A BOOTSTRAP-BASED NON-PARAMETRIC ANOVA METHOD WITH APPLICATIONS TO FACTORIAL MICROARRAY DATA

Baiyu Zhou and Wing Hung Wong

Stanford University

Abstract: Many microarray experiments have factorial designs, but there are few statistical methods developed explicitly to handle the factorial analysis in these experiments. We propose a bootstrap-based non-parametric ANOVA (NANOVA) method and a gene classification algorithm to classify genes into different groups according to the factor effects. The proposed method encompasses one-way and two-way models, as well as balanced and unbalanced experimental designs. False discovery rate (FDR) estimation is embedded in the procedure, and the method is robust to outliers. The gene classification algorithm is based on a series of NANOVA tests. The false discovery rate of each test is carefully controlled. Gene expression pattern in each group is modeled by a different ANOVA structure. We demonstrate the performance of NANOVA using simulated and microarray data.

Key words and phrases: Bootstrap re-sampling, factorial design, false discovery rate estimation, gene classification, microarray, non-parametric ANOVA, robust test.

1. Introduction

Microarray technology is a powerful tool to monitor gene expression levels on a genome scale. An important question in microarray experiments that has been studied extensively is the identification of differentially expressed genes across two or more biological conditions. Many statistical methods have been developed to address this problem, for instance, Baldi and Long (2001), Efron et al. (2001), Tusher, Tibshirani and Chu (2001), Dudoit et al. (2002), Newton et al. (2004). Typically a summary statistic is constructed for each gene and genes are ranked in order of their test statistics genes with test statistics above a chosen threshold are called significant. Empirical Bayes method treats genes arising from different populations (Efron et al. (2001)). A gene is called significant if its estimated posterior odds of having differential expression is larger than a threshold. The significant analysis of microarray (SAM) (Tusher, Tibshirani and Chu (2001)) employs a permutation approach to simulate the null distribution of the test statistic and to estimate the false discovery rate (FDR). A threshold is then chosen based on the estimated FDR.
A microarray experiment, however, often has a factorial design and involves several experimental factors. For example, in one experiment, a growth factor (FGF) was withdrawn from two proliferating stem cell lines (neuron and glia) to accelerate the differentiation process (Goff et al. (2007)). Gene expressions were measured at different times after FGF was withdrawn. Investigators were interested in how genes in two cell lines responded to FGF withdrawal along time. In this experiment, cell-line and time course can be treated as two factors. Most current methods are not designed to handle such factorial experiments. There have been a few studies proposing use of the analysis of variance (ANOVA) or its modified versions in microarray data analysis (Pavlidis and Noble (2001); Gao and Song (2005)). ANOVA is a classical method for factorial data analysis. It decomposes data variation into variations accounted for by different factors, with the contribution of each factor assessed by an \(t \)-statistic. Applying ANOVA to the stem cell experiment allows one to identify gene having cell-line effect or time effect, as well as ‘interaction genes’. These genes are often of great interest to biologists. In the above example, interaction genes are those having different response patterns along the time course in different cell lines. However, direct application of standard ANOVA to microarray data could be problematic. First, the \(t \)-test makes a normality assumption about the data distribution, often untenable in microarray studies. Second, an appropriate cutoff based on computed \(t \)-statistics or p-values is difficult to choose; in multiple-testing problems, error rate should be controlled based on FDR rather than p-values. Third, the presence of outliers in microarray data could affect statistical power, in which case a robust statistical procedure may be required. To relax distributional assumptions, rank-based non-parametric ANOVA has been proposed (Friedman (1937); Conover and Iman (1976); Gao and Song (2005)). Empirical p-values are computed by permuting the data. It has been pointed out that the permutation approach might not lead to the appropriate null distribution (Pan (2003); Gao (2006)). When the microarray data contain a large proportion of non-null genes, the permutation distribution is the mixture of the permutation distribution under the null hypothesis and under the alternative hypothesis, which is not a good approximation of true null distribution. Jung, Jhun, and Song (2007) proposed an exact permutation test which permutes residuals of data instead of observed data. Their method is restricted to balanced experimental designs. A carefully schemed subpartition procedure has also been proposed in non-parametric ANOVA to simulate null distributions (Gao (2006)) but the procedure requires at least four replicates in each biological condition and assumes symmetric noise distribution.

Motivated by factorial microarray experiments and limitations of existing ANOVA methods, we develop a non-parametric ANOVA method (NANOVA),
which constructs null distributions by bootstrap re-sampling. FDR estimation is naturally embedded into the procedure. NANOVA encompasses one-way and two-way models, as well as balanced and unbalanced experimental designs. A robust test is proposed to protect against outliers when enough replicates are available. For two-way factorial experiments, we propose a gene classification algorithm that classifies genes into different groups by how their expressions are influenced by factors. The gene classification algorithm is based on a series of NANOVA tests with the error rate of each test controlled by FDR.

