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Abstract

We propose a new testing framework applicable to both the two-sample problem on

point processes and the community detection problem on rectangular arrays of point

processes, which we refer to as longitudinal networks; the latter problem is useful in

situations where we observe interactions among a group of individuals over time. Our

framework is based on a multiscale discretization scheme that consider not just the

global null but also a collection of nulls local to small regions in the domain; in the

two-sample problem, the local rejections tell us where the intensity functions differ and

in the longitudinal network problem, the local rejections tell us when the community

structure is most salient. We provide theoretical analysis for the two-sample problem

and show that our method has minimax optimal power under a Holder continuity

condition. We provide extensive simulation and real data analysis demonstrating the

practicality of our proposed method.

Key words and phrases: longitudinal network, point process, two-sample test, multiscale

1. Introduction

In many applications involving network data, we observe just not a single static network

but rather interactions over time. For example, in business applications, we may observe

the timestamp of emails exchanged among employees in a company or transactions over
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time between people on an e-commerce website. In biology, animal behavioral researchers

often use wearable devices to monitor physical interactions among a group of animals to

understand their social dynamics (Gelardi et al., 2020).

In this paper, we study testing problems for interactions over time under the framework of

longitudinal networks, also known as temporal networks. A longitudinal network A is a n×n

array where each entry is an independent realization from a point process; for example, in an

animal interaction network, the entry Ajk contains all the timestamps of when an interaction

event between animal j and k was initiated. Based on the observed longitudinal network A,

we ask whether the collection of intensity functions, one for each of the
(
n
2

)
(or n2 if network

is directed) point processes, contain community structure. For static networks, the problem

of testing for community has been extensively studied, including Lei (2016) who proposed

tests based on random matrix theory and Gao and Lafferty (2017) and Jin et al. (2021)

who proposed tests based on subgraph count statistics. The longitudinal setting however

introduces a new dimension to the problem: we may be interested in not just whether there

is a community structure but also when the community structure is most apparent. For

example, in an animal interaction network, the community structure may only be apparent

during a specific time period, such as in the morning when the group is most active.

In this work, we propose a new multiscale testing framework based on discretization. In

order to succinctly describe our framework, we first focus on the simpler problem of the two-

sample test. Suppose we have two Poisson point processes over the same interval support

X ⊂ R, with intensity functions λa and λb respectively. Our null hypothesis is that the two

intensity functions are the same, i.e., H0 : λa = λb. Our testing framework first partitions

the ambient space into disjoint bins, which discretizes the Poisson process into a collection

of independent Poisson random variables. The partition is chosen hierarchically at different
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scales to avoid the need to choose a smoothing parameter. In this way, we reduce the problem

of testing Poisson processes to a hierarchical collection of tests on Poisson random variables,

which we conduct by combining p-values obtained from Binomial exact tests and making

the multiple testing adjustments via resampling under the null.

The advantage of this approach, aside from its computational simplicity, is that it can

give granular local information: we can tell not just whether λa 6= λb but where in support X

that they differ significantly. We do this by testing not just the global null that λa = λb but

also a collection of local nulls that λa
∣∣
I

= λb
∣∣
I

when restricted to a sub-region I ⊆ X in our

hierarchical partition. To correct for sequential/multiple testing, we apply the adjustment

method in Meinshausen (2008) to control the family-wise error rate. Somewhat surprisingly,

the simultaneously valid tests for the local nulls can be done on top of the test for the

global null for free in the sense that they can be done without any increase in computational

complexity and without any decrease in in statistical power.

This framework may be directly applied to longitudinal networks where we discretize

the network into independent Poisson-weighted networks at different scales. This reduces

the problem of testing for community in a longitudinal network to a hierarchical collection

of tests for community in Poisson networks. To tackle the latter problem, we study tests

based on the maximum eigenvalue as well as tests based on subgraph count statistics. We

then combine the resulting p-values and make adjustments by resampling under the null. To

generate samples under the null for networks, we propose a MCMC procedure based on a

sampling algorithm for contingency tables. Although there are existing work on estimation

for longitudinal networks and the related multi-layer network setting (Zhang and Wang,

2023; Huang et al., 2023), we do not know of prior work focused on community structure

testing for longitudinal networks.
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One may ask whether a simple discretization scheme results in too much loss in power

compared to existing tests on point processes based on say kernel smoothing (Fromont et al.,

2013; Schrab et al., 2021) or wavelets (Taleb and Cohen, 2021). To that end, we analyze the

power of our proposed framework theoretically in the two-sample testing problem and prove,

under a Holder continuity condition, that when the dimension of the domain is small, our

proposed test has optimal power in the sense that it attains minimax separation rate with

respect to the distance
∫
I
(
√
λa −

√
λb)

2 between the two intensity functions λa and λb. We

also perform empirical studies validating that the discretization-based test has competitive

power compared to existing approaches.

The remainder of the paper is organized in the following way. In Section 2, we define

Poisson point process and the two-sample problem; we describe in detail our testing proce-

dure in Section 2.2. In Section 3, we define the notion of longitudinal networks and testing

for community structure; we describe our tests for three settings: symmetric networks with

homogeneous baseline rate (Section 3.1), asymmetric networks with homogeneous baseline

rate (Section S1.2), and degree-corrected networks with heterogeneous baseline rates (Sec-

tion 3.2). In Section 4, we provide theorems characterizing the power of our proposed

method for the two-sample test. Finally, in Section 5, we provide both simulation and real

data experiments.

Notation: Given an integer K, we write [K] := {1, 2, . . . , K} and [K]0 := {0, 1, 2, . . . , K}.

For a finite set L, we write |L| to denote its cardinality. For a matrix A, we write λ1(A) to

denote its maximum eigenvalue.
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2. Tests on point processes

We first formally define a Poisson point process. Let the domain X be a compact subset of

Rq with B(X ) as the corresponding Borel σ-algebra. We say that N : B(X )→ N is a point

process realization if it is a counting measure on I that is finite on every subset I ∈ B(X ).

We write N(I) ∈ N as the count of occurrences in I ⊂ X and write N := N(X ) as the total

number of occurrences. We have N <∞ since X is bounded. We write X1, X2, . . . , XN ∈ I

as the locations of the occurrences.

For a finite measure Λ(·) on X , we say that a random point process realization N(·) is

generated by the inhomogeneous Poisson process PP(Λ) if for all k ∈ N, all disjoint subsets

A1, A2, . . . Ak ∈ B(I), and all m1,m2, . . . ,mk ∈ N, we have

P(N(A1) = m1, . . . , N(Ak) = mk) =
k∏
i=1

P(N(Ai) = mi) =
k∏
i=1

e−Λ(Ai)Λ(Ai)
mi

mi!
.

We refer to Λ(·) as the intensity measure. In the case where Λ(·) has a density λ(·) (with

respect to the Lebesgue measure), we also write PP(λ) as the same Poisson point process.

We refer the readers to Diggle (2013) and Kallenberg et al. (2017) for additional details.

2.1 Two-sample test

Before considering the longitudinal network setting where we observe an array of point

process realizations, we first study the two-sample setting where we observe two realizations

Na(·) ∼ PP(Λa) and Nb(·) ∼ PP(Λb). Our goal is to test whether they have the same

intensity measure, that is, we consider the null hypothesis

H0 : Λa = Λb. (Two-sample test) (2.1)

The null defined in (2.1) requires that Λa = Λb everywhere on X so we refer to it as the

global null. We can consider local tests where we ask whether Λa = Λb when restricted to a
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2.1 Two-sample test

sub-region. To formalize this, we define the notion of a hierarchical partitioning of X .

Definition 1. Let R ∈ N be a resolution level. We say that I =
{
I(0), I(1), I(2), . . . , I(R)

}
is a hierarchical dyadic partition of X if I(0) = {I(0)

1 } with I
(0)
1 = X and

1. when r = 1, we let I(1) = {I(1)
1 , I

(1)
2 } be a partition of X ,

2. and for each r > 1, for each ` ∈ [2r], let I
(r)
` , I

(r)
`+1 be a partition of I

(r−1)
(`+1)/2.

For each resolution level r ∈ [R]0, the collection of intervals I(r) =
{
I

(r)
`

}
`∈[2r]

is a

partition of X . If we fix an interval I
(s)
j where s ∈ [R]0 and j ∈ [2s], then, defining

L(s, j, r) := {2r−s(j − 1) + k : k = 1, 2, . . . , 2r−s}, with r > s,

we see that {I(s)
j }j∈L(s,j,r) is a partition of I

(s)
j at resolution level r. For example, we have

L(s, j, s + 1) = {2j − 1, 2j} so that I
(s+1)
2j−1 , I

(s+1)
2j is a dyadic partition of I

(s)
j at one higher

resolution level. See Figure 1.

