i)
t,T · Z2

t,T , where {Zt,T }T−1
t=0 are autocorrelated

standard normal variables. Hence we develop a generic breakpoint detection tool
for multiplicative sequences

Y 2
t,T = σ2

t,T · Z2
t,T , t = 0, . . . , T − 1; (3.1)

I
(i)
t,T and EI

(i)
t,T can be viewed as special cases of Y 2

t,T and σ2
t,T , respectively. We

assume additional conditions that are, in particular, satisfied for I
(i)
t,T and EI

(i)
t,T

by the assumptions of Theorem 2.
(i) σ2

t,T is deterministic and “close” to a piecewise constant function σ2(t/T ) in
the sense that σ2

t,T is piecewise constant apart from intervals of length at most
C2I∗ around the discontinuities in σ2(z), and T−1

∑T−1
t=0 |σ2

t,T − σ2(t/T )|2 =
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o(log−1 T ), where the latter rate comes from the rate of convergence of the
integrated squared bias between βi(t/T ) and EI

(i)
t,T (see Fryzlewicz and Nason

(2006) for details) and from the fact that our attention is limited to the I∗

finest scales only. Further, σ2(z) is bounded from above and away from zero,
with a finite but unknown number of jumps.

(ii) {Zt,T }T−1
t=0 is a sequence of standard Gaussian variables and the function

ρ(τ) = supt,T |Corr(Zt,T , Zt+τ,T )| satisfies ρ1
∞ < ∞ where ρp

∞ =
∑

τ |ρ(τ)|p.

Once the breakpoint detection algorithm for the generic model (3.1) has been
established, we apply it to the wavelet periodograms.

3.2. Algorithm

The first step of the binary segmentation procedure is to find the likely
location of a breakpoint. We locate such a point in the interval (0, T − 1) as the
one which maximizes the absolute value of

Yν
0,T−1 =

√
T − ν

T · ν

ν−1∑
t=0

Y 2
t,T −

√
ν

T · (T − ν)

T−1∑
t=ν

Y 2
t,T . (3.2)

Here Yν
0,T−1 can be interpreted as a scaled difference between the partial means of

two segments {Y 2
t,T }

ν−1
t=0 and {Y 2

t,T }
T−1
t=ν , where the scaling is chosen so as to keep

the variance Yν
0,T−1 constant over ν in the idealised case of Y 2

t,T being i.i.d.. Once
such a ν has been found, we use Yν

0,T−1 (but not only this quantity; see below for
details) to test the null hypothesis of σ2(t/T ) being constant over [0, T − 1]. The
test statistic and its critical value are established such that when a breakpoint is
present, the null hypothesis is rejected with probability converging to 1. If the
null hypothesis is rejected, we continue the simultaneous locating and testing of
breakpoints on the two segments to the left and right of ν in a recursive manner
until no further breakpoints are detected. The algorithm is summarised below,
where j is the level index and l is the location index of the node at each level.
Here the term “level” is used to indicate the progression of the segmentation
procedure.

Algorithm

Step 1. Begin with (j, l) = (1, 1). Let sj,l = 0 and ej,l = T − 1.

Step 2. Iteratively compute Yb
sj,l,ej,l

as in (3.2) for b ∈ (sj,l, ej,l). Then, find bj,l

which maximizes its absolute value while satisfying

max

{√
(ej,l − bj,l)

(bj,l − sj,l + 1)
,

√
(bj,l − sj,l + 1)

(ej,l − bj,l)

}
≤ c
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for a fixed constant c ∈ [1/2, 1). Let nj,l = ej,l − sj,l + 1, dj,l = Ybj,l
sj,l,ej,l , and

mj,l =
∑ej,l

t=sj,l
Y 2

t,T /
√

nj,l.

Step 3. Perform hard thresholding on |dj,l|/mj,l with the threshold tj,l = τT θ√
log T/nj,l so that d̂j,l = dj,l if |dj,l| > mj,l · tj,l, and d̂j,l = 0 otherwise.

The choice of θ and τ is discussed in Section 3.4.