The proposed method was applied to two microarray studies. In the first study, we analyzed gene expression data from two human lymphoblastoid cell lines growing in an unirradiated state or in an irradiated state, and compared our method to the SAM method (Tusher, Tibshirani and Chu (2001) and a linear model with moderated F-statistics (‘limma’) (Yang and Speed (2002); Diaz et al. (2002); Smyth (2004)). The second microarray data were from six brain regions in two mouse strains (Sandberg et al. (2000)). We analyzed the effects of strain and brain region on the gene expression and compared with the results obtained from the standard ANOVA method (Pavlidis and Noble (2001)).

2. Method

We first introduce some notation for two-way factorial experiments. Let \(\alpha_i (i = 1, \ldots, I) \) and \(\beta_j (j = 1, \ldots, J) \) denote the two factors of interest at level \(i \) and \(j \), respectively. Let \(y_{g,ijk} \) be the expression of gene \(g \) under condition \((\alpha_i, \beta_j) \). Here \(k (k = 1, \ldots, n_{ij}) \) is a subscript for replicates. We model the gene expressions as a response variable and factors as explanatory variables. In two-way factorial experiments, gene expression can be summarized by one of the following ANOVA models. For simplicity, subscript \(g \) is dropped.

\[
\begin{align*}
\text{Model (1)}: & \quad y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}, \\
\text{Model (2)}: & \quad y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}, \\
\text{Model (3)}: & \quad y_{ijk} = \mu + \alpha_i + e_{ijk}, \\
\text{Model (4)}: & \quad y_{ijk} = \mu + \beta_j + e_{ijk}, \\
\text{Model (5)}: & \quad y_{ijk} = \mu + e_{ijk}.
\end{align*}
\]

Model (1) is an interactive model, in which \(\mu \) represents the baseline gene expression level and \(\gamma_{ij} \) is the interaction term. Genes here are influenced by both factors, and the effect of one factor is dependent on the level of the other factor. Model (2) is an additive model in which genes are affected by both factors, but factor effects are independent. Genes of models (3) and (4) have only the \(\alpha \) or \(\beta \) effect. Genes of model (5) are not influenced by either factor. We assume the random error \(e_{ijk} \) is independent and identically distributed from a gene specific
distribution. Constraints $\sum_i \alpha_i = 0$, $\sum_j \beta_j = 0$, and $\sum_i \gamma_{ij} = \sum_j \gamma_{ij} = 0$ are imposed for identifiability.

We classify genes into five groups (C_1, C_2, C_3, C_4, and C_5), with each group corresponding to one of the above models. The classification will be based on a series of NANOVA tests.

2.1. NANOVA test

The proposed NANOVA method includes tests for one-way ANOVA, interaction, and main effects of two-way ANOVA. Details are given in the following section.

(1) One-way NANOVA test

Here we treat (2.5) as the null hypothesis and test it against the alternatives that the mean expression of the gene is not constant across all combinations of the two factors. The null hypothesis $y_{ijk} = \mu + \varepsilon_{ijk}$ implies gene expression is not influenced by either factor. We choose as our test statistic the standard one way ANOVA F statistic $F_1 = \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (\bar{y}_{ij} - \bar{y}_{...})^2 / (IJ - 1)\right] / \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij})^2 / (N - IJ)\right]$, where $\bar{y}_{ij} = (1/n_{ij}) \sum_{k=1}^{n_{ij}} y_{ijk}$, $\bar{y}_{...} = (1/N) \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} y_{ijk}$ and $N = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij}$. The dot used as a subscript indicates that the summation is taken over the corresponding subscript and an average is taken by dividing by the number of terms in the sum. The numerator and denominator of F_1 are estimations of between group variance and within group variance. Under the normality assumption, the null distribution of F_1 is the F distribution with degrees of freedom $(IJ - 1, N_{IJ})$. Instead of relying on the normality assumption, we simulate the null distribution of F_1 by bootstrap re-sampling as follows.

1. Sample $\varepsilon_{ijk}^{*}(i = 1, \ldots, I; j = 1, \ldots, J; k = 1, \ldots, n_{ij})$ with replacement from $\varepsilon_{ijk} = y_{ijk} - \bar{y}_{ij}$.
2. Let $y_{ijk}^{*} = \bar{y}_{...} + \varepsilon_{ijk}^{*}$ and compute null statistic F_1^{*} using the null data y_{ijk}^{*}.
3. Repeat steps 1 and 2 a total of B times to get $F_1^{*(1)}, \ldots, F_1^{*(B)}$.