To simplify notation, if N(·) is a point process realization on X , we write N (s,j) := N(I
(s)
j )

as the number of occurrences in region I
(s)
j . When X is a one-dimensional interval, we can

form the hierarchical partition I by recursively dividing each interval in halves. If X has

dimension two or above, we can take any partitioning method that in some sense ”evenly”

divides each region. We also discuss how to construct I in Remark 3. For now, we assume

that such a partition I is given and does not depend on the random realizations. Moreover,

all of our discussions generalize to k-yadic partition in a straightforward way but we will

work with the dyadic version for simplicity of presentation.

For a given I, we may then define the notion of a local null for the interval I
(s)
j :

H
(s,j)
0 : Λa(·) = Λb(·) on I

(s)
j . (Local null) (2.2)
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2.1 Two-sample test

Figure 1

We note that, since I
(0)
1 = X , the null H

(0,1)
0 is exactly the global null. For reasons that

will become clear, we also define a related notion of the local null which we refer to as the

discretized local null :

H̄
(s,j)
0 : Λa(I

(s)
j ) = Λb(I

(s)
j ). (Discretized local null) (2.3)

We note that H
(s,j)
0 implies H̄

(s,j)
0 but the two are generally not equivalent. They may be

similar if Λa(·),Λb(·) have a smooth density and if the region I
(s)
j has a small diameter.

An important observation that underpins our testing procedure is the fact that the col-

lection of local nulls H
(s,j)
0 ’s has a logical tree structure:

H
(s,j)
0 ⇒ H

(r,`)
0 for any r ∈ {s, s+ 1, . . . , R} and any ` ∈ L(s, j, r). (2.4)

This holds because Λa = Λb on the region I
(s)
j implies that Λa = Λb on every sub-region

I(r,`) ⊆ I
(s)
j . Because of this logical structure, if we do not reject H

(s,j)
0 , then we should not

reject H
(r,`)
0 for any sub-region I(r,`) ⊆ I(s,j).

Remark 1. It is clear that H
(s,j)
0 ⇒ H

(s+1,2j−1)
0 ∩ H(s+1,2j)

0 (each local null implies its

children). For the two sample test, we in fact also have the reverse

Hs+1,2j−1
0 ∩Hs+1,2j

0 ⇒ H
(s,j)
0 , (2.5)
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2.2 Testing procedure for two-sample test

that is, H
(s,j)
0 must be true if its two direct children are true. This allows us to obtain

some small improvement in power when performing the multiple testing adjustment (see

Section 2.2.4). We note that (2.5) does not hold in the longitudinal network setting (c.f.

Remark 5).

Related work on testing for point processes

For the two-sample problem, Fromont et al. (2013) proposed tests for the global null using

U-statistics based on kernel functions and proved their optimality; similar methods appear

in Gretton et al. (2012). Methods based on scan statistics have been studied in Kulldorff

et al. (2009), Walther et al. (2010), and Picard et al. (2018). In contrast to these work, our

focus is on simultaneous testing of both the global and local nulls as well as on having a

framework that easily extends to the longitudinal networks. There are also work on testing

homogeneity (Fromont et al., 2011) and for testing whether the proportion of two intensity

functions is a constant or increasing (Bovett and Saw, 1980; Deshpande et al., 1999).

2.2 Testing procedure for two-sample test

Our test procedure will produce simultaneously valid p-values for H0 and the entire family

H(s,j) simultaneously in the following sense: we produce a collection of p-values p(s,j) such

that if we reject

Rα = {H(s,j)
0 : p(s,j) ≤ α and p(s∗,j∗) ≤ α for all I(s∗,j∗) such that I(s,j) ⊆ I(s∗,j∗)}, (2.6)

then we control family-wise error rate at level α, that is, Rα contains no false positives with

probability at least ≥ 1− α.

On a high level, our testing strategy is to approximate the local null H
(s,j)
0 by an inter-

8

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Testing procedure for two-sample test

section of discretized local nulls:

Ȟ
(s,j)
0 :=

R⋂
r=s

⋂
`∈L(s,j,r)

H̄
(r,`)
0 . (Approximate local null) (2.7)

For a given r ∈ {s, s+1, . . . , R}, we see that the intersection
⋂
`∈L(s,j,r) H̄

(r,`)
0 approximates

H
(s,j)
0 at discretization/resolution level r. The additional intersection over r accounts for all

the resolution levels. In the case where s = 0 and j = 1, we get an approximation of the

global null for the two sample test (2.1):

Ȟ0 ≡ H̃
(0,1)
0 =

R⋂
r=0

2r⋂
`=1

H̄
(r,`)
0 . (2.8)

Our testing procedure proceeds in four steps: (i) construct p-values p̄(r,`)’s for H̄
(r,`)
0 ’s with

exact tests, (ii) combine p(r,`) across ` at the same resolution level, (iii) combine p-value across

the different resolution levels and use resampling to obtain individually valid p-values p̌
(s,j)
F

for each H
(s,j)
0 , and (iv), apply sequential testing adjustment to obtain simultaneously valid

p-values p
(s,j)
F . We explain each of the steps in detail below and give a concise description

of the whole procedure in Algorithm 1. We also illustrate how the procedure works in an

in-depth numerical example in Section 5.1.

2.2.1 Step 1: compute p-value for each discretized local null.

In the first step, we compute a p-value for each of the discretized local nulls, that is, for each

H̄
(r,`)
0 where r ∈ [R], ` ∈ [2r]. To test H̄

(r,`)
0 , we observe that the random counts N

(r,`)
a :=

Na(I
(r)
` ) and N

(r,`)
b := Nb(I

(r)
` ) are Poisson random variables with means Λa(I

(r)
` ),Λb(I

(r)
` ) ≥ 0

respectively. Define

N(·) := Na(·) +Nb(·)

as the aggregated realization. We then have that, under the null hypothesis and conditional

on N (r,`), the random counts N
(r,`)
a and N

(r,`)
b have the binomial Bin(1

2
, N (r,`)) distribution.
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2.2 Testing procedure for two-sample test

We take N
(r,`)
a as the test statistic. Let SBin( 1

2
,m)(·) := P(|Bin(1

2
,m)− m

2
| ≥ ·) be the two-

sided tail probability function, and write p̃(r,`) ≡ p̃(r,`)
(
Na(I

(r)
` ), N (r,`)

)
:= SBin( 1

2
,N(r,`))

(∣∣∣∣N (r,`)
a −

N(r,`)

2

∣∣∣∣) as the p-value. We may then reject the local null H̄
(r,`)
0 at level α ∈ (0, 1) if p̃(r,`) ≤ α.

However, under the null and conditional on N (r,`), p̃(r,`) has a discrete distribution. We may

thus gain additional power by randomizing p̃(r,`) so that its distribution is continuous and

uniform under the null. To that end, we generate an independent U ∼ Unif[0, 1], define

S̃ := SBin( 1
2
,N(r,`))

(∣∣N (r,`)
a − N(r,`)

2

∣∣+ 1
)
, and define p̄(r,`) = Up̃(r,`) + (1−U)S̃. The randomized

p-value p̄(r,`) has the Unif[0, 1] distribution under H̄
(r,`)
0 . We also have that p̄(r,`) ≤ p̃(r,`) so

there is no loss in power (we give a proof in Proposition 1 in the appendix for completeness).

2.2.2 Step 2: combining p-values of the same resolution level.

In the second step, for each (s, j), we will consider each r ∈ {s, s + 1, . . . , R} and combine

the p-values {p̄(r,`) : ` ∈ L(s, j, r)}. In the case where s = 0 and j = 1 so that I
(s)
j = X ,

this amounts to combining the p-values {p̄(r,`)}`∈[2r] for each r ∈ [R]. To simplify exposition,

we describe the p-value combination method for when s = 0 and j = 1; the same method

applies immediately for any (s, j).

We combine the p-values {p̄(r,`)}`∈[2r] by specifying a function f : [0, 1]2
r → [0, 1] and

taking f
(
p̄(r,1), . . . , p̄(r,2r)

)
. By choosing the combining function f carefully and using the fact

that {p̄(r,1), . . . , p̄(r,2r)} are independent random variables uniform on [0, 1], we can guarantee

that f
(
p̄(r,1), . . . , p̄(r,2r)

)
has the uniform distribution under the null. There are a number of

reasonable choices for f(·) but we focus on two:

p
(r)
F := Sχ2

2r

(
−2

∑
`∈[2r]

log p̄(r,`)

)
, (Fisher combination) (2.9)

p
(r)
M := Sβ2r

(
min
`∈[2r]

p̄(r,`)

)
, (Minimum combination) (2.10)
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2.2 Testing procedure for two-sample test

where Sχ2
2r

(·) := P(χ2
2r ≥ ·) is the right tail probability function for the χ2 distribution with

2r degree of freedom and Sβ2r (·) := P(Beta1,2r ≤ ·) is the left tail probability of the Beta

distribution with parameter (1, 2r). The fact that p
(r)
F and p

(r)
M have the uniform distribution

under the null follows from the fact that the negative sum of logarithm of independent

Unif[0, 1] random variables has the χ2 distribution and that the minimum of independent

Unif[0, 1] random variables has the Beta distribution. For the remainder of this paper, we use

Fisher combination by default but it would be trivial to use minimum combination instead.