Step 4. If either d̂j,l = 0 or max{bj,l − sj,l + 1, ej,l − bj,l} < ∆T for l, stop
the algorithm on the interval [sj,l, ej,l]; if not, let (sj+1,2l−1, ej+1,2l−1) =
(sj,l, bj,l) and (sj+1,2l, ej+1,2l) = (bj,l + 1, ej,l), and update the level j as
j → j + 1. The choice of ∆T is discussed in Section 3.4.

Step 5. Repeat Steps 2–4.

The condition imposed on bj,l in Step 2 implies that the breakpoints should
be sufficiently scattered over time without being too close to each other, and a
similar condition is required of the true breakpoints in σ2(t/T ), see Assumption
2 in Section 3.3. The set of detected breakpoints is {bj,l; d̂j,l 6= 0}. The test
statistic |dj,l|/mj,l is a scaled version of the test statistics in the ICSS algorithm
(Inclán and Tiao (1994)). However, the test criteria in that paper are derived
empirically under the assumption of independent observations, and there is no
guarantee that their algorithm produces consistent breakpoint estimates.

Fryzlewicz and Nason (2006) and Fryzlewicz, Sapatinas, and Subba Rao
(2006) introduced “Haar-Fisz” techniques in different contexts; the former for
estimating the time-varying local variance of an LSW time series, and the latter
for estimating time-varying volatility in a locally stationary model for financial
log-returns. Each Haar-Fisz method has a device (termed the “Fisz transform”)
for stabilising the variance of the Haar wavelet coefficients of the data and thereby
bringing the distribution of the data close to Gaussianity with constant variance.
This is similar to the step in our algorithm where the differential statistic (dj,l)
is divided by the local mean (mj,l), with the convention 0/0 = 0. However, the
Fisz transform was only defined for the case b = (1/2)(ej,l +sj,l +1) (meaning the
segments were split in half) and it was not used for the purposes of breakpoint
detection.

3.2.1. Post-processing within a sequence

We equip the procedure with an extra step aimed at reducing the risk of
overestimating the number of breakpoints. The ICSS algorithm in Inclán and
Tiao (1994) has a “fine-tune” step whereby if more than one breakpoint is found,
each breakpoint is checked against the adjacent ones to reduce the risk of over-
estimation. We propose a post-processing procedure performing a similar task
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within the single-sequence multiplicative model (3.1). At each breakpoint, the
test statistic is re-calculated over the interval between two neighbouring break-
points and compared with the threshold. Denote the breakpoint estimates as
η̂p, p = 1, . . . , N̂ and η̂0 = 0, η̂N̂+1 = T . For each η̂p, we examine whether∣∣∣Yη̂p

η̂p−1+1,η̂p+1

∣∣∣ > τT θ
√

log T ·
∑η̂p+1

t=η̂p−1+1 Y 2
t,T /(η̂p+1− η̂p−1). If this inequality does

not hold, η̂p is removed and the same procedure is repeated with the reduced set
of breakpoints until the set does not change.

We emphasise that our within-scale post-processing step is in line with the
theoretical derivation of breakpoint detection consistency as (a) the extra checks
are of the same form as those done in the original algorithm, (b) the locations
of the breakpoints that survive the post-processing are unchanged. The next
section provides details of our consistency result.

3.3. Consistency of detected breakpoints

In this section, we first show the consistency of our algorithm for a mul-
tiplicative sequence as in (3.1), which corresponds to the wavelet periodogram
sequence at a single scale. Later, Theorem 2 shows how this consistency result
carries over to the consistency of our procedure in detecting breakpoints in the
entire second-order structure of the input LSW process Xt,T .

Denote the number of breakpoints in σ2(t/T ) by N and the breakpoints
themselves by 0 < η1 < · · · < ηN < T − 1, with η0 = 0, ηN+1 = T − 1.

Assumption 2. For θ ∈ (1/4, 1/2) and Θ ∈ (θ + 1/2, 1), the length of each
segment in σ2(t/T ) is bounded from below by δT = CTΘ. Further, there exists
some constant c ∈ [1/2, 1) such that,

max
1≤p≤N

{√
ηp − ηp−1

ηp+1 − ηp
,

√
ηp+1 − ηp

ηp − ηp−1

}
≤ c.