In step 1, bootstrap re-sampling of ε_{ijk}^{*} is used to simulate the random error distribution. We estimate the random error by not assuming any specific model form but utilizing the replicated microarray samples. In step 2, y_{ijk}^{*} is generated from the null model by adding the re-sampled residuals to the estimated mean under the null model (2.5). Step 3 repeats the bootstrap B times to simulate the null distribution of F_1. NANOVA allows an unspecified random error distribution, and constructs null data by adding the bootstrap re-sampled residuals
(2) Interaction effect NANOVA test

The null hypothesis of no interaction effect is \(H_0 : \gamma_{ij} = 0 (i = 1, \ldots, I, j = 1, \ldots, J) \) in model (1). For balanced experimental designs, interaction effect is estimated by \(\hat{\gamma}_{ij} = \bar{y}_{ij} - \bar{y}_i - \bar{y}_j + \bar{y}_.. \). The test statistic is \(F_2 = \left[\sum_i \sum_j k(\bar{y}_{ij} - \bar{y}_i - \bar{y}_j + \bar{y}_..)^2 / [(I-1)(J-1)] \right] / \left[\sum_i \sum_j (y_{ijk} - \bar{y}_{ij})^2 / (IJ(k-1)) \right] \), where \(k \) is the number of replicates in each condition. The denominator \(F_2 \) of is an estimation of the random error variance; the numerator of \(F_2 \) estimates the sum of squares of the interaction effect. When experimental designs are unbalanced, \(\gamma_{ij} \) cannot be estimated as above. We use the idea of ‘un-weighted cell mean’\(^{[Searle, Casella, and McCulloch (1992)]}\) to estimate \(\gamma_{ij} \). Specifically, if \(x_{ij} = \bar{y}_{ij} \) (cell mean), then \(\gamma_{ij} \) is estimated by \(\hat{\gamma}_{ij} = x_{ij} - \bar{x}_i - \bar{x}_j + \bar{x}_.. \), where \(x_i = \sum_{j=1}^J x_{ij}/J \), \(x_\cdot j = \sum_{i=1}^I x_{ij}/I \) and \(x_.. = \sum_{i,j} x_{ij}/IJ \). The test statistic for unbalanced experimental design is then \(F_2 = \sum_{i=1}^I \sum_{j=1}^J \left(x_{ij} - \bar{x}_i - \bar{x}_j + \bar{x}_.. \right)^2 / \left[\sum_{i=1}^I \sum_{j=1}^J n_{ij} (y_{ijk} - \bar{y}_{ij})^2 / (N-IJ) \right] \), and the null distribution of the test statistic is simulated as follows.

1. Sample \(\varepsilon_{ijk}^* (i = 1, \ldots, I; j = 1, \ldots, J; k = 1, \ldots, n_{ij}) \) with replacement from \(\varepsilon_{ijk} = y_{ijk} - \bar{y}_{ij} \).
2. Let \(y_{ijk}^* = \mu + \hat{\alpha}_i + \hat{\beta}_j + \varepsilon_{ijk}^* \) where \((\mu, \hat{\alpha}_i, \hat{\beta}_j) \) are the least square estimates from the null model \(y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk} \), and compute the null statistic \(F_2^* \) by using the null data \(y_{ijk}^* \).
3. Repeat steps 1 and 2 a total of \(B \) times to get \(F_2^{(1)*}, \ldots, F_2^{(B)*} \).

(3) Main effect NANOVA test

The main effect \(\alpha_i \) is estimated by \(\hat{\alpha}_i = \bar{y}_{i..} - \bar{y}_.. \) if the experimental design is balanced. For an unbalanced design, we use the ‘un-weighted cell mean’ to estimate \(\alpha_i \). The estimate is \(\hat{\alpha}_i = \bar{x}_{i..} - \bar{\bar{x}}_.. \), where \(\bar{x}_{i..} \) and \(\bar{\bar{x}}_.. \) are defined as above. The test statistic is defined as \(F_3 = \left[\sum_i \sum_j k(\bar{y}_i - \bar{y}_..)^2 / (I-1) \right] / \left[\sum_i \sum_j \sum_k (y_{ijk} - \bar{y}_{ij})^2 / IJ(k-1) \right] \), or \(F_3 = \sum_i (\bar{x}_i - \bar{\bar{x}}_..)^2 / \left[\sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij})^2 / (N-IJ) \right] \), for balanced or unbalanced design, respectively. The null distribution of is simulated as follows.

1. Sample \(\varepsilon_{ijk}^* (i = 1, \ldots, I; j = 1, \ldots, J; k = 1, \ldots, n_{ij}) \) with replacement from \(\varepsilon_{ijk} = y_{ijk} - \bar{y}_{ij} \).
2. Let \(y_{ijk}^* = \hat{\mu} + \hat{\beta}_j + \varepsilon_{ijk}^* \) where \((\mu, \hat{\beta}_j)\) are the least square estimates from the null model \(y_{ijk} = \mu + \beta_j + \varepsilon_{ijk} \), and compute \(F_3^* \) by using the null data \(y_{ijk}^* \).

