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Abstract: After its inception in Koenker and Bassett (1978), quantile regression has

become an important and widely used technique to study the whole conditional

distribution of a response variable and grown into an important tool of applied

statistics over the last three decades. In this work, we focus on the variable se-

lection aspect of penalized quantile regression. Under some mild conditions, we

demonstrate the oracle properties of the SCAD and adaptive-LASSO penalized

quantile regressions. For the SCAD penalty, despite its good asymptotic proper-

ties, the corresponding optimization problem is non-convex and, as a result, much

harder to solve. In this work, we take advantage of the decomposition of the SCAD

penalty function as the difference of two convex functions and propose to solve the

corresponding optimization using the Difference Convex Algorithm (DCA).

Key words and phrases: DCA, LASSO, oracle, quantile regression, SCAD, variable

selection.

1. Introduction

At the heart of statistics lies regression. Ordinary least squares regression

(OLS) estimates the mean response as a function of the regressors or predictors.

Least absolute deviation regression (LADR) estimates the conditional median

function, which has been shown to be more robust to outliers. In the seminal

paper of Koenker and Bassett (1978), they generalized the idea of LADR and in-

troduced quantile regression (QR) to estimate the conditional quantile function

of the response. As a result, QR provides much more information about the con-

ditional distribution of a response variable. It includes LADR as a special case.

After its introduction, QR has attracted tremendous interest in the literature. It

has been applied in many different areas: economics (Hendricks and Koenker

(1992) and Koenker and Hallock (2001)), survival analysis (Yang (1999) and

Koenker and Geling (2001)), microarray study (Wang and He (2007)), growth

chart (Wei et al. (2006) and Wei and He (2006)), and so on. Li et al. (2007) con-

sidered quantile regression in reproducing kernel Hilbert spaces, and proposed a

very efficient algorithm to compute its entire solution path with respect to the

tuning parameter.
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Variable selection plays an important role in the model building process.

In practice, it is common to have a large number of candidate predictor vari-

ables available, and they are included in the initial stage of modeling for the

consideration of removing potential modeling bias (Fan and Li (2001)). How-

ever, it is undesirable to keep irrelevant predictors in the final model since this

makes it difficult to interpret the resultant model and may decrease its predictive

ability. In the regularization framework, many different types of penalties have

been introduced to achieve variable selection. The L1 penalty was used in the

LASSO proposed by Tibshirani (1996) for variable selection. Fan and Li (2001)

proposed a unified approach via nonconcave penalized least squares regression,

which simultaneously performs variable selection and coefficient estimation. By

choosing an appropriate nonconcave penalty function, this method keeps many

merits of the best subset selection and of ridge regression: it produces sparse so-

lution; it ensures the stability of model selection; it provides unbiased estimates

for large coefficients. These are the three desirable properties of a good penalty

(Fan and Li (2001)). An example of such nonconcave penalties is the smoothly

clipped absolute deviation (SCAD) function first introduced in Fan (1997), and

studied further by Fan and Li (2001) to show its oracle properties in the pe-

nalized likelihood setting. Later on, a series of papers Fan and Li (2002, 2004),

Fan and Peng (2004) and Hunter and Li (2005) studied its further properties and

produced new algorithms.

By using adaptive weights for penalizing different coefficients in the LASSO

penalty, Zou (2006) introduced the adaptive LASSO and demonstrated its ora-

cle properties. Similar results were also established in Yuan and Lin (2007) and

Zhao and Yu (2006). Zhang and Lu (2007) studied the adaptive LASSO in pro-

portional hazard models. Candes and Tao (2007) and Fan and Lv (2006) studied

variable selection in the setting of dimensionality higher than the sample size.

Previously, Koenker (2004) applied the LASSO penalty to the mixed-effect

quantile regression model for longitudinal data to encourage shrinkage in esti-

mating the random effects. Li and Zhu (2005) developed the solution path of the

L1 penalized quantile regression. Wang, Li and Jiang (2007) considered LADR

with the adaptive LASSO penalty. To our knowledge, there still lacks of study on

variable selection in penalized quantile regression. In this work, we try to fill this

void. Notice that the loss function used in quantile regression is not differentiable

at the origin and, as a result, the general oracle properties for nonconcave penal-

ized likelihood (Fan and Li (2001)) do not apply directly. Here, we extend the

oracle properties of the SCAD and adaptive-LASSO penalties to the context of

penalized quantile regression, including the LADR by Wang, Li and Jiang (2007)

as a special case.
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The SCAD penalty is nonconvex, and consequently it is hard to solve the cor-

responding optimization problem. Motivated by the fact that the SCAD penalty

function can be decomposed as the difference of two convex functions, we pro-

pose to use the Difference Convex algorithm (DCA) (see An and Tao (1997))