Theorem 1. Suppose that {Yt,T }T−1
t=0 follows model (3.1). Assume there ex-

ist M,m > 0 such that supt |σ2(t/T )| ≤ M and inf1≤i≤N |σ2((ηi + 1)/T ) −
σ2(ηi/T )| ≥ m. Under Assumption 2, the number and locations of the detected
breakpoints are consistent. That is, P{N̂ = N ; |η̂p − ηp| ≤ CεT , 1 ≤ p ≤ N} → 1
as T → ∞, where η̂p, p = 1, . . . , N̂ are detected breakpoints and εT = T 1/2 log T .
(Interpreting this in the rescaled time interval [0, 1], εT /T = T−1/2 log T .)

3.3.1. Post-processing across the scales

We only consider wavelet periodograms I
(i)
t,T at scales i = −1, . . . ,−I∗, choos-

ing I∗ to satisfy 2I∗ ¿ εT = T 1/2 log T , so that the bias between σ2
t,T and
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σ2(t/T ) does not preclude the results of Theorem 1. Recall that any breakpoint
in the second-order structure of the original process Xt,T must be reflected in a
breakpoint in at least one of the asymptotic wavelet periodogram expectations
βi(z), i = −1, . . . ,−I∗, and vice versa: a breakpoint in one of the βi(z)’s implies
a breakpoint in the second-order structure of Xt,T . Thus, it is sensible to combine
the estimated breakpoints across the periodogram scales by, roughly speaking, se-
lecting a breakpoint as significant if it appears in any of the wavelet periodogram
sequences. This section provides a precise algorithm for doing this, and states a
consistency result for the final set of breakpoints arising from combining them
across scales.

The complete across-scales post-processing algorithm follows. Denote the
set of detected breakpoints from the sequence I

(i)
t,T as B̂i = {η̂(i)

p , p = 1, . . . , N̂i}.
Then the post-processing finds a subset of ∪−I∗

i=−1B̂i, say B̂, as follows.

Step 1. Arrange all breakpoints into groups so that those from different se-
quences and within the distance of ΛT from each other are classified to the
same group; denote the groups by G1, . . . ,GB̂.

Step 2. Find i0 = max{arg max−I∗≤k≤−1 N̂k}, the finest scale with the most
breakpoints.

Step 3. Check whether there exists η̂
(i0)
p0 for every η̂

(i)
p , i 6= i0, 1 ≤ p ≤ N̂i, which

satisfies |η̂(i)
p − η̂

(i0)
p0 | < ΛT . If so, let B̂ = B̂i0 and stop the post-processing.

Step 4. Otherwise let B̂ = {ν̂p, p = 1, . . . , B̂} where each ν̂p ∈ Gp with the
maximum i.

We set ΛT = bεT /2c in order to take into account the bias arising in deriving
the results of Theorem 1. Breakpoints detected at coarser scales are likely to be
less accurate than those detected at finer scales; therefore, our algorithm prefers
the latter. The across-scales post-processing procedure preserves the number of
“distinct” breakpoints and also their locations as determined by the algorithm.
Hence the breakpoints in set B̂ are still consistent estimates of true breakpoints in
the second-order structure of the original nonstationary process Xt,T . Although
this is not the only way to combine the breakpoints across scales consistent with
our theory, we advocate it due to its good performance.

Denote the set of the true breakpoints in the second-order structure of Xt,T

by B = {νp, p = 1, . . . , B}, and the estimated breakpoints by B̂ = {ν̂p, p =
1, . . . , B̂}.

Theorem 2. Suppose that Xt,T satisfies Assumption 1 and that νp, 1 ≤ p ≤ B
satisfy the condition required of the ηp’s in Assumption 2. Further assume that
the conditions on σ2(z) in Theorem 1 hold for each βi(z). Then P{B̂ = B;
|ν̂p − νp| ≤ CεT , 1 ≤ p ≤ B} → 1 as T → ∞.
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3.4. Choice of ∆T , θ, τ and I∗

To ensure that each estimated segment is of sufficiently large length so as not
to distort our theoretical results, ∆T is chosen so that ∆T ≥ CεT . In practice
our method works well for smaller values of ∆T as well, and in the simulation
experiments, ∆T = C

√
T is used. As θ ∈ (1/4, 1/2), we use θ = 0.251 (we

have found that the method works best when θ is close to the lower end of its
permitted range) and elaborate on the choice of τ below.