3. Repeat steps 1 and 2 a total of \(B \) times to get \(F_{3}^{(1)*}, \ldots, F_{3}^{(B)*} \).

2.2. Robust NANOVA test

The standard ANOVA test is susceptible to poor performance in the presence of outliers. Since outliers are unavoidable in large microarray data sets, we guard against them by using robust estimators for mean and variance estimations in test statistics. For example, in the one-way ANOVA test

\[
F_1 = \frac{\left[\sum^I_{i=1} \sum^J_{j=1} \sum^{n_{ij}}_{k=1} (y_{ij} - \bar{y}_{ij})^2 / (IJ - 1)\right] / \left[\sum^I_{i=1} \sum^J_{j=1} \sum^{n_{ij}}_{k=1} (y_{ijk} - \bar{y}_{ij})^2 / (N - IJ)\right]}{\left[\sum^{n_{ij}}_{k=1} (y_{ij} - \bar{y}_{..})^2 / (n_{ij})\right]},
\]

the mean estimator \(\bar{y}_{ij} \) and \(\bar{y}_{..} \) are replaced by trimmed means; the between variance estimator \(\sum^I_{i=1} \sum^J_{j=1} \sum^{n_{ij}}_{k=1} (y_{ij} - \bar{y}_{ij})^2 / (n_{ij}) \) is replaced by the trimmed mean taken over \((y_{ij} - \bar{y}_{..})^2 = (i = 1, \ldots, I; j = 1, \ldots, J; k = 1, \ldots, n_{ij}) \) times the number of items \((\sum n_{ij}) \). A similar robust estimator is used for the within variance estimation in the denominator of \(F_1 \). The null distribution of the robust statistic does not have an analytical form, but its empirical distribution is easily obtained by the bootstrap re-sampling.

2.3. FDR estimation

In multiple testing problems it is important to control the false discovery rate (FDR), defined as the expected proportion of false rejections among all rejections (Benjamini and Hochberg (1995)). The proposed NANOVA procedure provides a natural way for estimating FDR. Let \(F_g (g = 1, \ldots, G) \) be the statistic computed from the observed data, \(g \) is the gene index. The significance of \(F_g \) is assessed against the null distribution generated by the bootstrap re-sampling. At each bootstrap, we sample the array labels. The corresponding vector of residuals \(\{(y_{g,ijk} - \bar{y}_{g,ij}), g = 1, \ldots, G\} \) from the same array is kept intact. Such bootstrap operation preserves correlations between genes. The empirical p-value for gene \(g \) is computed by \(p_g = \#\{F_{g,j} \geq F_g : j = 1, \ldots, B\} / B \), where \(B \) is the number of bootstraps. FDR can be estimated from empirical p-values. However, when the number of bootstraps or permutations is limited by the sample size or computation cost, the resulting p-values may be too granular to allow a sensible FDR estimation. We propose the following alternative approach to estimate the FDR.

1. Estimate a null distribution for each gene. In NANOVA, fit a Gamma distribution to the null statistics \(F_{g}^{(1)*}, \ldots, F_{g}^{(B)*} \) for each gene \(g \). The reason to use the Gamma distribution is that it is flexible enough to capture most
distributions with positive support. The parameters of the Gamma can be robustly estimated by using a few quantile points (for example, the 10%, 25%, 50%, 75%, and 90% quantiles of \(F_g^{(1)}, \ldots, F_g^{(B)} \)). An alternative approach is to use an iterative fitting procedure, i.e., fit a Gamma distribution, trim off extreme data points (if any) and refit the rest of the data. The process is repeated a few times. Denote the cumulative function of Gamma distribution as \(G_g \).

2. Transform test statistics and null statistics to z-scores by the transformation \(z_g = \Phi^{-1}(G_g(F_g)) \), where \(\Phi(\cdot) \) is the cumulative function of the standard normal distribution.

3. Given a cut off \(d^* \), genes with \(z_g > d^*(g = 1, \ldots, G) \) are called significant. The FDR is estimated as \(\hat{\pi}_0 \sum_{j=1}^B V(j)/BR \), where \(R = \# \{g : z_g > d^*, g = 1, \ldots, G\} \) is the number of significant genes, and \(V(j) = \# \{g : z_g^{(j)^*} > d^*, g = 1, \ldots, G\} \) is an estimate of the number of false rejections using the \(j \)th bootstrapped data if all genes are null. Here \(\hat{\pi}_0 \) is an estimate of the proportion of null genes. At \(j \)th bootstrap, let \(z_g^j = \max_g \{z_g^{(j)^*}\} \) be the maximum \(z_g^{(j)^*} \) over \(G \) genes. An overestimation for the number of null genes is \(M(j) = \# \{g : z_g \leq z_g^j\} \), and \(\hat{\pi}_0 \) is taken as the median of \(M(j)/G(j = 1, \ldots, B) \).