to solve the corresponding non-convex optimization problem. DCA minimizes

a non-convex objective function by solving a sequence of convex minimization

problems. At each iteration, it approximates the second convex function by a

linear function. As a result, the objective function at each step is convex and

it is much easier to optimize than the original non-convex problem. In this

sense, DCA turns out to be an instance of the MM algorithm since, at each step,

DCA majorizes the nonconvex objective function and then performs minimiza-

tion. One difference between DCA and Hunter and Li (2005)’s MM is that, at

each iteration, DCA majorizes the nonconvex function using a linear approxi-

mation while Hunter and Li (2005)’s MM uses a quadratic approximation. We

opt for DCA due to its clean formulation and simple implementation. In par-

ticular, for quantile regression, the resulting optimization at each iteration is

a linear programming problem, thus more efficient. We recently learned that

Zou and Li (2007) proposed a local linear approximation algorithm (LLA) to

solve the SCAD optimization problem. Although both DCA and LLA perform

iterative linear programming, unlike the LLA, DCA does not enforce symmetry

in the approximation of the SCAD penalty.

The rest of the paper is organized as follows. Penalized quantile regressions

with the SCAD and adaptive-LASSO penalties are introduced in Section 2. We

present the asymptotic properties of the SCAD and adaptive-LASSO penalized

quantile regressions in Section 3. Algorithms for handling their corresponding

optimization problems are proposed in Section 4. Sections 5 and 6 present nu-

merical results on simulations and on data, respectively. We conclude the paper

with Section 7.

2. Penalized Linear Quantile Regression

Consider a sample {(xi, yi), i = 1, . . . , n} of size n from some unknown pop-

ulation, where xi ∈ R
d. The conditional τth quantile function fτ (x) is defined

such that P (Y ≤ fτ (X)|X = x) = τ , for 0 < τ < 1. By tilting the absolute

loss function, Koenker and Bassett (1978) introduced the check function which

is defined by ρτ (r) = τr if r > 0, and −(1− τ)r otherwise. In this seminal paper,

they demonstrated that the τth conditional quantile function can be estimated

by solving the minimization problem

min
fτ∈F

n
∑

i=1

ρτ (yi − fτ (xi)). (2.1)
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To avoid over-fitting and improve generalization ability, as in Koenker et al.

(1994) and Koenker (2004), we consider the penalized version of (2.1) in the

regularization framework

min
fτ∈F

n
∑

i=1

ρτ (yi − fτ (xi)) + λJ(fτ ), (2.2)

where λ ≥ 0 is the regularization parameter and J(fτ ) denotes the roughness

penalty of the function fτ (·).
In this work, we focus on linear quantile regression by setting fτ (x) = xT βτ

where βτ = (βτ,1, βτ,2, . . . , βτ,d)
T , namely, the conditional quantile function is a

linear function of the regressor x. This form can be easily generalized to handle

nonlinear quantile regression via basis expansion. For functions of linear form,

there are many different types of penalty functions available: the L0 penalty

(also known as the entropy penalty) used in best subsect selection (Breiman

(1996)); the L1 penalty (LASSO) (Tibshirani (1996)); the L2 penalty used in

ridge regression (Hoerl and Kennard (1988)); the combination of the L0 and L1

penalties (Liu and Wu (2007)); the Lq (q ≥ 0) penalties in bridge regression

(Frank and Friedman (1993)). Fan and Li (2001) argued that a good penalty

should yield the following three properties in its estimator: unbiasedness, spar-

sity, and continuity. Unfortunately, none of the Lq penalty family satisfies these

three properties simultaneously, but Fan and Li (2001) showed that the SCAD

penalty in the penalized likelihood setting does. Another penalty falling into the

latter category is the adaptive-LASSO penalty studied by Zou (2006).

2.1. SCAD

Fan and Li (2001) demonstrated the oracle properties for the SCAD in the

variable selection aspect, and conjectured that the LASSO penalty does not

possess the oracle properties. This conjecture was later confirmed by Zou (2006),

who further proposed the adaptive LASSO and showed its oracle properties in

penalized least squares regression.

The SCAD penalty is defined in terms of its first derivative and is symmetric

around the origin. For θ > 0, its first derivative is

p′λ(θ) = λ

{

I(θ ≤ λ) +
(aλ− θ)+
(a− 1)λ

I(θ > λ)

}

, (2.3)

where a > 2 and λ > 0 are tuning parameters. Note that the SCAD penalty

function is symmetric, non-convex on [0,∞), and singular at the origin. One

instance of the SCAD penalty function is plotted in the right panel of Figure 4.1.