The selection of τ is not a straightforward task and to get some insight into
the issue, a set of numerical experiments was conducted. A vector of random
variables X ∼ NT (0, Σ) was generated, X = (X1, . . . , XT )T , then transformed
into sequences of wavelet periodograms I

(i)
t,T . The covariance matrix satisfied

Σ = (σi,j)
T
i,j=1 where σi,j = ρ|i−j|. Then we found b ∈ (1, T ) that maximised

Ib
i =

∣∣∣∣∣
√

T − b

T · b

b∑
t=1

I
(i)
t,T −

√
b

T (T − b)

T∑
t=b+1

I
(i)
t,T

∣∣∣∣∣ ,

and computed Ui,ρ,T = Ib
i ·{T−1

∑T
t=1 I

(i)
t,T ·T θ

√
log T}−1. This was repeated with

a varying covariance matrix (ρ = 0, 0.3, 0.6, 0.9) and sample size (T = 512, 1,024,
2,048), 100 times for each combination.

The quantity Ui,ρ,T is the ratio between our test statistic and the time-
dependent factor T θ

√
log T appearing in the threshold defined in the algorithm

of Section 3.2. Ui,ρ,T is computed under the “null hypothesis” of no breakpoints
being present in the covariance structure of Xt, and its magnitude serves as a
guideline as to how to select the value of τ , for each scale i, to prevent spurious
breakpoint detection in the null hypothesis case. The results showed that the
values of Ui,ρ,T and their range tended to increase for coarser scales, this due to
the increasing dependence in the wavelet periodogram sequences. In comparison
to the scale factor i, the parameters ρ or T had relatively little impact on Ui,ρ,T .

We thus propose to use different values of τ in Step 3 of Algorithm of Section
3.2 and in the within-scale post-processing procedure of Section 3.2.1. Denoting
the former by τi,1 and the latter by τi,2, we chose τi,1 differently for each i as the
95% quantile, and τi,2 as the 97.5% quantile of Ui,ρ,T for given i and T and ρ

chosen from the set {0, 0.3, 0.6, 0.9} with equal probability. The numerical values
of Ui,0,T when T =1,024 are summarised in Table 1.

Finally, we discuss the choice of I∗. We first detect breakpoints in wavelet
periodograms at scales i = −1, . . . ,−blog2 T/3c and perform the across-scale
post-processing as described in Section 3.3.1, obtaining the set of breakpoints
B̂ =

{
ν̂p, p = 1, . . . , B̂

}
. Subsequently, for the wavelet periodogram at the next
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Table 1. Values of τ for each scale i = −1, . . . ,−4.

scale i −1 −2 −3 −4
τi,1 0.39 0.46 0.67 0.83
τi,2 0.48 0.52 0.75 0.96

finest scale, we compute the quantity Vp, p = 1, . . . , B̂ + 1 as

Vp = max
ν∈(ν̂p−1,ν̂p)

∣∣∣∣∣∣∣∣∣∣

√
ν̂p−ν

(ν̂p−ν̂p−1)·(ν−ν̂p−1)

ν∑
t=ν̂p−1+1

I
(i)
t,T −

√
ν−ν̂p−1

(ν̂p−ν̂p−1)·(ν̂p−ν)

ν̂p∑
t=ν+1

I
(i)
t,T

ν̂p∑
ν̂p−1+1

I
(i)
t,T /(ν̂p − ν̂p−1)

∣∣∣∣∣∣∣∣∣∣
,

where ν̂0 = −1 and ν̂B̂+1 = T − 1. Then Vp is compared to τi,1 · T θ
√

log T to see

whether there are any further breakpoints yet to be detected in I
(i)
t,T that have

not been included in B̂. (This step is similar to our within-scale post-processing.)
If there is an interval [ν̂p−1 +1, ν̂p] where Vp exceeds the threshold, I∗ is updated
as I∗ := I∗ + 1 and the above procedure is repeated to update B̂ until either no
further changes are made, or I∗ ≥ blog2 T/2c.

We note that this approach is in line with the theoretical consistency of
our breakpoint detection procedure; Vp is of the same form as the test statistic
and Lemma 6 in the supplementary material implies that, if there are no more
breakpoints to be detected from I

(i)
t,T for i < −I∗ other than those already chosen

(B̂), then Vp does not exceed the threshold, and vice versa by Lemma 5.