The FDR estimation procedure does not assume the same null distribution for all genes, but instead transforms the significance measures of genes to the same scale and makes them comparable across genes. Genes are ranked by \(z_g \).

2.4. Gene classification algorithm

Depending on how their expressions are influenced by factors, genes can be classified into different groups \((C_1, C_2, C_3, C_4, \text{ and } C_5) \). Each corresponds to an ANOVA model: \(C_1 \) is an interaction group, whose genes are affected by both factors, and factor effects are dependant (Model (1)); \(C_2 \) is an additive group, and genes in \(C_2 \) are affected by factors, but factor effects are independent (Model (2)); genes in \(C_3 \) or \(C_4 \) have only \(\alpha \) (Model (3)) or \(\beta \) effect (Model (4)); genes in \(C_5 \) are not affected by either factor (Model (5)). The classification is based on a series of NANOVA tests, with the error rate of each test controlled for FDR. The algorithm is as follows.

1. Identify genes whose expressions are affected by factor \(\alpha \) or \(\beta \) by treating each condition \((\alpha_i, \beta_j) \) as a group, and performing one-way NANOVA. Denote this group of genes as \(S \).

2. Within \(S \), identify interaction genes by the interaction NANOVA test. The resulting gene set is \(C_1 \).
3. Among the remaining genes ($S - C_1$), use main effect NANOVA tests to identify genes having α and β effect, respectively. Denote these two sets as S_α and S_β. Then $C_3 = S_\alpha - (S_\beta \cap S_\alpha)$ and $C_4 = S_\beta - (S_\beta \cap S_\alpha)$.

4. Genes in $S - C_1 - C_3 - C_4$ are classified to C_2.

5. The rest of genes are classified to C_5.

3. Simulation Studies

3.1. Bootstrapped null distribution

The key part of NANOVA tests is the simulation of null distribution. To test how well the bootstrapped null distributions approximate true nulls, we simulated expressions of 1,000 genes in a two-way factorial experiment. Genes 1-100 were generated from model (1), 101-200 from model (2), 201-300 from model (3), and 301-400 from model (4). The remaining genes were from model (5). Each factor had two levels, and there were 7 replicates under each condition (α_i, β_j).

Parameters ($\mu, \alpha_i, \beta_j, \gamma_{ij}$) were seven independently drawn from uniform $[-5, 5]$, and subjected to the constraints $\sum_i \alpha_i = 0$, $\sum_j \beta_j = 0$, $\sum_i \gamma_{ij} = \sum_j \gamma_{ij} = 0$. The random error was generated from standard normal $N(0, 1)$. We first constructed null statistics for the one-way NANOVA test. The number of bootstraps was set to $B = 100$. The Kolmogorov-Smirnov (KS) test was used to test the deviation of the bootstrapped null distribution of each gene from the true null $F(3, 24)$ (the numbers in parenthesis are degrees of freedom of the F distribution). If the bootstrapped nulls were consistent with the true null, the p-values that resulted from the KS tests should follow the uniform distribution. We again applied the KS test to see if these p-values were uniformly distributed; this nested-KS test has been used by Leek and Storey (2007). After applying the nested-KS test, we obtained a p-value of 0.25, indicating that the bootstrapped null distributions were consistent with the true null. The tail of null distribution is important for assessing statistical significance. The left panel of Figure 1 compares the tail density of the bootstrapped nulls and the true null.

Next we tested whether the empirical p-values obtained from one-way NANOVA were correct. The correct p-values corresponding to null genes should be uniformly distributed between zero and one. The KS test on the empirical p-values of the null genes (genes 401-1,000) (compared with the uniform distribution) yielded a p-value of 0.29, indicating that the empirical p-values of the null genes were uniformly distributed. The right panel of Figure 1 shows a Q-Q plot of these empirical p-values versus the uniform distribution.

Similar comparisons were done on the interaction and main effect NANOVA tests, and p-values of 0.22 and 0.87 were obtained from the nested-KS tests for the interaction and main effect tests, respectively. Empirical p-values of the null
Figure 1. Left panels: comparisons of bootstrapped null densities with theoretical null densities for one-way NANOVA, interaction NANOVA, and main effect NANOVA. The theoretical nulls are $F(3, 24)$, $F(1, 24)$ and $F(1, 24)$, respectively. Dotted line: theoretical null density; solid line: simulated null density. Right panels: Q-Q plots of empirical p-values of null genes versus uniform $[0, 1]$ quantiles.

genes (genes 101-1000 for interaction effect; genes 301-1,000 for main effect α) were uniformly distributed in (Figure 1) with the p-values of 0.35 and 0.22 from the KS test.