We can see that, around the origin, it takes the same form as the LASSO penalty
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and this leads to its sparsity property. But, different from the LASSO penalty,

the SCAD penalizes large coefficients equally while the LASSO penalty increases

linearly as the magnitude of the coefficient increases. In this way, the SCAD

results in unbiased penalized estimators for large coefficients. After putting the

SCAD penalty in (2.2) with linear function f(x) = xT βτ , the SCAD penalized

quantile regression solves the minimization problem

min
βτ

n
∑

i=1

ρτ (yi − xT
i βτ ) +

d
∑

j=1

pλ(βτ,j).

2.2. Adaptive-LASSO

The adaptive-LASSO can be viewed as a generalization of the LASSO

penalty. Basically the idea is to penalize the coefficients of different covariates at

a different level by using adaptive weights. In the case of least squares regression,

Zou (2006) proposed to use as weights the reciprocal of the ordinary least squares

estimates raised to some power. The straightforward generalization, for our case

of quantile regression, is to use the non-penalized quantile regression estimates

as weights. More explicitly, let

β̃τ = argmin
βτ

n
∑

i=1

ρτ (yi − xT
i βτ ). (2.4)

It can be shown that β̃τ is a root-n consistent estimator of βτ . Then the adaptive-

LASSO penalized quantile regression minimizes

n
∑

i=1

ρτ (yi − xT
i βτ ) + λ

d
∑

j=1

w̃j | βτ,j |

with respect to βτ , where the weights are set to be w̃j = 1/ | β̃τ,j |γ , j = 1, . . . , d;

for some appropriately chosen γ > 0.

3. Asymptotic Properties

In this section, we establish the oracle properties of the SCAD or adaptive-

LASSO penalized quantile regression. We assume the data {(xi, yi), i = 1, . . . , n}
consists of n observations from the linear model

yi = xT
i β + ǫi = xT

i1β1 + xT
i2β2 + ǫi, i = 1, . . . , n, (3.1)

with P (ǫi < 0) = τ as in Condition (i). Here xi = (xT
i1,x

T
i2)

T , β = (βT
1 ,β

T
2 )T ,

xi1 ∈ R
s, xi2 ∈ R

d−s, and the true regression coefficients are β1 = β10 with each
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component being nonzero, and β2 = β20 = 0 (as a result β0 = (βT
10,β

T
20)

T ).

This means that the first s regressors are important while the remaining p − s

are noise variables.

For our theoretical results, we enforce the following technical conditions.

(i) Error assumption (cf Pollard (1991)): The regression errors {ǫi} are inde-

pendent and identically distributed, with τth quantile zero and a continuous,

positive density f(·) in a neighborhood of zero.

(ii) The design xi, i = 1, . . . , n, is a deterministic sequence for which there exists

a positive definite matrix Σ such that limn→∞ (
∑n

i=1 xix
T
i )/n = Σ. Denote

the top-left s-by-s submatrix of Σ by Σ11 and the right-bottom (d − s)-by-

(d− s) submatrix of Σ by Σ22.

3.1. SCAD penalty

The SCAD penalized quantile regression solves minβQ(β), where Q(β) =
∑n

i=1 ρτ (yi − xT
i β) + n

∑d
j=1 pλn

(| βj |). As in Fan and Li (2001), we establish

the root-n consistency of our SCAD penalized estimator as in Theorem 1 when

the tuning parameter λn → 0 as n→ ∞.

Theorem 1(Consistency). Consider a sample {(xi, yi), i = 1, . . . , n} from model

(3.1) satisfying Conditions (i) and (ii). If λn → 0, there exists a local minimizer

β̂ such that ‖ β̂ − β0 ‖= Op(n
−1/2).

Under some further conditions, the sparsity property β̂2 = 0 of the SCAD

penalized estimator can be obtained.

Lemma 1(Sparsity). Consider a sample {(xi, yi), i = 1, . . . , n} from model (3.1)

satisfying Conditions (i) and (ii). If λn → 0 and
√
nλn → ∞ as n→ ∞, then with

probability tending to one, for any given β1 satisfying ‖ β1 − β10 ‖= Op(n
−1/2)

and any constant C,

Q((βT
1 ,0

T )T ) = min
‖β2‖≤Cn−

1
2

Q((βT
1 ,β

T
2 )T ).

Our next theorem addresses the asymptotic oracle property.

Theorem 2(Oracle). Consider a sample {(xi, yi), i = 1, . . . , n} from model (3.1)

satisfying Conditions (i) and (ii). If λn → 0 and
√
nλn → ∞ as n → ∞,

then with probability tending to one, for the root-n consistent local minimizer

β̂ = (β̂
T

1 , β̂
T

2 )T in Theorem 1, one has

(a) Sparsity: β̂2 = 0;

(b) Asymptotic normality:
√
n(β̂1−β10)

L→ N(0, τ(1− τ)Σ−1
11 /f(0)2), where Σ11

is defined in Condition (ii).
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Remark 1. Notice that the main difference between penalized quantile re-

gression and the more general penalized likelihood, as considered in Fan and Li

(2001), is that the check function in penalized quantile regression is non-differenti-

able at the origin. To handle the difficulty caused by this non-differentiability,

we use the convexity lemma previously used by Pollard (1991).