4. Simulation Study

In Davis, Lee, and Rodriguez-Yam (2006), the performance of the Auto-
PARM was assessed and compared with the Auto-SLEX (Ombao et al. (2001))
through simulation in various settings. The Auto-PARM was shown to be su-
perior to Auto-SLEX in identifying both dyadic and non-dyadic breakpoints in
piecewise stationary time series. Some examples in the following are adopted from
Davis, Lee, and Rodriguez-Yam (2006) for the comparative study between our
method and the Auto-PARM, alongside some other new examples. We also ap-
plied the breakpoint detection method proposed in Lavielle and Teyssière (2005)
to the same simulated processes and, while the performance was found to be good,
it was inferior to both Auto-PARM and our method for these particular exam-
ples, so we do not report these results. In the simulations, wavelet periodograms
were computed using Haar wavelets and both post-processing procedures (Section
3.2.1 and Section 3.3.1) followed the application of the segmentation algorithm.
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Table 2. Summary of breakpoint detection from Simulation (A): our method
(CF) and Auto-PARM (AP). Results over 100 simulations.

number of breakpoints
a 0.7 0.4 0.1 -0.1 -0.4 -0.7

CF AP CF AP CF AP CF AP CF AP CF AP
0 100 100 100 100 100 100 99 100 99 100 94 100
1 0 0 0 0 0 0 1 0 1 0 5 0

≥ 2 0 0 0 0 0 0 0 0 0 0 1 0
total 100 100 100 100 100 100 100 100 100 100 100 100

Table 3. Summary of breakpoint detection from simulations: our method
(CF) and Auto-PARM (AP). Results over 100 simulations.

number of breakpoints
model (B) model (C) model (D) model (E) model (F) model (G)
CF AP CF AP CF AP CF AP CF AP CF AP

0 0 0 0 0 0 0 1 42 1 20 0 0
1 0 0 0 0 97 100 0 31 14 68 1 16
2 93 99 96 100 3 0 97 16 84 7 6 55
3 4 1 3 0 0 0 2 9 1 3 76 29
4 3 0 1 0 0 0 0 0 0 1 17 0
5 0 0 0 0 0 0 0 2 0 1 0 0

total 100 100 100 100 100 100 100 100 100 100 100 100

In our examples, T =1,024 and therefore I∗ was set as 3 at the start of each ap-
plication of the algorithm, then updated automatically if necessary, as described
in Section 3.4. Simulation outcomes are given in Tables 2−3, where the total
number of detected breakpoints are summarised over 100 simulations.

(A) Stationary AR(1) process with no breakpoints
We consider a stationary AR(1) process,

Xt = aXt−1 + εt for 1 ≤ t ≤ 1, 024, (4.1)

where εt ∼ i.i.d. N (0, 1) (as in all subsequent examples unless specified other-
wise). For a range of values of a, we summarise the breakpoint detection outcome
in Table 2.

(B) Piecewise stationary AR process with clearly observable changes
This example is taken from Davis, Lee, and Rodriguez-Yam (2006). The

target nonstationary process was generated as

Xt =


0.9Xt−1 + εt for 1 ≤ t ≤ 512,

1.68Xt−1 − 0.81Xt−2 + εt for 513 ≤ t ≤ 768,

1.32Xt−1 − 0.81Xt−2 + εt for 769 ≤ t ≤ 1, 024.

(4.2)
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Figure 1. (a) A realisation of model (4.2) with true (empty square) and
detected (filled circle) breakpoints; (b) I

(i)
t,T at i = −4 and the breakpoint

detection outcome.

As seen in Figure 1(a), there is a clear difference between the three segments in
the model. Figure 1(b) shows the wavelet periodogram at scale −4 and the esti-
mation results, where the lines with empty squares indicate the true breakpoints
(η1 = 512, η2 = 768) while the lines with filled circles indicate the detected ones
(η̂1 = 519, η̂2 = 764). Note that although initially the procedure returned three
breakpoints, the within-sequence post-processing successfully removed the false
one.

(C) Piecewise stationary AR process with less clearly observable changes
In this example, the piecewise stationary AR model is revisited, but its

breakpoints are less clear-cut, as seen in Figure 2.