We can follow the same procedure to compute, for any (s, j) and r ∈ {s, s + 1, . . . , R},

the p-value p
(s,j,r)
F which combines {p̄(r,`)}`∈L(s,j,r). Moreover, we derive a dynamic program

that, in the process of computing p
(1)
F , . . . , p

(R)
F for the global null case (s = 0, j = 1), can

simultaneously and without any additional computational burden, compute the whole col-

lection
{
{p(s,j,r)

F }Rr=s
}
s∈[R],j∈[2r]

. The dynamic program uses an iterative bottom-up approach

and runs in time O(N). We give the details in Algorithm 2.

Remark 2. The question of which combination method has more power depends on what

the alternative is. We show through our theoretical analysis in Section 4 that when the

integrated difference
∫

(λa−λb
λ

)2 is large, then Fisher combination has higher power. On the

other hand, if |λa − λb| is large only on a small region and 0 elsewhere, then the minimum

combination method has higher power.

2.2.3 Step 3: combining across different resolution levels

Finally, to obtain the p-value for H
(s,j)
0 , we combine {p(s,j,r)

F }Rr=s across resolution levels

{s, s+ 1, . . . , R}. There are again a number of choices, but we propose

p̃
(s,j)
F := min

{
p

(s,j,r)
F : r ∈ {s, s+ 1, . . . , R}

}
.
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2.2 Testing procedure for two-sample test

Since the random variables {p(s,j,r)
F }Rr=s are not independent, the distribution of p̃

(s,j)
F un-

der H0 is difficult to characterize exactly. Instead, we make adjustments to p̃
(s,j)
F . One

straightforward way is to make the Bonferroni adjustment, where we let

p̌
(s,j)
F = (R− s+ 1) · p̃F . (2.11)

We may also adjust p̃F by resampling. We note that the realizations Na(·) and Nb(·) can

be equivalently characterized by two sequences of random variables X1, X2, . . . XN taking

value on X and M1,M2, . . . ,MN taking value on {−1, 1} where N = Na +Nb is the random

length of the sequence. The occurrences of Na(·) comprise of all Xi where Mi = −1 and the

occurrences of Nb(·) comprise of those points for which Mi = 1.

Under H0, M1, . . . ,MN would be Rademacher random variables, that is, P0(Mi = 1) =

1/2, and independent of X1, . . . , XN . Hence, to resample B samples from H0, we do the

following, for b∗ = 1, 2, . . . , B:

1. Generate M
(b∗)
1 , . . . ,M

(b∗)
N ∼ Rademacher independently.

2. Take N
(b∗)
a (·) = {Xi : M

(b∗)
i = −1} and N

(b∗)
b (·) = {Xi : M

(b∗)
i = 1}.

On each sample N
(b∗)
a (·), N (b∗)

b (·), we then repeat steps 1, 2, and the first part of step 3 to

compute p̃
(s,j)
F, b∗ for each s ∈ [R] and j ∈ [2s]. We may then define

p̌
(s,j)
F =

1

B

B∑
b∗=1

1
(
p̃

(s,j)
F,b∗ ≤ p̃

(s,j)
F

)
. (2.12)

2.2.4 Step 4: sequential/multiple testing adjustment

The p-values p̌
(s,j)
F ’s produced from step 3 are individually valid in that under H

(s,j)
0 we have

that p̌
(s,j)
F ≤ α with probability at most α. To account for sequential/multiple testing, we

use the adjustment method proposed by Meinshausen (2008). For each (s, j) where s ∈ [R]
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2.2 Testing procedure for two-sample test

and j ∈ [2s], define

L(s, j) =


#{terminal nodes emanating from (s, j) in I} if (s, j) is not a terminal node

2 if (s, j) is a terminal node

where a terminal node in I is a region I
(r)
` with no sub-region. If I is a full binary tree with

R resolution levels, then L(s, j) = 2R−s if s < R and L(R, j) = 2. The total number of

terminal regions is L(0, 1) which, in the case of a full binary tree, is 2R. We then define the

final adjusted p-value:

p
(s,j)
F = p̌

(s,j)
F · L(0, 1)

L(s, j)
= p̌

(s,j)
F · 2s∧(R−1) (2.13)

We note in particular that the p-value p
(0,1)
F for the global null does not receive any

adjustment so that any rejections we make of the local nulls H
(s,j)
0 comes ”for free” on top

of our test for the global null. In other words, conducting the tests for the local nulls does

not decrease our power for the global null.

Using the fact that under H
(s,j)
0 , we have P(p̌(s,j) ≤ α) ≤ α, and Theorem 2 in Mein-

shausen (2008), the following FWER guarantee immediately follows:

Theorem 1. The rejection set Rα formed via (2.6) with p-values {p(s,j)
F }s∈[R],j∈[2s], as defined

in (2.13), has family-wise error rate (FWER) at most α.

The overall procedure (Algorithm 1) is computationally efficient. The whole collection

{p(s,j,r)
F } can be computed in O(N) time using Algorithm 2 so that the overall procedure has

runtime complexity O(NB) where B is the number of resampling repetitions.

Remark 3. Recall that we can equivalently describe the two realizations Na(·) and Nb(·)

through a sequence (of random length) of positions X1, . . . , XN ∈ X of the union of Na(·)

and Nb(·) and a set of markers M1, . . . ,MN ∈ {−1,+1}, where Mi = −1 implies that Xi
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belong to Na(·). We can then see that the type I error guarantee holds conditional on the

aggregate positions X1, . . . , XN of the union of the two realizations. This is because the

p-values p̄(r,`) produced in step 1 for the discretized local nulls are valid conditional on the

positions; we only use the fact that the random markers M1, . . . ,MN are, conditionally on

N , independent Rademacher random variables. An important implication of this fact is that

the hierarchical partition I can depend on the aggregate positions {X1, . . . , XN} so long as

it does not depend on {M1, . . . ,Mn}; in particular, we can split each region such that each

sub-region has equal number of ”unmarked” points. In practice, we recommend choosing

the hierarchical partition in this way and setting the maximum resolution level R = O(log n)

such that each bin at level R contains a constant number of points, say 10 or 20.

Remark 4. The adjustment method in Meinshausen (2008) can in fact be improved by

looking at the test sequentially and removing any previously rejected hypotheses from the

set of terminal nodes under consideration. This is analogous to how Holm’s method improves

upon Bonferroni method. We refer the readers to the excellent paper by Goeman and Solari

(2010) for more detail.

3. Tests on longitudinal networks

In this section, we can consider interaction processes among a group of n individuals. For

each pair of individuals u, v ∈ [n], we write Nuv(·) as the realization that captures the

interaction events between u and v over time. The collection {Nuv(·) : u, v ∈ [n]} is

therefore an array of point process realizations which we refer to as a longitudinal network.

Here, we take the network to be symmetric/undirected in that Nuv(·) = Nvu(·); we study the

directed/asymmetric setting in Section S1.2. Suppose Nuv(·) ∼ PP (Λuv) for
(
n
2

)
intensity

measures {Λuv}. We aim to test whether the intensity measures Λuv’s are all identical. When

14
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Algorithm 1 Computing simultaneously valid p-values p
(s,j)
F for all H

(s,j)
0 .

INPUT: Poisson process realizations Na(·) and Nb(·) and a hierarchical partitioning

I = {I(r)
` }r∈[R],`∈[2r] of the domain.

OUTPUT: Simultaneously valid p-values p
(s,j)
F for each H

(s,j)
0 .

1: for each r ∈ [R] do
2: for each ` ∈ [2r] do

3: Set p̃(r,`) = SBin( 1
2
,N(r,`))

(
|N (r,`)

a −N (r,`)/2|
)

4: Use randomization described in Section 2.2.1 to obtain p̄(r,`).
5: end for
6: end for
7: Apply Algorithm 2 on {p̄(r,`)}r∈[R],`∈[2r] to obtain {{p(s,j,r)

F }Rr=s}s∈[R],j∈2s .

8: Compute p̃
(s,j)
F := min{p(s,j,r)

F : r ∈ {s, s+ 1, . . . , R}}.
9: for b∗ ∈ {1, 2, . . . , B} do:

10: Generate M
(b∗)
1 , . . . ,M

(b∗)
N ∼ Rademacher independently.