3.2. Adaptive-LASSO

The adaptive-LASSO penalized quantile regression solves minβQ1(β) where

Q1(β) =
∑n

i=1 ρτ (yi − xT
i β) + nλn

∑d
j=1 w̃j | βj |. Let β̂

(AL)
be its solution.

Theorem 3(Oracle). Consider a sample {(xi, yi), i = 1, . . . , n} from model (3.1)

satisfying Conditions (i) and (ii). If
√
nλn → 0 and n(γ+1)/2λn → ∞, then we

have

1. Sparsity: β̂
(AL)
2 = 0;

2. Asymptotic normality:
√
n(β̂

(AL)
1 − β10)

L→ N(0, τ(1 − τ)Σ−1
11 /f(0)2).

3.3. Non i.i.d. random errors

The conclusions in Theorems 2 and 3 are based on the assumption of i.i.d.

random errors. We can further extend the aforementioned oracle results to the

case of non i.i.d. random errors. In the light of the work of Knight (1999), we

make the following assumptions.

(N1) As n→ ∞, max1≤i≤n xT
i xi/n → 0.

(N2) The random errors ǫi’s are independent with Fi(t) = P (ǫi ≤ t) the distri-

bution function of ǫi. We assume that each Fi(·) is locally linear near zero

(with a positive slope) and Fi(0) = τ .

Define ψni(t) =
∫ t
0

√
n(Fi(s/

√
n) − Fi(0))ds, which is a convex function for each

n and i.

(N3) Assume that, for each u, (1/n)
∑n

i=1 ψni(u
T xi) → ς(u), where ς(·) is a

strictly convex function taking values in [0,∞).

Corollary 1. Under Conditions (ii) and (N1), Theorems 2 and 3 hold provided

the non i.i.d. random errors satisfy (N2) and (N3).

Remark 2. The assumption (N2) covers a class of general models with non i.i.d.

random errors, for example, it includes the common location-scale shift model

(Koenker (2005)). Corollary 1 follows directly using the results of Knight (1999).

Further details of all proofs are provided in the on-line supplement materials at

http://www.stat.sinica.edu.tw/statistica.

http://www.stat.sinica.edu.tw/statistica


808 YICHAO WU AND YUFENG LIU

2 2 2
0

0
0

0
0

0

555

10

10

10

10

10

10

151515

202020

S
C

A
D

(|
θ
|)

p
λ

,1
(|
θ
|)

p
λ

,2
(|
θ
|)

7.47.47.4 -10-10-10 -7.4-7.4-7.4 -2-2-2

θθθ

Figure 4.1. Decomposition of the SCAD penalty as pλ(θ) = pλ,1(θ)−pλ,2(θ),

with parameters λ = 2 and a = 3.7.

4. Algorithms

4.1. SCAD

Despite the excellent statistical properties of the SCAD penalized estimator,

the corresponding optimization is a non-convex minimization problem and is

much harder to solve than its LASSO penalized counterpart. In Fan and Li

(2001), a unified least quadratic approximation (LQA) algorithm was proposed

to solve the SCAD penalized likelihood optimization problem. Hunter and Li

(2005) studied LQA under a more general MM-algorithm framework, where MM

stands for minorize-maximize or majorize-minimize. A typical example of the

MM algorithm is the well-known EM.

Notice that in (2.3), the first order derivative of the SCAD penalty function

on (0,∞) is the sum of two components: the first is a constant and the second is a

decreasing function on the range (0,∞). As a result, the SCAD penalty function

can be decomposed as the difference of two convex functions. More explicitly, we

have pλ(θ) = pλ,1(θ)− pλ,2(θ) where both pλ,1(·) and pλ,2(·) are convex functions

with derivatives, for θ > 0, given by
{

p′λ,1(θ) = λ

p′λ,2(θ) = λ(1 − (aλ−θ)+
(a−1)λ )I(θ > λ).