Xt =


0.4Xt−1 + εt for 1 ≤ t ≤ 400,

−0.6Xt−1 + εt for 401 ≤ t ≤ 612,

0.5Xt−1 + εt for 613 ≤ t ≤ 1, 024

(4.3)

Figure 2 (b) shows the wavelet periodogram at scale −1 for the realisation in the
left panel with its breakpoint estimates (η̂1 = 403, η̂2 = 622). Both procedures
achieved good performance.

(D) Piecewise stationary AR process with a short segment
This example is again from Davis, Lee, and Rodriguez-Yam (2006). A single
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Figure 2. (a) A realisation of model (4.3); (b) I
(i)
t,T at i = −1 and the breakpoint

detection outcome.

Figure 3. (a) A realisation of model (4.4); (b) I
(i)
t,T at i = −3 and the

breakpoint detection outcome.

breakpoint occurs and one segment is much shorter than the other.

Xt =
{

0.75Xt−1 + εt for 1 ≤ t ≤ 50,

−0.5Xt−1 + εt for 51 ≤ t ≤ 1, 024.
(4.4)

A typical realisation of (4.4), its wavelet periodogram at scale −3, and the esti-
mation outcome are shown in Figure 3, where the jump at η1 = 50 was identified
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as η̂1 = 49. Even though one segment is substantially shorter than the other,
our procedure was able to detect exactly one breakpoint in 97% of the cases and
underestimation did not occur even when it failed to detect exactly one.

(E) Piecewise stationary near-unit-root process with changing variance
Financial time series, such as stock indices, individual share or commodity

prices, or currency exchange rates are, for such purposes as pricing of derivative
instruments, often modelled by a random walk with a time-varying variance. We
generated a piecewise stationary, near-unit-root example following (4.5), where
the variance has two breakpoints over time and the AR parameter remains con-
stant and very close to 1; a typical realisation is given in Figure 4(a). Note that,
within each stationary segment, the process can be seen as a special case of the
near-unit-root process of Phillips and Perron (1988).

Xt =


0.999Xt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ 400,

0.999Xt−1 + εt, εt ∼ N (0, 1.52) for 401 ≤ t ≤ 750,

0.999Xt−1 + εt, εt ∼ N (0, 1) for 751 ≤ t ≤ 1, 024.

(4.5)

Recall that the Auto-PARM is designed to find the “best” combination of the
total number and locations of breakpoints, and adopts a genetic algorithm to
traverse the vast parameter space. However, due to the stochastic nature of the
algorithm, it occasionally fails to return consistent estimates. This instability
was emphasised here, with each run often returning different breakpoints. For
one typical realisation, it detected t = 21 and 797 as breakpoints, and then only
t = 741 in the next run on the same sample path. Overall, the performance of
Auto-PARM leaves much to be desired for this particular example, whereas our
method performed well, though this is not a criticism of Auto-PARM in general,
as it performed well in other examples. Note that it was at scale −1 of the
wavelet periodogram that both breakpoints were consistently identified the most
frequently. The computation of the wavelet periodogram at scale −1 with Haar
wavelets is a differencing operation and naturally “whitens” the near-unit-root
process (4.5), clearly revealing any changes of variance in the sequence.

(F) Piecewise stationary AR process with high autocorrelation
The features of this AR model are a high degree of autocorrelation and less

obvious breakpoints compared to previous examples. A typical realisation is
shown in Figure 5(a).

Xt =


1.399Xt−1 − 0.4Xt−1 + εt, εt ∼ N (0, 0.82) for 1 ≤ t ≤ 400,

0.999Xt−1 + εt, εt ∼ N (0, 1.22) for 401 ≤ t ≤ 750,

0.699Xt−1 + 0.3Xt−1 + εt, εt ∼ N (0, 1) for 751 ≤ t ≤ 1, 024.

(4.6)
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Figure 4. (a) A realisation of model (4.5); (b) I
(i)
t,T at i = −1 and the

breakpoint detection outcome.

Figure 5. (a) A realisation of model (4.6); (b) I
(i)
t,T at i = −1 and the break-

point detection outcome; (c) I
(i)
t,T at i = −2 and the breakpoint detection

outcome.