11: Take N
(b∗)
a (·) = {Xi : M

(b∗)
i = −1} and N

(b∗)
b (·) = {Xi : M

(b∗)
i = 1}.

12: Repeat lines 1 to 8 on N
(b∗)
a (·) and N

(b∗)
b (·) to obtain p̃

(s,j)
F,b∗ .

13: end for
14: Compute the raw p-values p̌

(s,j)
F := 1

B

∑B
b∗=1 1{p̃

(s,j)
F,b∗ ≤ p̃

(s,j)
F }.

15: Compute the adjusted p-values p
(s,j)
F = p̌

(s,j)
F 2s∧(R−1).

Algorithm 2 Dynamic program for computing the collection of p-values{
{p(s,j,r)

F }Rr=s
}
s∈[R],j∈[2r]

.

INPUT: a collection {p̄(r,`)}r∈[R],`∈[2r].

OUTPUT: The collection
{
{p(s,j,r)

F }Rr=s
}
s∈[R],j∈[2r]

1: For every r ∈ [R], ` ∈ [2r], set mr,`
0 = −2 log p̄(r,`)

2: for k ∈ {1, 2, . . . , R− 1} do:

3: For every r ∈ [R− k] and ` ∈ [2r], set m
(r,`)
k = mr+1,2`−1

k−1 +mr+1,2`
k−1 .

4: end for
5: for s ∈ [R], j ∈ [2s], r ∈ {s, s+ 1, . . . , R} do:

6: Set p
(s,j,r)
F = Sχ2

2r−s
(mr,j

r−s).

7: end for
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n is large however, the space of alternative hypothesis is enormous so that it is important

for us to designate a plausible alternative with which to test against.

We therefore assume that there is an underlying block/community structure. More pre-

cisely, suppose each individual u belongs to one of K communities and write σ(u) ∈ [K]

as the community membership of u, where σ : [n] → [K] is the community assignment

function. We assume that the probability distribution of the interactions between u, v de-

pends only on the community memberships of u and v. More precisely, for each pairs of

communities s, t ∈ [K], let Γst(·) be an intensity measure and suppose

Λuv = Γσ(u)σ(v) for individuals u, v ∈ [n].

We then define the null hypothesis to be H0 : K = 1 and the alternative to be H1 : K > 1.

More precisely, we define the null hypothesis

H0 : Nuv(·) ∼ PP(Γ), for some Γ, for all u, v ∈ [n]. (Symmetric array test) (3.14)

This is the generalization of the two-sample test to the array case. In many applications

however, individuals may have different baseline rates of interactions. To capture potential

rate heterogeneity, we propose to augment the block model with a vector θ ∈ [0,∞)n of

non-negative scalars and let Nuv(·) ∼ PP(Γσ(u)σ(v)θuθv).

We may then consider the same test of whether there exists a community structure in

the interactions. An equivalent formulation is to define

H0 : Nuv(·) ∼ PP(Γθuθv), for some Γ and θ, for all u, v ∈ [n]. (3.15)

We refer to (3.15) as the degree-corrected array test. In the next section, we focus on the

symmetric array test and consider the degree-corrected array test in Section 3.2.
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3.1 Testing procedure for longitudinal networks

Related work on longitudinal networks

Recently, there has been increased attention on the modeling of dynamic networks (Holme

and Saramäki, 2012). For example, Xu and Hero (2013) employ a state space model to

describe temporal changes at the level of the connectivity pattern, DuBois et al. (2013)

introduced a family of relational event models that captures the heterogeneity in underlying

interaction dynamics of network data over time. Modelling temporal interaction between

two nodes by Poisson processes is also considered in Corneli et al. (2016) and Matias et al.

(2018), where they provide likelihood-based algorithms for membership estimation. Zhang

and Wang (2023) studies longitudinal networks from a tensor factorization perspective; they

discretize the time into bins and propose an adaptive merging method to ensure that the

discretized network is not too sparse. We refer the readers to the introduction in Zhang and

Wang (2023) for a more extensive review of estimation methods for longitudinal networks.

Unlike estimation, testing for longitudinal networks has not received much attention. This

is where our work enters the picture.

3.1 Testing procedure for longitudinal networks

We now consider the test of interaction processes among a group of individuals, defined

in (3.14). As with the two-sample test, we construct our testing procedure based on a

hierarchical partitioning I = {I(r)
` } of the support X of the interactions, as described in

Definition 1. The test follows the same steps as that described in Section 2.1. The only

differences are in step 1, where we specify different test statistics for the discretized local

null, and in step 4, where we specify different resampling algorithms.

Following the two-sample test described in Section 2.1, we define, for a resolution level

17
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3.1 Testing procedure for longitudinal networks

r ∈ [R] and ` ∈ [2r], the local null

H
(r,`)
0 : Λuv = Γ, on I

(r)
` for some common Γ, for all u, v ∈ [n].

We also define discretized local null

H̄
(r,`)
0 : Λuv(I

(r)
` ) = γ, for some common γ ≥ 0, for all u, v ∈ [n].

Our testing procedure follows the same steps as the two-sample test.

3.1.1 Step 1: compute p-values for each discretized local null.

In the first step, we test the discretized local null H̄
(r,`)
0 for some r ∈ [R] and ` ∈ [2r]. Define

N
(r,`)
uv := Nuv(I

(r)
` ) and observe that N

(r,`)
uv ∼ Poisson(Λuv(I

(r)
` )). To motivate our test, define

an integer matrix A(r,`) ∈ Nn×n where

A(r,`)
uv =


N

(r,`)
uv , u 6= v

0, u = v

. (3.16)

We view A(r,`) as the adjacency matrix of a weighted network. If the intensity measures

{Λuv} has a block structure in that Λuv = Γσ(u)σ(v) where σ(u),σ(v) ∈ [K] are the cluster

membership of u and v (c.f. Section 3), then A(r,`) is a random matrix that follows a

Poisson Stochastic Block Model (SBM). To be precise, define a matrix γ ∈ RK×K where, for

s, t ∈ [K], we have γst = Γst(I
(r)
` ). For u 6= v, we then have A

(r,`)
uv ∼ Poisson(γσ(u)σ(v)).

Without loss of generality, we may assume that no clusters are empty and that the rows

of γ are distinct. Now let P be a n× n matrix given by

Puv = γσ(u)σ(v) (3.17)
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3.1 Testing procedure for longitudinal networks

We can then see that Eγ,σ
[
A
]

= P − diag(P ) and now for each r ∈ [R] and ` ∈ [2r], we can

restate the discretized local null as

H̄
(r,`)
0 : P = γ(r,`)1n1

T
n for some constant γ(r,`) > 0 (3.18)

where 1 a vector of all ones of length n.

Given an observed adjacency matrix A(r,`), an intuitive idea for the goodness-of-fit test is

to remove the signal using an estimate of the true mean γ(r,`) and test whether the residual

matrix is a noise matrix. Let γ̂(r,`) = 2
n2−n

∑
u<v A

(r,`)
uv be an estimator of the true Poisson

mean, we denote the empirically centered and re-scaled adjacency matrix by Ã(r,`)

Ã(r,`)
uv :=


A

(r,`)
uv −γ̂(r,`)√
(n−1)γ̂(r,`)

, u 6= v,

0, u = v.

(3.19)

The asymptotic distribution of the extreme eigenvalues of the empirically centered and re-

scaled adjacency matrix has been studied in Bickel and Sarkar (2013) and Lei (2016) while

the entries are Bernoulli. We extend their result to the case with Poisson distributed edges.

Theorem 2. For each r ∈ [R], ` ∈ [2r], Let A(r,`) be the adjacency matrix generated from a

Poisson Stochastric Block Model and Ã(r,`) be defined as in (3.19), then under the local null

hypotheses (3.18) and as n → ∞, we have n2/3(λ1(Ã(r,`)) − 2)
d−→ TW1, where TW1 is the

Tracy–Widom law with β = 1.

We relegate the proof of Theorem 2 to Section S1.5.1 of the Appendix. In Section S1.5.2,

we also characterize the behavior of λ1(Ã(r,`)) under the alternative setting where K > 1,

showing that λ1(Ã(r,`)) diverges as n increases.

Theorem 2 shows that, if we take λ1(A(r,`)) to be the test statistics for the local null

H̄
(r,`)
0 , we may obtain the asymptotically valid p-value using the Tracy-Widom distribution.
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3.1 Testing procedure for longitudinal networks

Denote FTW1(·) as the CDF of the Tracy-Widom law with β = 1 and define the local p-value

p̄(r,`) ≡ p̄(r,`)
(
A(r,`)

)
:= 2min

(
FTW1

(
n2/3

(
λ1(A(r,`)))− 2

))
, 1− FTW1

(
n2/3

(
λ1(A(r,`)))− 2

)))
In the same manner, we could then reject the discretized local null H̄

(r,`)
0 at level α ∈ (0, 1)

if p
(r,`)
0 ≤ α. The Tracy–Widom law is asymptotic, but we will perform resampling in step 3

so that the final p-values that we produce are still valid for any finite n.