(4.1)

For the particular set of parameters a = 3.7 and λ = 2, this decomposition

is graphically illustrated in Figure 4.1, where the left panel plots pλ,1(θ), the

central panel corresponds to pλ,2(θ), and pλ(θ) = pλ,1(θ) − pλ,2(θ) is given in

the right panel. The above decomposition of the SCAD penalty allows us to

use the well-studied DC algorithm. DCA was proposed by An and Tao (1997)

to handle non-convex optimization; later on, it was applied in machine learning
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Liu, Shen and Doss (2005b) and Wu and Liu (2007). DCA is a local algorithm

and it decreases the objective value at each iteration. Due to its decomposition

and approximation, DCA converges in a finite number of steps. More details

on DCA can be found in Liu, Shen and Doss (2005b) and Liu, Shen and Wong

(2005a).

Due to the above decomposition of the SCAD penalty, the objective function

of the SCAD penalized quantile regression can be decomposed as Qvex(β) +

Qcav(β), whereQvex(β)=
∑n

i=1 ρτ (yi−xT
i β)+n

∑d
j=1 pλn,1(| βj |) andQcav(β) =

−n∑d
j=1 pλn,2(| βj |).

Algorithm 1. Difference Convex Algorithm for minimizing Q(β) = Qvex(β) +

Qcav(β)

1. Initialize β(0).

2. Repeat β(t+1) = argmin
β

(Qvex(β) +
〈

Q′
cav(β

(t)),β − β(t)
〉

) until convergence.

The difference convex algorithm solves the non-convex minimization problem

via a sequence of convex subproblems (see Algorithm 1). Denote the solution at

step t by β(t) = (β
(t)
1 , . . . , β

(t)
p )T . Then the derivative of the concave part at β(t)

is

Q′
cav(β

(t)) = −n(p′λn,2(| β
(t)
1 |) sign(β

(t)
1 ), p′λn,2(| β(t)

p |) sign(β(t)
p ), . . . ,

p′λn,2(| β(t)
p |) sign(β(t)

p ))T ,

where p′λn,2(·) is defined in (4.1), and sign(·) is the sign function. In the (t+1)th

iteration, DCA approximates the second function by a linear function and solves

the optimization problem:

min
β

n
∑

i=1

ρτ (yi − xT
i β) + n

d
∑

j=1

pλn,1(| βj |)

−n
d

∑

j=1

p′λn,2(| β
(t)
j |) sign(β

(t)
j )(βj − β

(t)
j ). (4.2)

Here for the initialization in Step 1 of Algorithm 1, we use the solution of the

non-penalized linear quantile regression β̃τ given by (2.4).

By introducing some slack variables, we can recast the above minimization

problem (4.2) into the following linear programming problem.

min

n
∑

i=1

(τξi+(1−τ)ζi)+nλn

d
∑

j=1

νj−n
d

∑

j=1

p′λn,2(| β
(t)
j |) sign(β

(t)
j )(βj−β(t)

j )
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subject to ξi ≥ 0, ζi ≥ 0, ξi − ζi = yi − xT
i β, i = 1, . . . , n

νj ≥ βj , νj ≥ −βj , j = 1, . . . , d.

This can be easily solved by many optimization softwares. In contrast, at each

iteration, the LQA (Fan and Li (2001) and Hunter and Li (2005)) needs to solve a

quadratic programming problem and, as a result, it is less efficient. Our numerical

studies in Section 5 confirm this.

4.2. Adaptive-LASSO

With the aid of slack variables, the adaptive-LASSO penalized quantile re-

gression can also be casted into the linear programming problem

min

n
∑

i=1

(τξi + (1 − τ)ζi) + nλn

d
∑

j=1

w̃jηj

subject to ξi ≥ 0, ζi ≥ 0, ξi − ζi = yi − xT
i β, i = 1, . . . , n (4.3)

ηj ≥ βj , ηj ≥ −βj , j = 1, . . . , d.

Here the weights w̃j ’s are appropriately chosen, as discussed in Section 2.2. Note

that the minimization problem (4.3) includes the LASSO penalized quantile re-

gression as a special case, by setting w̃j = 1 for j = 1, . . . , d.

5. Monte Carlo Study

In this section, we first use one example to compare three different algorithms

(LQA, MM, and DCA) for the SCAD penalized quantile regression, and thereby

show the advantage of our new DC algorithm for the SCAD. Hence, we choose

the DCA for the SCAD in the remaining numerical studies. In these examples,

we study the finite-sample variable selection performance of different penalized

quantile regressions. Here we want to point out that the intercept term is in-

cluded in penalized quantile regression for all data analysis in this paper. For the

SCAD penalty, we do not tune the parameter a. Following Fan and Li (2001)’s

suggestion, we set a = 3.7 to reduce the computational burden. The number

of zero coefficients is evaluated as follows: an estimate is treated as zero if its

absolute value is smaller than 10−6.