3.2. Statistical power and FDR estimation

To test the ability of NANOVA to identify true positive genes, we simulated three data sets. Each data set consisted of 1,000 genes, and was generated as in Section 3.1. The three data sets had different error distributions: (1) normal $N(0, 1)$; (2) uniform $[-3, 3]$; (3) Cauchy. Genes were ranked by z_g (Section 2.4). Given a cut off d^*, genes with $z_g > d^*$ were called significant. Proportions
Figure 2. Statistical power and FDR estimation of one-way NANOVA and robust one-way NANOVA. Left panels: true positive rate versus false positive rate. Solid line: Gaussian noise $N(0, 1)$; dashed line: uniform noise $U[-3, 3]$; dotted line: Cauchy noise. Right panels: estimated FDR versus true false positive rate. Circle: Gaussian noise $N(0, 1)$; square: uniform noise $U[-3, 3]$; triangle: Cauchy noise.

We also compared estimated FDR and true false positive rates with varied cut-offs (Figure 2, 3, and 4). The estimated FDR was in a good agreement with the true false positive rate in normal and uniform cases. In Cauchy case, the outliers made the FDR estimation inaccurate.

3.3. Robust NANOVA test

Outliers commonly exist in microarray data. They could potentially degrade statistical power and make FDR estimation inaccurate, as in the above simula-
4. Applications to Biological Data

4.1 Ionizing radiation data

To demonstrate the utility of the NANOVA method, we analyzed the microarray data measuring transcriptional response of lymphoblastoid cells to ion-
Figure 4. Statistical power and FDR estimation of main effect NANOVA and robust main effect NANOVA. Left panels: true positive rate versus false positive rate. Solid line: Gaussian noise $N(0, 1)$; dashed line: uniform noise $U[-3, 3]$; dotted line: Cauchy noise. Right panels: estimated FDR versus true false positive rate. Circle: Gaussian noise $N(0, 1)$; square: uniform noise $U[-3, 3]$; triangle: Cauchy noise.

Irradiating radiation (IR) (Tusher, Tibshirani and Chu (2001), data were downloaded from http://www-stat.stanford.edu/~tibs/SAM/). The experiments were performed for two wild-type human lymphoblastoid cell lines (1 and 2) growing in an unirradiated state (U) or in an irradiated state (I). There are two replicates in each condition (A and B). The data set consists of expressions of 7,129 genes in eight samples (U1A, U1B, I1A, I1B, U2A, U2B, I2A and I2B). To assess the biological effect of IR, SAM used a restricted permutation approach which balanced the two cell lines to avoid confounding effects from differences between the cell lines. To achieve the same goal, we treated the cell lines and IR states as two factors and applied NANOVA main effect test to identify genes responding to IR. Another approach is to fit a linear model $Y_g = X \theta_g + \varepsilon$ for each gene g, where Y_g is a vector of expressions from the eight samples, X is the design matrix, θ_g is a vector of parameters of interest, and ε is the error. The elements of
Table 1. A comparison of the number of genes called significant as found by a NANOVA test, a SAM test, and a moderated F test from a linear model (limma). IR responsive genes were identified under different FDR cut-offs.

<table>
<thead>
<tr>
<th>FDR cutoff</th>
<th>NANOVA</th>
<th>SAM</th>
<th>limma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>206</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>0.1</td>
<td>236</td>
<td>69</td>
<td>55</td>
</tr>
<tr>
<td>0.2</td>
<td>311</td>
<td>118</td>
<td>136</td>
</tr>
</tbody>
</table>

θ_g = (m, c, r_1, r_2)' represent intercept, cell line effect, IR effect in cell line 1, and IR effect in cell line 2, respectively. Genes responding to IR in either cell line can be identified by computing a moderated F-statistic derived from the linear model (Yang and Speed (2002); Diaz et al. (2002); Smyth (2004)). We used ‘limma’ software for the computation (Smyth (2004)). Limma controls FDR by adjusting p-values using the Benjamini and Hochberg (BH) method. The significance results are displayed in Table 1. It can be seen that the NANOVA method offers a sizeable increase in statistical power over SAM or limma. The restricted permutation in SAM analysis failed to identify genes responding to IR in one cell line but not the other (Figure 5) and has limited power in analyzing factorial data. The linear model is able to handle factorial designs, but the moderated F-statistic derived from normal theory may result in an incorrect p-value when microarray data are not normally distributed. Limma does not offer a sensible FDR control mechanism; its use of conservative ‘BH’ approach may lose statistical power in discovering significant genes.