We note that when the resolution level is very high, the discretized networks may be very

sparse and thus any tests on them may have low power. This presents no intrinsic difficulty

since we aggregate results from multiple resolution levels. In practice, we recommend setting

R so that all the discretized networks are connected.

3.1.2 Step 2: combining p-values of the same resolution level

We follow exactly the same procedure described in Section 2.2.2 to obtain p
(s,j,r)
F (or p

(s,j,r)
M )

for every s ∈ [R], j ∈ [2s], and r ∈ {s, s+ 1, . . . , R}.

3.1.3 Step 3: combining across different resolution levels

We again define p̃
(s,j)
F = min{p(s,j,r)

F : r ∈ {s, s + 1, . . . , R}}. We can make a Bonferroni

adjustment just as before but we propose to adjust with resampling.

Unlike the two-sample test setting where we only have two realizations, here, we have(
n
2

)
realizations, denoted as {Nuv(·) : u, v ∈ [n], u < v}. They could also be equivalently

characterized by two sequences of random variables X1, X2, . . . , XN ∈ X and random tuples

M1,M2, . . . ,MN taking value on
(

[n]
2

)
:= {(u, v) : u, v ∈ [n], u < v}, where N =

∑
u<vNuv is

the random length of the sequence. Under the global null H0, M1,M2, . . . ,MN are multino-

mial random tuples distributed uniformly over the set
(

[n]
2

)
, that is, P0{Mi = (u, v)} = 2

n(n−1)
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3.2 Degree-corrected symmetric array test

for each i ∈ [N ] and (u, v) ∈
(

[n]
2

)
. Thus we could resample B samples, b∗ = 1, 2, . . . , B, from

H0 in the following way:

1. Generate M
(b∗)
1 , . . . ,M

(b∗)
N ∼ Uniform

(
[n]
2

)
independently.

2. Take N
(b∗)
uv (·) = {Xi : M

(b∗)
i = (u, v)} for each pair of (u, v) ∈

(
[n]
2

)
.

On each sample collection {N (b∗)
uv (·) : u, v ∈ [n], u < v}, we could then compute the simulated

unadjusted p-value p̃
(s,j)
F,b∗ as in Section 2.2.3 and output p̌

(s,j)
F := 1

B

∑B
b∗=1 1

(
p̃

(s,j)
F,b∗ ≤ p̃

(s,j)
F

)
as

the individually valid p-value for H
(s,j)
0 .

3.1.4 Step 4: sequential/multiple testing adjustment

Following Section 2.2.4, we define p
(s,j)
F = p̌

(s,j)
F · 2s∧(R−1).

3.2 Degree-corrected symmetric array test

In this setting, we define the local null at r ∈ [R] and ` ∈ [2r] as

H
(r,`)
0 : Λuv = Γθuθv, on I

(r)
` for some Γ,θ, for all u, v ∈ [n],

where θ ∈ [0,∞)n is a vector of baseline rate for each of the n individuals. We define the

discretized local null as H̄
(r,`)
0 : Λuv(I

(r)
` ) = γθuθv, for some γ,θ, for all u, v ∈ [n].

Remark 5. Note that in our definition, we do not require two local nulls H
(r,`)
0 and H

(r′,`′)
0

to have the same degree correction parameter θ. This means that, although we have the

logical implication that H
(r,`)
0 ⇒ H

(r+1,2`−1)
0 ∩H(r+1,2`)

0 (each local null implies its children),

we do not have the reverse: if H
(r,`)
0 is false, it may still be that both H

(r+1,2`−1)
0 and H

(r+1,2`)
0

are true. This implies that we may have no power against certain alternatives. This issue

is difficult to overcome completely but it can be ameliorated by performing the test with

different choices of the hierarchical partition.
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3.2 Degree-corrected symmetric array test

3.2.1 Step 1: compute p-value for each discretized local nulls

For r ∈ [R] and ` ∈ [2r], define N
(r,`)
uv := Nuv(I

(r)
` ) as with Section 3.1 and define the

adjacency matrix A
(r,`)
uv = N

(r,`)
uv for u 6= v and A

(r,`)
uv = 0 if u = v.

Suppose the intensity measures {Λuv} has a block structure so that Λuv = Γσ(u)σ(v) where

σ(u), σ(v) ∈ [K] are the cluster memberships of individual u and v. In the setting where

each individual u ∈ [n] has its own baseline rate of interactions θu > 0, we have that

A(r,`)
uv ∼ Poisson(γσ(u)σ(v)θuθv),

where γst := Γst(I
(r)
` ). This model is similar to the so-called degree-corrected stochastic

block model (DCSBM) where the edges are Bernoulli distributed binary random variables

instead of Poisson random integers as we have in our setting.

To test each discretized local null, we apply the Signed Triangle (SgnT) and the Signed

Quadrilateral (SgnQ) statistics introduced and analyzed by Jin et al. (2021). To define the

SgnT and SgnQ statistic, first define a vector η̂(r,`) and a scalar V (r,`) as

η̂(r,`) =
(

1/V (r,`)
) 1

2
A(r,`)1n, where V (r,`) = 1

′

nA
(r,`)1n. (3.20)

The Signed-Polygon(SgnT) statistic Tn is then defined as

T (r,`) ≡ T (I
(r)
` ) =

∑
u1,u2,u3∈[n]
u1 6=u2 6=u3

(
A(r,`)
u1u2
− η̂(r,`)

u1
η̂(r,`)
u2

)
·
(
A(r,`)
u2u3
− η̂(r,`)

u2
η̂(r,`)
u3

)

·
(
A(r,`)
u3u1
− η̂(r,`)

u3
η̂(r,`)
u1

) (3.21)

In a similar manner, we define the Signed-Quadrilateral(SgnQ) statistic as

Q(r,`) ≡ Q(I
(r)
` ) =

∑
u1,u2,u3,u4∈[n]
u1 6=u2 6=u3 6=u4

(
A(r,`)
u1u2
− η̂(r,`)

u1
η̂(r,`)
u2

)(
A(r,`)
u2u3
− η̂(r,`)

u2
η̂(r,`)
u3

)

·
(
A(r,`)
u3u4
− η̂(r,`)

u3
η̂(r,`)
u4

)(
A(r,`)
u4u1
− η̂(r,`)

u4
η̂(r,`)
u1

) (3.22)
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3.2 Degree-corrected symmetric array test

The intuition behind the SgnT and SgnQ test statistics is that a network with community

structure tend to have more triangles and quadrilaterals than a network with similar number

of edges but without community structure. We refer the readers to Gao and Lafferty (2017);

Jin et al. (2018, 2021) for a more detailed discussion.

Theorem 2.1 and 2.2 in Jin et al. (2021) prove asymptotic normality for T (r,`) and Q(r,`) for

degree corrected stochastic block model where the edges are Bernoulli (they actually prove

it for the more general mixed membership model). However, a careful examination of their

proof shows that their result applies, without modification, to the setting where the edges

are Poisson. We restate their result below; see Section 5.3.1 for experimental validation.

Proposition 1. (follows from Theorem 2.1 and 2.2 in Jin et al. (2021)) Suppose ‖θ‖2 →

∞, ‖θ‖∞ → 0,
‖θ‖22
‖θ‖1

√
log ‖θ‖1 → 0 as n→∞, then

T (r,`)

√
6(‖η̂(r,`)‖2 − 1)3/2

d−→ N(0, 1) (3.23)

and
Q(r,`) − 2(‖η̂(r,`)‖2 − 1)2

√
8(‖η̂(r,`)‖2 − 1)2

d−→ N(0, 1) (3.24)

Based on Proposition 1, we could take T (r,`) or Q(r,`) as our test statistic for the discretized

local null H̄
(r,l)
0 , define the corresponding local p-value as

p̄(r,`) ≡ p̄(r,`)
(
T (r,`)

)
:= 2

[
1− Φ

(∣∣∣∣ T (r,`)

√
6(‖η̂(r,`)‖2 − 1)3/2

∣∣∣∣)]
p̄(r,`) ≡ p̄(r,`)

(
Q(r,`)

)
:= 2

[
1− Φ

(∣∣∣∣Q(r,`) − 2(‖η̂(r,`)‖2 − 1)2

√
8(‖η̂(r,`)‖2 − 1)2

∣∣∣∣)].
3.2.2 Step 2: computing p-values of the same resolution level

We follow exactly the same procedure described in Section 2.2.2 to obtain p
(s,j,r)
F (or p

(s,j,r)
M )

for every s ∈ [R], j ∈ [2s], and r ∈ {s, s+ 1, . . . , R}.
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3.2 Degree-corrected symmetric array test

3.2.3 Step 3: combine across different resolution levels

We again define p̃
(s,j)
F = min{p(s,j,r)

F : r ∈ {s, s + 1, . . . , R}}. We can make a Bonferroni

adjustment just as before but we propose to adjust with resampling. The added challenge

here however is that we do not observe the degree correction parameter vector θ.