The data for Examples 5.1 and 5.2 were generated from the linear model

y = xT β + σǫ, (5.1)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T . The components of x and ǫ were standard

normal. The correlation between any two components xi and xj was set to ρ|i−j|
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Table 5.1. Simulation results for Example 5.1 with n = 60, τ = 0.5.

no. of zeros

Method Test Error Correct Wrong CPU-time in seconds

LQA 0.4189 (0.0158) 2.76 (1.40) 0.00 (0.00) 14.44 ( 20.63)

σ = 1 MM 0.4189 (0.0161) 4.08 (1.20) 0.00 (0.00) 26.29 (155.87)

DCA 0.4193 (0.0163) 4.40 (1.02) 0.00 (0.00) 0.26 ( 0.15)

LQA 1.2856 (0.0692) 2.30 (1.48) 0.06 (0.24) 9.56 ( 13.06)

σ = 3 MM 1.2807 (0.0647) 3.68 (1.63) 0.14 (0.38) 12.39 ( 32.98)
DCA 1.2822 (0.0642) 3.84 (1.57) 0.15 (0.39) 0.21 ( 0.11)

with ρ = 0.5. This model has been considered by many authors (Tibshirani

(1996), Fan and Li (2001) and Zou (2006), to name a few).

Denote the sample size of training data sets by n. Throughout this section, an

independent tuning data set and testing data set of size n and 100n, respectively,

were generated exactly in the same way as the training data set. The tuning

parameter λ was selected via a grid search based on the tuning error in terms of

the check loss function evaluated on the tuning data. Similarly defined testing

errors on the testing data set are reported. More explicitly, a test error refers to

the average check loss on the independent testing data set.

Example 5.1(Comparison of LQA, MM, and DCA for the SCAD). In this exam-

ple, we generated data from model (5.1) with n = 60, and different algorithms for

the SCAD penalized quantile regression were compared. Table 5.1 summarizes

the results of 100 repetitions for two cases: σ = 1 and σ = 3. Average test errors,

numbers of correct and wrong zero coefficients, and CPU times with standard

deviations in their corresponding parentheses are reported. We found that, while

giving very similar test errors, the three algorithms produced different numbers

of zero coefficients. On average, DCA gave significantly more zeros. Remarkably,

we notice that on average DCA took much less CPU-time than LQA and MM, as

expected. The reason is that in each iteration, DCA solved a linear programming

while LQA and MM required quadratic programming, as discussed at the end of

Section 4.1. For the MM algorithm, we set Hunter and Li (2005)’s parameter τ

to be 10−6 in their Equation (3.12).

Because of its superior performance, the DCA algorithm is used for the

remaining data analysis to solve the SCAD penalized quantile regression.

Example 5.2(Comparison of finite-sample variable selection performance). We

generated data from model (5.1) to compare the finite-sample variable selection

performance of the L1, the SCAD, and the adaptive-L1 with the oracle. Simu-

lation results of different settings are reported in Table 5.2. We can see that the
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Table 5.2. Simulation results for Example 5.2

n = 100, σ = 1 n = 100, σ = 3

τ no. of zeros no. of zeros

Method Test Error Correct Wrong Test Error Correct Wrong

L1 0.3378 (0.0111) 3.16 (1.47) 0.00 (0.00) 0.9976 (0.0347) 1.87 (1.49) 0.00 (0.00)

SCAD 0.3296 (0.0091) 3.98 (1.66) 0.00 (0.00) 0.9968 (0.0364) 3.94 (1.60) 0.01 (0.10)
0.25 adapt-L1 0.3288 (0.0090) 4.21 (1.25) 0.00 (0.00) 0.9944 (0.0318) 3.00 (1.52) 0.00 (0.00)

Oracle 0.3282 (0.0087) 5.00 (0.00) 0.00 (0.00) 0.9873 (0.0284) 5.00 (0.00) 0.00 (0.00)

L1 0.4143 (0.0108) 2.92 (1.48) 0.00 (0.00) 1.2379 (0.0392) 2.00 (1.48) 0.00 (0.00)

SCAD 0.4101 (0.0119) 4.00 (1.50) 0.00 (0.00) 1.2336 (0.0385) 4.01 (1.64) 0.02 (0.14)
0.5 adapt-L1 0.4081 (0.0101) 4.31 (1.00) 0.00 (0.00) 1.2339 (0.0385) 3.20 (1.48) 0.01 (0.10)

Oracle 0.4072 (0.0099) 5.00 (0.00) 0.00 (0.00) 1.2248 (0.0348) 5.00 (0.00) 0.00 (0.00)

L1 0.3364 (0.0093) 3.24 (1.42) 0.00 (0.00) 0.9893 (0.0324) 2.09 (1.36) 0.00 (0.00)

SCAD 0.3286 (0.0100) 4.05 (1.42) 0.00 (0.00) 0.9866 (0.0336) 4.30 (1.35) 0.06 (0.24)
0.75 adapt-L1 0.3307 (0.0083) 4.51 (1.05) 0.00 (0.00) 0.9827 (0.0325) 3.73 (1.30) 0.01 (0.10)

Oracle 0.3266 (0.0091) 5.00 (0.00) 0.00 (0.00) 0.9747 (0.0241) 5.00 (0.00) 0.00 (0.00)

reported test errors are very similar but, on average, the SCAD and the adaptive-

L1 gave more zero coefficients than the L1. This confirms the superiority of the

SCAD and the adaptive-L1 as shown in our theoretical results.