To confirm the improvement of statistical power of NANOVA over SAM or limma, we simulated expression profiles of 1,000 genes based on the IR data. We fitted a two-way ANOVA model for every gene in the IR data and chose 200 genes with significant IR effect (p-value < 0.05) but no cell line effect (p-value > 0.2), as well as 800 genes without significant IR effect (p-value > 0.8). Let yijk denote the expression of a gene in the IR data, and i, j and k indicate cell line, IR state, and replicates, respectively. Let εijk = yijk - y..j. We simulated random error of gene expression by ε*ijk, where ε*ijk is a permutation of εijk. For the first 200 genes, we estimated the IR effect by y...j - y... and simulated their expression by y*ijk = y... + (y...j - y...) + ε*ijk. For the remaining 800 genes, the simulated expressions were set to y*ijk = y... + (y...i - y...) + ε*ijk. Thus we generated a data set with the error distribution close to that of the microarray data. The first 200 genes were known to be IR responsive and we compared the performance of NANOVA, SAM, and limma to identify them. We also computed the false positive rate (FPR) and true positive rate (TPR), defined as: FPR = (#false rejected genes) / (#rejected genes) and TPR = (#correctly rejected genes) / (#true positive genes). Table 2 shows the significant results under different FDR cutoffs. Although the simulation setting was in favor of SAM, NANOVA still outperformed it in terms of statistical
power. Limma had the least power on this data set. Instead of the BH adjustment limma uses, a less conservative approach for FDR control is to use the q-value method (Storey and Tibshirani 2003). A FDR cutoff was chosen based on the computed q-values. As can be seen from Table 2, the q-value method offered a slight improvement over BH adjustment, but still excluded many true positive genes. This suggests the p-values computed by limma may not be correct, as the data were not normal.

4.2. Mouse brain data

We applied the proposed method to analyze gene expression data of six brain regions (amygdala, cerebellum, cortex, entorhinal cortex, hippocampus and mid-
Table 2. A comparison of the number of genes called significant as found by a NANOVA test, a SAM test, and a limma test with BH and q-value adjustment. Shown is the number of IR responsive genes identified under different FDR cut-offs, as well as false positive rate and true positive rates.

<table>
<thead>
<tr>
<th>FDR cutoff</th>
<th>NANOVA (FPR/TPR)</th>
<th>SAM (FPR/TPR)</th>
<th>Limma (BH) (FPR/TPR)</th>
<th>Limma (q-value) (FPR/TPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>131(0.00/0.655)</td>
<td>97(0.00/0.485)</td>
<td>12(0.00/0.060)</td>
<td>14(0.00/0.070)</td>
</tr>
<tr>
<td>0.05</td>
<td>161(0.00/0.805)</td>
<td>135(0.02/0.665)</td>
<td>49(0.00/0.245)</td>
<td>57(0.00/0.285)</td>
</tr>
<tr>
<td>0.1</td>
<td>186(0.03/0.910)</td>
<td>157(0.04/0.755)</td>
<td>74(0.00/0.310)</td>
<td>85(0.00/0.425)</td>
</tr>
<tr>
<td>0.2</td>
<td>216(0.09/0.990)</td>
<td>188(0.10/0.850)</td>
<td>128(0.00/0.640)</td>
<td>143(0.02/0.700)</td>
</tr>
</tbody>
</table>

brain) in two mouse strains (C57BL/6 and 129SvEv) (Sandberg et al. 2000). Data were obtained from Pavlidis and Noble (2001). Gene expression profiles were measured by using oligonucleotide arrays (Mu11KsubA and Mu11KsubB). The dataset consists of duplicate measurements of 13,067 probe sets, providing a rich source to study the genetic causes responsible for neurophysiological differences in two mouse strains. Factors of interest are strains and brain regions. It is of interest to identify strain specific and region specific genes.

We applied the gene classification algorithm to the dataset (log2 transformed). FDR was controlled at 0.05 for the NANOVA tests. Probe sets were classified into five groups according to the factor effects. As a result, C_1, C_2, C_3 and C_4 have 126, 167, 31, and 742 probe sets respectively. Figure 6 shows the expression pattern of two representative probe sets from gene set C_1 and C_2. Figures 7 and 8 are heat maps of C_3 and 134 probe sets of C_4 (filtered by coefficient of variation > 0.2) generated by dChip (Li and Wong 2001).