To describe the resampling procedure, we again characterize the
(
n
2

)
realizations {Nuv(·) :

u, v ∈ [n], u < v} as a random sequence X1, . . . , XN ∈ X and M1, . . . ,MN taking value on(
[n]
2

)
. Then, under H0, we have

P0{Mi = (u, v)} =
θuθv∑

u′<v′ θu′θv′
(3.25)

We cannot directly use (3.25) to resample M1, . . . ,MN since we do not observe θ. To

overcome this problem, we condition on the degree of all the individuals, which is a sufficient

statistic for θ. To be precise, We write A
(0)
uv := Nuv(X ) as the total number of interactions

between u and v and define Du ≡ Du(A
(0)) :=

∑
v 6=uA

(0)
uv as the degree of individual u.

Equivalently, we may express Du as a function of M1, . . . ,MN via the equation Du(M) =∑N
i=1 1{u ∈Mi}. Write m := {(u1, v1), . . . , (uN , vN)} as a possible outcome for M1, . . . ,MN

and write D(m) := {Du(m)}u∈[n] as the corresponding vector of all the degrees, then

P0

(
{M1, . . . ,MN} = m

)
=

∏N
i=1 θuiθvi

(
∑

u′<v′ θu′θv′)
N

=

∏
u∈[n](θu)

Du(m)

(
∑

u′<v′ θu′θv′)
N
.

For a vector d ∈ NN , define Md :=
{
m =

(
(u1, v1), . . . , (uN , vN)

)
: D(m) = d

}
as the

set of all possible outcomes of M1, . . . ,MN that result in degree vector d. Then, we have

that

P0

(
{M1, . . . ,MN} = m |D(m) = d

)
=

P0

(
{M1, . . . ,MN} = m

)∑
m′∈Md

P0

(
{M1, . . . ,MN} = m

) =
1

|Md|
.

Importantly, conditional on the degree, the distribution of M1, . . . ,MN does not depend on θ.

Therefore, writing Dobs as the observed degree vector, we propose to generate b∗ = 1, . . . , B
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3.2 Degree-corrected symmetric array test

Monte Carlo samples M
(b∗)
1 , . . . ,M

(b∗)
N from the conditional distribution

P0

(
{M1, . . . ,MN} = · |D(·) = Dobs

)
. (3.26)

To generate from (3.26), we use a Metropolis–Hastings algorithm. Given current state

m = {(u1, v1), . . . , (uN , vN)}, we generate a proposal m′ by choosing a pair i, j ∈ [n] where

i < j. Denote mi = (ui, vi) and mj = (uj, vj). We then generate m′i,m
′
j by drawing uniformly

from each of the following five outcomes:

(
m′i
m′j

)
∼ Unif

{
( uj vjui vi ),

( ui vj
uj vi

)
,
( uj vi
ui vj

)
,
( ui uj
vi vj

)
,
( vi vj
ui uj

)}
. (3.27)

We complete the proposal by letting m′k = mk for every k 6= i, j. If m′i or m′j contain multi-

edge, that is, both end-points of m′i or m′j refer to the same node, then reject m′. Otherwise,

it is straightforward to verify that the Metropolis–Hastings ratio is exactly 1 and we accept

the proposal m′.

Proposition 2. The Markov Chain specified via (3.27) and the acceptance rule given be-

low (3.27) is ergodic and has stationary distribution that is uniform on Md.

The simpler version of Proposition 2 for contingency tables is well known (see e.g. Diaco-

nis and Sturmfels (1998)). We give a proof for the longitudinal network setting in Section S1.4

of the appendix.

We may thus generate M
(b∗)
1 , . . . ,M

(b∗)
N by taking some steps of the Metropolis–Hastings

algorithm and obtain our resampled point process realizations {N (b∗)
uv (·)}u,v. For each b∗, we

may then obtain p̃
(s,j)
F,b∗ and construct the final p-value as p̌

(s,j)
F = 1

B

∑B
b∗=1 1

{
p̃

(s,j)
F,b∗ ≤ p̃

(s,j)
F

}
.

Step 4: sequential/multiple testing adjustment.

We make the sequential/multiple testing adjustment on p̌
(s,j)
F to obtain simultaneously

valid p
(s,j)
F just as in Section 2.2.4, with one key difference because we do not have the logical
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implication that H
(s+1,2j−1)
0 ∩H(s+1,2j)

0 ⇒ H
(s,j)
0 , that is, if a local null is false, it could still

be that the two children are true. As a consequence, we must redefine L(s, j) as

L(s, j) =


#{terminal nodes emanating from (s, j) in I} if (s, j) is not a terminal node

1 if (s, j) is a terminal node.

In the case where the hierarchical partitions I is a full binary tree, we have that L(s, j) = 2R−s

and L(0, 1) = 2R. We then define the simultaneously valid p-value as p
(s,j)
F = p̌

(s,j)
F

L(0,1)
L(s,j)

=

2sp̌
(s,j)
F . If we form our rejections via (2.6) using {p(s,j)

F }, then our FWER is controlled at α.

We succinctly summarize all the steps in Algorithm 2.

4. Theoretical analysis

In this section, we analyze the power of our proposed test under the two-sample test setting

where we have two intensities functions λa and λb; we write λ = λa + λb. Under the global

null, we suppose that λa = λb = λ
2

on the support X . We state our results in terms of

power against the global null but they are applicable to local nulls as well. Throughout this

section, we let ν be the base measure with respect to which the λa, λb are defined; one can

assume ν is the Lebesgue measure for simplicity. We also take the partitions I to be fixed

and state our results in terms of deterministic conditions on I.

Our results are of the following form: under an alternative hypothesis where λa and λb

are sufficiently separated according to some notion of distance, our proposed tests at level

α will have power at least β. More precisely, writing p as the p-value that we output, we

have that P0(p ≤ α) ≤ α and P(p ≤ α) ≥ 1 − β. Our first two results consider the Fisher

combination test. For a given hierarchical partition I and a resolution level r, it measures

the separation between λa and λb in terms of a discretized L2 divergence.
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Theorem 3. Let α, β ∈ (0, 1) and let C be a universal constant greater than 1 whose value

is specified in the proof. Assume
∫
I
(R)
`
λdν ≥ 2 for all ` ∈ [2R]. Assume there exists r ∈ [R]

such that

1

4

2r∑
`=1

(∫
I
(r)
`
λa − λb dν∫
I
(r)
`
λ dν

)2 ∫
I
(r)
`

λdν ≥ 2r/2
(
C1/2

β
+ 2 log1/2 R

α

)
+ 2 log

R

α
. (4.28)

Then, we have that P(p
(0,1)
F ≤ α) ≥ 1− 2β.

We prove Theorem 3 in Section S2.1 of the Appendix. To better understand the impli-

cations of Theorem 3, we next take the support X to be a compact subset of Rq and take

the hierarchical partition I to be any partition such that each split divides a region into two

sub-regions whose volume is halved and whose diameter is reduced by a factor of O(2−
1
q ).

Since there is no fixed sample size for Poisson processes, we write n :=
∫
X λdν so that it is

the ”expected sample size”; note then that λ
n

is a probability measure.

Theorem 4. Let X ⊂ Rq and let λ = λa + λb. Suppose 0 < cmin := infx∈X λ(x) ≤

supx∈X λ(x) =: cmax <∞. Let n :=
∫
X λ dν and suppose λa−λb

λ
is γ-Holder continuous:∣∣∣∣λa(x)− λb(x)

λ(x)
− λa(y)− λb(y)

λ(y)

∣∣∣∣ ≤ CH‖x− y‖γ2 for all x, y ∈ X .

Let R = blog2
n
2
− log2

(
cmax

cmin

)
c and {I(r)

l }r∈[R],l∈[2r] be a dyadic partition of X such that for all

r ∈ [R] and l ∈ [2r], ν(I
(r)
l ) = ν(I)

2r
and diam(I

(r)
l ) ≤ Cd2

−r/q. Let α, β ∈ (0, 1) and suppose

∫
X

(
λa − λb

λ

)2
λ

n
dν ≥

{
C1n

− 4γ
q+4γ
(
β−1 + log logn

α

)
if γ/q ≥ 1/4

C1n
− 2γ

q
(
β−1 + log logn

α

)
if γ/q ≤ 1/4

, (4.29)

where C1 > 0 depends only on cmax/cmin, CH , and Cd. Then, P(p
(0,1)
F ≤ α) ≥ 1− 2β.