Example 5.3(Dimensionality larger than the sample size). For the adaptive

LASSO penalty, an initial consistent estimator is required to derive the adaptive
weights. Due to the work of He and Shao (2000), the solution of the linear

quantile regression at (2.4) is still consistent even if the dimension increases

with the sample size, but at a speed slower than some root of the sample size.
However, it is not clear how to find a consistent initial solution for deriving the

adaptive weights in the case of dimension larger than sample size. For p > n,
we performed the L2 penalized quantile regression first and used this solution to

derive the weights for the adaptive-L1 penalty. In this example, we compared the
performance of these different penalties in the case with more predictor variables

than the sample size.

Our datasets in this example were generated from model (5.1), augmented
with 102 more independent noise variables x9, x10, . . . , x110. Adding more in-

dependent noise variables makes the estimation harder. In order to make the
estimation possible, the variance of random error ǫ was set at σ2 = 0.52; each of

these additional noise variable was N(0, 0.52) and they were independent of each

other. The results based on 100 repetitions with sample size 100 are reported in
Table 5.3. It is evident from Table 5.3. that both the SCAD and adaptive-L1

penalties improved over the L1 penalty in terms of prediction accuracy as well
as variable selection capability, even in the more difficult case of p > n. Such

results also validate our proposed procedure of using the L2 penalized solution

to derive the adaptive weights for the adaptive-L1 penalty.
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Table 5.3. Simulation results for Example 5.3 with sample size n = 100.
Here the supscript ⋆ in adapt-L⋆

1
indicates that the adaptive weights of the

adaptive-L1 penalty are based on the solution of the L2 penalized quantile

regression.

no. of zeros
τ Method Test Error Correct Wrong

L1 0.1744 (0.0073) 113.65 (4.30) 0.00 (0.00)

SCAD-DCA 0.1673 (0.0049) 116.72 (1.09) 0.00 (0.00)
0.25 adapt-L⋆

1
0.1684 (0.0045) 115.47 (3.16) 0.00 (0.00)

Oracle 0.1668 (0.0038) 117.00 (0.00) 0.00 (0.00)

L1 0.2150 (0.0073) 112.37 (5.67) 0.00 (0.00)

SCAD-DCA 0.2094 (0.0043) 116.38 (1.33) 0.00 (0.00)
0.5 adapt-L⋆

1
0.2101 (0.0057) 114.54 (4.58) 0.00 (0.00)

Oracle 0.2089 (0.0038) 117.00 (0.00) 0.00 (0.00)

L1 0.1749 (0.0068) 112.47 (6.50) 0.00 (0.00)

SCAD-DCA 0.1692 (0.0063) 116.59 (1.18) 0.00 (0.00)
0.75 adapt-L⋆

1
0.1705 (0.0055) 115.02 (4.79) 0.00 (0.00)

Oracle 0.1680 (0.0048) 117.00 (0.00) 0.00 (0.00)

Example 5.4(Non i.i.d. random errors). In this example, we considered the case

of non i.i.d. random errors to check the robustness of our methods. Our data

was generated from model 2 of Kocherginsky, He and Mu (2005), with

y = 1 + x1 + x2 + x3 + (1 + x3)ǫ,

where x1 and x3 were generated from the standard normal distribution and the

uniform distribution on [0, 1], x2 = x1 + x3 + z with z being standard normal,

and ǫ ∼ N(0, 1). The variables x1, x3, z, and ǫ were mutually independent. To

study the effect of variable selection, we included five more independent standard

normal noise variables, x4, . . . , x8, independent of each other.

The results based on 100 repetitions with sample size n = 100 are reported
in Table 5.4, in the same format as in Example 5.2. Again we can see the im-

provement in test errors. Moreover, both the SCAD and adaptive-L1 penalties

can identify more correct zero coefficients than can L1 . In this case, all three

penalties tend to produce more wrong zero coefficients in the final model com-

pared to Example 5.2. A possible reason is that x2 is highly correlated with x1

and x3 since x2 = x1 + x3 + z. Nevertheless, compared with the L1 penalty, the

SCAD and adaptive-L1 penalties on average lead to fewer wrong zero coefficients.