C_1 probe sets exhibit interaction effects and potentially contribute to neurobehavioral difference of mouse strains. One example is gene Cks2, which was highly expressed in midbrain of C57BL/6 mice but not in other brain regions, or in 129SvEv mice. Protein encoded by Cks2 binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. Probe sets in C_2 were influenced by both factors, but factor effects were independent. Expressions over six brain regions were parallel for two mouse strains, but their values had a vertical shift. Gas5 gene from C_2 is known to harbor mutations in 129SvEv strains that alter mRNA stability (Sandberg et al. 2000). This stability difference is likely to account for the two fold decrease in mRNA abundance in 129SvEv compared with C57BL/6. Since it was in C_2, all six brain regions were uniformly affected by the mutation. C_2 genes could cause neurobehavioral difference in strains by influencing the gene expression levels. Expressions of C_3 probe sets varied between strains but not over brain regions. As shown in Figure 7, these 31 gene expressions were uniformly highly or lowly expressed in one strain, and had an opposite pattern in the other strain. Hnrpc and Txnl4 are
Figure 6. Expression patterns of two probe sets from C_1 (upper panel) and C_2 (lower panel). Each point represents an averaged log2-expression value over replicates. Solid lines: 129SvEv mice; dotted lines: C57BL/6 mice. X-axis: 1: amygdala; 2: cerebellum; 3: cortex; 4: entorhinal cortex; 5: hippocampus; 6: midbrain.

Figure 7. Heat map of C_3. Array labels: A for 129SvEv, B for C57BL/6; 1 and 2 are two replicates. Ag: amygdala; Cb: cerebellum; Cx: cortex; Ec: entorhinal cortex; Hp: hippocampus; Mb: midbrain.

genes involved in mRNA metabolic process. C_4 genes were brain region specific, but equivalently expressed in both strains. The heat map reveals cerebellum as
the most distinct among the six brain regions. A large proportion of genes were up or down regulated in the cerebellum but not in other regions. Pcp2, a known cerebellar specific gene (Sandberg et al. (2000)) had about a three-fold increased expression in the cerebellum compared with other regions. We did functional enrichment analysis on gene set using the web tool built by Dennis et al. (2003) (http://david.abcc.ncifcrf.gov/). The most significant functional groups (Category: GOTERM_BP_5) include neurite morphogenesis (27 genes, p-value: 1.7E-9), neuron development (31 genes, p-value: 2.8E-9), neuron differentiation (35 genes, p-value: 4.6E-9), cellular morphogenesis during differentiation (27 genes, p-value: 2.2E-8), and neurogenesis (38 genes, p-value: 2.4E-8).

In the analysis of Sandberg et al. (2000), they identified 24 probe sets showing expression variation between strains and about 240 probe sets differentially expressed over brain regions. They used an ad hoc approach of ‘fold change’ and ‘absent/present’ calls for gene selection, which was rather insensitive to detect significant genes. In a more elaborate analysis, Pavlidis and Noble (2001) applied standard two-way ANOVA to the same data set. They tested interaction effect as well as main effects (strains and brain regions). Under the cutoff of \(p \text{-value} < 10^{-5} \), they identified 65 strain specific probe sets, approximately 600 region specific probe sets and 1 probe set with interaction effect. The choice of \(p \text{-value} < 10^{-5} \) is arbitrary and may be too conservative to include many interesting genes. Our analysis yielded 324 strain dependant probe sets (probe sets from \(C_1, C_2 \) and \(C_3 \)) that included all 24 probe sets identified by Sandberg et al. and 65 probe sets identified by Pavlidis and Noble (2001).

5. Discussion

We have proposed a bootstrap-based non-parametric ANOVA (NANOVA) method and a gene classification algorithm for the analysis of factorial microarray data. We have used simulation and data sets to demonstrate the utility of our method. There have been a number of non-parametric methods for microarray data analysis in the literature. Most of them are restricted to two-sample or multi-sample comparisons. When the experiment involves multiple factors, these methods are less powerful than NANOVA. In the IR example, in order to identify IR responsive genes, SAM uses restricted permutation which sacrifices statistical power comparing with explicitly dealing with the multiple factors. More importantly, NANOVA allows the identification of genes with interaction effects, which are often of great interest to biologists. A major innovation of NANOVA is in the estimation of null distributions based on the bootstrap. The random error is estimated by utilizing replicated microarray samples and is free of model assumptions. The permutation approach estimates the null distribution by treating all samples equally and does not use the information provided by the replicated
samples. As a consequence, the bootstrap approach better estimates the null distribution in the presence of a large proportion of non-null genes compared to the permutation approach. NANOVA offers a sensible FDR control which proves power in multiple testing than other methods such as standard ANOVA.
or limma. The gene classification nicely summarizes effects of multiple factors in a rather complicated experimental design, as demonstrated in the analysis of mouse data.

Acknowledgement

This research was partially supported by National Institutes of Health grants [R01-HG004634, R01-HG003903].

References

Department of Statistics, Stanford University, Stanford, CA 94305, USA.

E-mail: zhouby98@stanford.edu

Department of Statistics and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA.

E-mail: whwong@stanford.edu

(Received June 2009; accepted September 2009)