We prove Theorem 4 in Section S2.2 of the Appendix. It is important to note that

Theorem 4 only requires the difference λa−λb
λ

to be Holder continuous; no smooth assumptions
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are made on the individual intensity functions themselves. Moreover, because we use a

hierarchical partition instead of a fixed resolution level, our test is able to adapt to the

unknown smoothness γ of the underlying function λa−λb
λ

, that is, it attains the separation

rate (4.29) without knowledge of γ.

Remark 6. As a direct consequence of Theorem 4, we see that when X ⊆ R (so that q = 1)

and when λa−λb
λ

is Lipschitz (so that γ = 1), then our test has nontrivial power when the

separation
∫

(λa−λb
λ

)2 λ
n
dν (which is the squared L2(λ/n) distance between λa/λ and λb/λ) is

of order n−
4
5 . This matches, up to log-factor, the lower bound on the minimax separation

rate given by Fromont et al. (2011) (see Section 2 within), showing that our test has minimax

optimal power up to log-factors in this setting. We conjecture that when λa−λb
λ

is Lipschitz,

our test is minimax optimal when q ≤ 4 and suboptimal when q > 4.

Next, we consider the testing procedure that combines all the p-values of the same res-

olution level by taking the minimum instead of using the Fisher combination function. The

next result is the analog of Theorem 3. However, the separation strength between λa and λb

is measured by taking the maximum among the regions rather than taking the sum.

Theorem 5. Let α, β ∈ (0, 1) and let C be a universal constant whose value is specified in

the proof. Assume that
∫
I
(R)
l
λdν ≥ 2 for all l ∈ [2R]. Assume there exists r ∈ [R] such that

1

4
max
l∈[2r]

(∫
I
(r)
l
λa − λbdν∫
I
(r)
l
λdν

)2 ∫
I
(r)
l

λdν ≥ 2r +
C1/2

β
+ 2 log

R

α
.

Then, we have that P(pM ≤ α) ≥ 1− 2β.

We give the proof of Theorem 5 in Section S2.3 of the Appendix. To more clearly see the

implication of Theorem 5, we consider a setting where |λa− λb| is non-zero possibly only on

a small region S. We show that, so long as the hierarchical partition is chosen so that each
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split divides the volume equally, the minimum combination method will have non-trivial

power. The following result is an analog of Theorem 4.

Theorem 6. Let X ⊂ R be an interval and let S ⊂ X be a sub-interval. Let {I(r)
l }r∈[R] be a

dyadic partition of X such that R = blog2
n
2
− log2

λmax
λmin
c and that for all r ∈ [R] and l ∈ [2r],

ν(I
(r)
l ) = ν(X )2−r. Suppose that 0 < cmin ≤ λ ≤ cmax < ∞ and that

∫
I
λdν = n. Suppose

that
∣∣λa(x)−λb(x)

2λ(x)

∣∣ ≥ δS > 0 for all x ∈ S and also that ν(S)
ν(X )
≥ cmax

cmin

8
n

.

For any α, β ∈ (0, 1), if

δ2
S

ν(S)

ν(X )
≥ C2

n

(
log n+ β−1 + log

1

α

)
(4.30)

for C2 > 0 dependent only on cmax/cmin, then we have that P(pM ≤ α) ≥ 1− 2β.

We give the proof of Theorem 6 in Section S2.4 of the Appendix. We note that Theorem 6

does not require any smoothness on the difference λa−λb; it only requires that the difference

is at least δS in magnitude on the region S.

Remark 7. Although our theoretical results are developed for the two-sample test, the high

level proof strategy may be applicable for analyzing the power of longitudinal network tests

as well. The main difficulty however is that, when analyzing all the l ∈ [2r] bins at high

resolution level r, many of the bins may have very small signal strength but nevertheless

cannot be ignored because on aggregate, they contribute to the overall separation from the

null hypothesis. In Theorem 3, we handle the low signal bins through a careful analysis of

the tail probability of the binomial distribution (see Lemma 6 and 7 in Section S2.5 of the

appendix). Extending this step to the longitudinal network setting is a nontrivial problem

which we leave to a future work.
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5. Experimental studies

5.1 An illustrative example
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(a) Intensity functions λa, λb
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(b) Realizations Na(·), Nb(·)

Figure 2: Example of a two-sample test setting

We begin with a single example for the two-sample test to give a concrete illustration of

our testing procedure. We let the two intensity functions be λa(x) = 5501[0,1] and λb(x) =

550 + 275 sin(4π(x − 1/4))1[1/4,3/4]; see Figure 2a. We take our hierarchical partition I to

have R = 3 resolution level by dyadic splitting so that I
(1)
1 = [0, 1/2] and I

(1)
2 = [1/2, 1]. We

see then that H
(2,1)
0 and H

(2,4)
0 are true since λa = λb on the regions [0, 1/4] and [3/4, 1]. We

generate two point process realizations and show them in Figure 2b.

We then perform our testing procedure with B = 1000 resampling draws and display the

final simultaneously valid p-values {p(s,j)
F } in Figure 3. We see that, at level α = 0.05, we cor-

rectly reject the global null H
(0,1)
0 . Moreover, we correctly reject the local nulls H

(1,0)
0 , H

(1,1)
0

at resolution level r = 1 and the the local nulls H
(2,2)
0 , H

(2,3)
0 at resolution level r = 2. At

resolution level r = 3, we reject H
(3,4)
0 , H

(3,5)
0 but missed H

(3,3)
0 , H

(3,6)
0 . This is not unexpected

since the multiple testing adjustment makes it rather difficult to reject hypotheses at the

most granular resolution level.
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5.2 Simulation for the two-sample test

0.000

p
(0,1)
F

0.003

p
(1,1)
F

1

p
(2,1)
F

1 0.44

0.004

p
(2,2)
F

0.664 0.000

0.001

p
(1,2)
F

0.000

p
(2,3)
F

0.002 0.078

1

p
(2,4)
F

1 1

Figure 3: Outputted simultaneously valid p-values. Bold indicates rejection at α = 0.05.

5.2 Simulation for the two-sample test

Next we provide simulations results of our proposed test for the two-sample problem. We

Let Na(·) and Nb(·) be two Poisson point processes on X = [0, 1], with intensity functions

λa(·) and λb(·) respectively. In Section S3.1 of the appendix, we verify that our tests have the

desired type I error. Here, we study the power of our proposed test. For comparison with our

proposed test, we also present simulations results of other two-sample testing procedures.

The first is the kernel-based test proposed in Gretton et al. (2012) and Fromont et al. (2013).

Recall that we can characterize Na = {Xi : Mi = 1} and Nb = {Xi = −1}, then for any

symmetric kernel function K : X × X −→ R, the test statistic of the kernel-based test is

given by Tkernel =
∑

i6=j∈[N ] K(Xi, Xj)MiMj. There are many choices of the Kernel but in this

simulation we use the Gaussian kernel K(Xi, Xj) := exp
{
− (Xi−Xj)

2σ2

}
which is shown to have

good performance in practice by Fromont et al. (2013). We also consider the conditional

Kolmogorov-Smirnov test for performance comparison, which is commonly used for two-

sample problems. We again apply Monte-Carlo method to approximate the exact p-value

of these two tests. In total, we consider 5 different tests denoted by MF, MM, KN1, KN2,

KS, where MF and MM represent our multi-scale binning test with Fisher combination and

minimum combination respectively. The tests KN1, KN2 represent the Gaussian kernel test
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5.2 Simulation for the two-sample test

with parameter σ = 0.5 and σ = 0.1 of the kernel function. The test KS represents the

conditional Kolmogorov-Smirnov test.

We let λa(·) be a constant function and λb(·) be a piecewise constant function given below

λa(x) = 50 · 1[0,1](x), λb(x) = 50
(
(1− p) · 1[1, 1

4
](x) + (1 + p) · 1( 1

4
, 1
2

](x) + 1( 1
2
,1](x)

)
.

For each p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, we perform 1000 repetitions and use 500 resampling

draws in each repetition. In Figure 4, we plot the empirical power, i.e., the proportion of

rejections out of the 1000 simulations for each of the five tests in previous experiments, at

three different levels α = 0.01, 0.05, 0.10.

Figure 4: The proportion of rejections of the five tests out of 1000 simulated samples under

different signal strength. Left: level α = 0.01. Center: level α = 0.05. Right: level α = 0.10

.