6. Data

Harrison and Rubinfeld (1978) studied various methodological issues related

to the use of housing data to estimate the demand for clean air. In particular,
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Table 5.4. Simulation results for Example 5.4 with sample size n = 100.

no. of zeros

τ Method Test Error Correct Wrong

L1 0.4944 (0.0110) 2.27 (1.72) 0.72 (0.45)

SCAD-DCA 0.4919 (0.0136) 4.73 (0.62) 0.51 (0.50)
0.25 adapt-L1 0.4926 (0.0119) 3.64 (1.27) 0.65 (0.48)

Oracle 0.4925 (0.0133) 5.00 (0.00) 0.00 (0.00)

L1 0.6272 (0.0145) 1.37 (1.57) 0.36 (0.48)

SCAD-DCA 0.6157 (0.0118) 4.52 (0.69) 0.19 (0.42)
0.5 adapt-L1 0.6196 (0.0107) 3.31 (1.32) 0.29 (0.46)

Oracle 0.6157 (0.0117) 5.00 (0.00) 0.00 (0.00)

L1 0.5081 (0.0146) 1.44 (1.59) 0.25 (0.44)

SCAD-DCA 0.4942 (0.0140) 4.72 (0.55) 0.06 (0.24)
0.75 adapt-L1 0.5008 (0.0147) 3.59 (1.08) 0.16 (0.37)

Oracle 0.4935 (0.0132) 5.00 (0.00) 0.00 (0.00)

the Boston House Price Dataset was used. This dataset is available online at

http://lib.stat.cmu.edu/datasets/boston_corrected.txt, with some cor-

rections and augmentation by the latitude and longitude of each observation; the

result is called the Corrected Boston House Price Data. There are 506 observa-

tions, 15 non-constant predictor variables, and one response variable, corrected

median value of owner-occupied homes (CMEDV). Predictors include longitude

(LON), latitude (LAT), crime rate (CRIM), proportion of area zoned with large

lots (ZN), proportion of non-retail business acres per town (INDUS), Charles

River as a dummy variable (= 1 if tract bounds river; 0 otherwise) (CHAS),

nitric oxides concentration (NOX), average number of rooms per dwelling (RM),

proportion of owner-occupied units built prior to 1940 (AGE), weighted distances

to five Boston employment centres (DIS), index of accessibility to radial high-

ways (RAD), property tax rate (TAX), pupil-teacher ratio by town (PTRATIO),

black population proportion town (B), and lower status population proportion

(LSTAT). For simplicity, we excluded the categorical variable RAD. We also stan-

dardized the response variable CMEDV and the predictor variables aside from

CHAS. Penalized quantile regression was applied with the standardized CMEDV

as the response. We used 27 predictor variables in the penalized quantile regres-

sion, including the variable CHAS, the other 13 standardized predictor variables,

and their squares.

In each repetition, we randomly split all the 506 observations into training,

tuning and testing data sets of size 150, 150, and 206 respectively. The per-

formance over 10 repetitions of the penalized quantile regression with different

penalties and different quantiles is summarized in Table 6.5. The results indicate

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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Table 6.5. Results of the Corrected Boston House Price Data.

τ = 0.25 τ = 0.5 τ = 0.75

Method Test Error no. of zeros Test Error no. of zeros Test Error no. of zeros

L1 0.1339 (0.0107) 11.10 (3.14) 0.1832 (0.0215) 9.30 (4.16) 0.1813 (0.0419) 7.10 (4.72)

SCAD 0.1367 (0.0164) 14.20 (2.78) 0.1862 (0.0257) 12.40 (4.40) 0.1920 (0.0799) 12.40 (3.86)

adapt-L1 0.1346 (0.0130) 13.60 (3.20) 0.1840 (0.0216) 11.10 (5.67) 0.1776 (0.0403) 12.10 (3.98)

Note: In this table, the DCA is chosen for the SCAD.

that different penalties give similar test errors, but that SCAD and adaptive-L1

use fewer variables than does L1.

7. Discussion

In this work, we study penalized quantile regression with the SCAD and

the adaptive-LASSO penalties. We show that they enjoy the oracle properties

established by Fan and Li (2001) and Zou (2006), even though the check func-

tion is non-differentiable at the origin. To handle the non-convex optimization

problem of the SCAD penalized quantile regression, we propose use of the Dif-

ference Convex algorithm. The new algorithm is very efficient, as confirmed by

the simulation results in Example 5.1.

Notice that DCA is a very general algorithm. It can be easily extended to

apply to a more general SCAD penalized likelihood setting, as long as the like-

lihood part is convex. For example, in SCAD penalized least squares regression,

each iteration involves a quadratic programming problem. Similarly, DCA can

be applied to the SCAD SVM (Zhang et al. (2006)).
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