Again, the instability of Auto-PARM was notable here, with the second break-
point at t = 750 often left undetected. Our procedure correctly identified both
breakpoints in 84% of the cases.
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Figure 6. (a) A realisation of model (4.7); (b) I
(i)
t,T at i = −4 and the breakpoint

detection outcome.

(G) Piecewise stationary ARMA(1, 1) process
We generated piecewise stationary ARMA processes as

Xt =



0.7Xt−1 + εt + 0.6εt−1 for 1 ≤ t ≤ 125,

0.3Xt−1 + εt + 0.3εt−1 for 126 ≤ t ≤ 532,

0.9Xt−1 + εt for 533 ≤ t ≤ 704,

0.1Xt−1 + εt − 0.5εt−1 for 705 ≤ t ≤ 1, 024.

(4.7)

As illustrated in Figure 6(a), the first breakpoint t = 125 is less apparent than
the other two. Auto-PARM often left this breakpoint undetected, while our
procedure found all three in 76% of cases. We note that it was scale i = −4 at
which t = 125 was detected most frequently by our procedure. With a time series
of length T = 1, 024, default scales provided by our algorithm are i = −1,−2,−3,
and this example demonstrates the effectiveness of the updating procedure for
I∗ described in Section 3.4. That is, after completing the examination of I

(i)
t,T

for i = −1,−2,−3, our procedure checked if there were more breakpoints to be
detected from I

(i)
t,T for the next scale i = −4 and, as it was the case, updated I∗

to 4. Figure 6(b) shows the wavelet periodogram at scale −4 for the time series
example in the left panel.

5. U.S Stock Market Data Analysis

Many authors, including Stărică and Granger (2005), argue in favour of
nonstationary modelling of financial returns. In this analysis, we consider the
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Figure 7. (a) Weekly average values of the Dow Jones IA index (July 1970–
May 1975); (b) Wavelet periodogram at scale −1 and the breakpoint detec-
tion outcome.

Dow Jones Industrial Average index and regard it as a process with an extremely
high degree of autocorrelation (such as in the near-unit-root model of Phillips
and Perron (1988)) and a time-varying variance, similar to the simulation model
in Section 4 (E).

(A) Dow Jones weekly closing values 1970–1975
The time series of weekly closing values of the Dow Jones Industrial Average

index between July 1971 and August 1974 was studied in Hsu (1979) and revisited
in Chen and Gupta (1997). Historical data are available on www.google.com/
finance/historical?q=INDEXDJX:.DJI, where daily and weekly prices can be
extracted for any time period. Both papers concluded that there was a change
in the variance of the index around the third week of March 1973. For ease
of computation of the wavelet periodogram, we chose the same weekly index
between 1 July 1970 and 19 May 1975 so that the data size was T = 256 with
the above-mentioned time period was contained in this interval. The third week
of March 1973 corresponds to t = 141 and our procedure detected η̂ = 142 as
a breakpoint, as illustrated in Figure 7. The Auto-PARM did not return any
breakpoint, while the segmentation procedure proposed in Lavielle and Teyssière
(2005), when applied to the log-returns (log(Xt/Xt−1)) of the data rather than
the data Xt themselves, returned t = 141 as a breakpoint, which is very close to
η̂.

www.google.com/finance/historical?q=INDEXDJX:.DJI
www.google.com/finance/historical?q=INDEXDJX:.DJI
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Figure 8. (a) Daily average values of the Dow Jones IA index (Jan 2007–Jan
2009); (b) Wavelet periodogram at scale −1 and the breakpoint detection
outcome.

(B) Dow Jones daily closing values 2007–2009
We further investigated more recent daily data from the same source, between

8 January 2007 and 16 January 2009. Over this period, the global financial
market experienced one of the worst crises in history. Our breakpoint detection
algorithm found two breakpoints (see Figure 8), one in the last week of July 2007
(η̂1 = 135), and the other in mid-September 2008 (η̂2 = 424). The Auto-PARM
returned three breakpoints on average, although the estimated breakpoints were
unstable as in Section 4 (E): t = 35, 426 and 488 were detected most often as
breakpoints, while t = 100 and t = 140 were detected in place of t = 35 on other
occasions. The segmentation procedure from Lavielle and Teyssière (2005), when
applied to the log-returns (log(Xt/Xt−1)) of the data rather than the data Xt