At all three levels, We can see that the kernel based test with large bandwidth has very

bad performance which is not surprising since the large bandwidth smooths the difference

between the two Poisson realizations. The other four tests have similar number of rejections

when the signal is relatively weak while as the value of p becomes larger, the MF and MM

test, i.e., our multi-scale binning test with Fisher and Minimum combination dominates the

K-S test and kernel based tests.
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5.3 Simulation study of array test

5.3 Simulation study of array test

Next we study tests for degree-corrected longitudinal networks described in Section 3.2. We

provide the results on the non-degree-corrected setting in Section S3.2 of the appendix.

5.3.1 Testing degree-corrected longitudinal networks

We generate a degree corrected longitudinal network with K = 2 communities and n nodes;

we generate community membership σ so that the first n/2 nodes are in community 1 and

the second half are in community 2. To generate the degree correction parameter θ, we first

create unnormalized θ̃ ∈ [0,∞)n and then set θu = s · θ̃u‖θ̃‖ for a fixed sparsity parameter s so

that ‖θ‖ = s. We generate the interactions between u, v as

Nuv(·) ∼


PP(λa · θuθv), σu = σv,

PP(λb · θuθv), σu 6= σv,

where λa is the within-community intensity function and λb is the between-community in-

tensity function.

We first empirically verify the null distribution of T (r,`) and Q(r,`) – the SgnT (3.21) and

SgnQ (3.22) test statistics for each discretized local null. We set n = 1000 number of nodes,

s = 100 sparsity level, and let θ̃u = u for each u ∈ [n]. We set λa = 1[0,1] and λb = p1[0,1]

where we let p ∈ {0.95, 0.975, 1} so that the null is either true or close to being true. For

each value of p, we generate 2000 longitudinal networks and reduce each to a single static

weighted network A such that Auv = Nuv([0, 1]). We then compute the centered, scaled SgnT

and SgnQ test statistics for A and plot their empirical distribution respectively in Figure 5.

Next we study the power of our proposed test. We set n = 100, s = 12, and consider

two levels of degree heterogeneity: (1) moderate degree heterogeneity with iid θ̃u ∼
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5.3 Simulation study of array test

Figure 5: Histogram of Signed Polygon test statistics with different values of p.

Unif(2, 3) and (2) severe degree heterogeneity with fixed θ̃u =
√
u. We let

λa(x) = s
x(1− x)4∫ 1

0
x(1− x)4dx

1[0,1](x), λb(x) = p · s x(1− x)4∫ 1

0
x(1− x)4dx

1[0,1](x).

We note that
∫ 1

0
λa = s and

∫ 1

0
λb = ps ≤ s so the expected total number of interaction

events in the network is at most s‖θ‖2 = s3 = 1728, which implies that the network is

relatively sparse. To study the power of our proposed test at different signal strength, we

let p vary within the set {0.6, 0.7, 0.8, 0.9, 1.0}. We let the number of resolution levels R

be equal to 4 and let I(r,`) := [ `−1
2r
, `

2r
) ⊂ X be the discretized intervals for l ∈ [2r], r ∈

{1, 2, 3, 4}. For each experiment, we create B = 400 resampling draws using the Metropolis-

Hastings algorithm described in Section 3.2.3 to derive the adjusted p-values. We perform

the proposed multiscale binning test for the global null using both SgnT and SgnQ test

statistics and summarize the empirical proportion of rejections out of the 200 experiments

under the two degree heterogeneity levels in Table 1 and Table 2 respectively.

We observe that tests based on either the SgnT or the SgnQ test statistic have the desired

type I error control. The SgnQ test however has higher power in all the settings that we
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5.4 Traffic collision data

have studied. We also see that the severity of degree heterogeneity negatively affects the

power of our testing procedure.

SgnT SgnQ

p 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

α = 0.01 0.98 0.15 0.02 0 0 0.84 0.77 0.11 0.02 0.01
α = 0.05 0.99 0.41 0.07 0.05 0.03 1 0.95 0.15 0.07 0.04
α = 0.10 0.99 0.59 0.11 0.10 0.06 1 0.97 0.22 0.09 0.05
α = 0.25 0.99 0.84 0.27 0.23 0.22 1 0.99 0.35 0.19 0.23

Table 1: The proportion of rejections of the proposed array test under moderate degree
heterogeneity level, where θ̃u ∼ Unif(2, 3).

SgnT SgnQ

p 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

α = 0.01 0.37 0.03 0.01 0 0 0.95 0.19 0.02 0.02 0
α = 0.05 0.64 0.15 0.08 0.05 0.06 0.96 0.35 0.06 0.05 0.04
α = 0.10 0.80 0.29 0.14 0.09 0.12 0.98 0.43 0.13 0.11 0.08
α = 0.25 0.95 0.52 0.29 0.26 0.22 1 0.61 0.23 0.22 0.25

Table 2: The proportion of rejections of the proposed array test under severe degree hetero-
geneity level with fixed θ̃u =

√
u.

5.4 Traffic collision data

We conduct the two-sample test using data derived from motor vehicle collision events in

New York City recorded by the New York Police Department during January 2022. We

test whether there exists a significant difference between the occurrences of crash events on

Mondays and Saturdays during this period. To achieve this, we treat the time-stamps of the

collisions on Mondays and Saturdays as two realizations of Poisson Processes. Let I be the

time interval between 00:00 and 24:00 and with the number of resolution level R = 4, we

evenly partition I by dyadic splitting such that I
(1)
1 = [00 : 00, 12 : 00), I

(2)
1 = [12 : 00, 24 :

00) and so on. we provide a barplot of the number of collision events within each discretized
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5.4 Traffic collision data

interval at the most granular resolution level, see Figure 6. We can see that the distribution

of collisions are very similar on Mondays and Saturdays from noon to midnight. However,

in the morning, there are many more collisions happening on Monday on Saturday. On the

other hand, in late night, collisions are more frequent on Saturday than on Sunday.
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Figure 6: Number of NYC collisions on Mondays and Saturdays at different time of day.
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Figure 7: Simultaneously valid p-values for testing NYC collision occurrences at Mondays
and Saturdays. Bold indicates rejection at level α = 0.05

We perform the proposed testing procedure with 1000 bootstrap samples and use the

Fisher combination method to combine p-values at the same resolution level. We provide

the tree of valid p-values in Figure 7. At level α = 0.05, we reject the global null H
(0,1)
0 ,
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5.5 Primates interaction data

which make sense as the two occurrences data do have different patterns. Notice that we also

successfully rejected the local nulls H
(4,2)
0 , H

(4,3)
0 and H

(4,6)
0 , where the difference in number

of occurrences are among the largest at the resolution level r = 4. Although we see from

Figure 6 that the number of collisions are different around midnight, we are not able to reject

the corresponding local null H
(4,16)
0 due to the sequential testing adjustment.

5.5 Primates interaction data

In this study, we analyze a network of pairwise interactions within a group of 13 Guinea

baboons residing in an enclosure at a Primate Center in France starting from June 13th,

2019 (Gelardi et al., 2020). The dataset was gathered using wearable proximity sensors

attached to leather collars worn on the front side of the 13 baboons. These sensors uti-

lized low-power radio communication, exchanging packets when the distance between two

baboons was approximately less than 1.5 meters. The collected data was aggregated with

a temporal resolution of 20 seconds, defining interaction between two individuals if their

sensors exchanged at least one packet during a 20-second interval. We consider here mainly

three days of data collected between July 8th and July 10th 2019, capturing a total of 6458

interactions among the 13 baboons. To better analyze how the network evolves over the

course of a typical day, we aggregate the interactions across all the days so that each inter-

action has only the hour/minute/second information. We notice that the degrees are quite

heterogeneous and thus believe that a degree corrected model is best suited for the analysis.

We perform the multi-bining test using SgnQ statistics with boot strap sample size B =

600 and number of resolution number R = 4 and the intervals are evenly discretized between

5:30AM and 10:00PM. At the most granular level, each bin corresponds to approximately 1

hour. We provide the the tree of simultaneous valid p-values in Figure 9. At level α = 0.05,
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5.5 Primates interaction data

Figure 8: Subgraphs of baboon interaction network at different times of day. Left: Inter-
actions in the morning between 6:48AM and 7:48AM. Center: In the afternoon between
3:53PM and 4:53PM. Right: At night between 7:55PM and 8:55PM.
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Figure 9: Simultaneously valid p-values for testing baboons interaction network. Bold indi-
cates rejection at level α = 0.01

our testing procedure reject the global null and all the local nulls at resolution level r = 1, 2, 3.

Notice that there are three local nulls H
(4,10)
0 , H

(4,11)
0 , and H

(4,15)
0 at resolution level r = 4

that our test failed to reject. We display the discretized networks that correspond to these

two of these intervals in Figure 8. We also display another instance where we do reject the

null as a comparison. We see that the results make sense based on the visualization since

there appears to be 3 distinct clusters ({Violette, Mosphere, Harlem}, {Petoulette, Pipo,

Kali}, and others) for the morning interaction graph.
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