themselves, detected t = 127 and 424 as breakpoints, which are very close to η̂1

and η̂2. The first breakpoint coincided with the outbreak of the worldwide “credit
crunch” as subprime mortgage-backed securities were discovered in portfolios of
banks and hedge funds around the world. The second breakpoint coincided with
the bankruptcy of Lehman Brothers, a major financial services firm, an event that
brought even more volatility to the market. Evidence supporting our breakpoint
detection outcome is the TED spread (available from http://www.bloomberg.
com/apps/quote?ticker=.tedsp:ind), an indicator of perceived credit risk in
the general economy; it spiked up in late July 2007, remained volatile for a year,
then spiked even higher in September 2008. These movements coincide almost
exactly with our detected breakpoints.

http://www.bloomberg.com/apps/quote?ticker=.tedsp:ind
http://www.bloomberg.com/apps/quote?ticker=.tedsp:ind


228 HAERAN CHO AND PIOTR FRYZLEWICZ

Acknowledgements

The authors would like to thank Rainer von Sachs for his interesting com-
ments on this work. Also we are grateful to the Editor, an associate editor and
two referees for their stimulating reports that led to a significant improvement
of the paper.

References

Adak, S. (1998). Time-dependent spectral analysis of nonstationary time series. J. Amer. Statist.

Assoc. 93, 1488-1501.

Andreou, E. and Ghysels, E. (2002). Detecting multiple breaks in financial market volatility

dynamics. J. Appl. Economics. 17, 579-600.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural

changes. Econometrica. 66, 47-78.

Chen, J. and Gupta, A. K. (1997). Testing and locating variance change-points with application

to stock prices. J. Amer. Statist. Assoc. 92, 739-747.

Chernoff, H. and Zacks, S. (1964). Estimating the current mean of a normal distribution which

is subject to changes in time. Ann. Math. Statist. 35, 999-1028.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). Structural break estimation for

non-stationary time series. J. Amer. Statist. Assoc. 101, 223-239.

Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2008). Break detection for a class of

nonlinear time series models. J. Time Anal. 29, 834-867.

Fryzlewicz, P. and Nason, G. (2006). Haar-Fisz estimation of evolutionary wavelet spectra. J.

Roy. Statist. Soc. Ser. B 68, 611-634.

Fryzlewicz, P., Sapatinas, T. and Subba Rao. S. (2006). A Haar-Fisz technique for locally

stationary volatility estimation. Biometrika. 93, 687-704.

Gabbanini, F., Vannucci, M., Bartoli, G. and Moro, A. (2004). Wavelet packet methods for

the analysis of variance of time series with application to crack widths on the Brunelleschi

Dome. J. Comput. Graph. Statist. 13, 639-658.

Hawkins, D. M. (1977). Testing a sequence of observations for a shift in location. J. Amer.

Statist. Assoc. 72, 180-186.

Hsu, D. A. (1977). Tests for variance shifts at an unknown time point. Journal of Applied

Statistics. 26, 179-184.

Hsu, D. A. (1979). Detecting shifts of parameters in Gamma sequences with applications to

stock price and air traffic flow analysis. J. Amer. Statist. Assoc. 74, 31-40.

Inclán, C. and Tiao, G. C. (1994). Use of cumulative sums of squares for retrospective detection

of changes of variance. J. Amer. Statist. Assoc. 89, 913-923.

Kokoszka, P. and Leipus, R. (2000). Change-point estimation in ARCH models. Bernoulli. 6,

513-539.

Kouamo, O., Moulines, E. and Roueff, F. (2010). Testing for homogeneity of variance in the

wavelet domain. In Dependence, with Applications in Statistics and Econometrics (eds P.

Doukhan, G. Lang, D. Surgailis and G. Teyssière). 175-205.

Lai, T. (2001). Sequential analysis: some classical problems and new challenges. Statist. Sinica

11, 303-350.



CONSISTENT SEGMENTATION OF NONSTATIONARY TIME SERIES 229

Lavielle, M. and Moulines, E. (2000). Least-squares estimation of an unknown number of shifts

in a time series. J. Time Ser. Anal. 21, 33-59.

Lavielle, M. and Teyssière. G. (2005). Adaptive detection of multiple change-points in asset

price volatility. In Long Memory in Economics (Edited by G. Teyssière and A. Kirman).

129-156.
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