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Abstract: Generalized Linear Mixed Models (GLMMs) are widely used for analysing

clustered data. One well-established method of overcoming the integral in the

marginal likelihood function for GLMMs is penalized quasi-likelihood (PQL) es-

timation, although to date there are few asymptotic distribution results relating

to PQL estimation for GLMMs in the literature. In this paper, we establish

large sample results for PQL estimators of the parameters and random effects in

independent-cluster GLMMs, when both the number of clusters and the cluster

sizes go to infinity. This is done under two distinct regimes: conditional on the

random effects (essentially treating them as fixed effects) and unconditionally

(treating the random effects as random). Under the conditional regime, we show

the PQL estimators are asymptotically normal around the true fixed and random

effects. Unconditionally, we prove that while the estimator of the fixed effects is

asymptotically normally distributed, the correct asymptotic distribution of the

so-called prediction gap of the random effects may in fact be a normal scale-

mixture distribution under certain relative rates of growth. A simulation study

is used to verify the finite sample performance of our theoretical results.
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1. Introduction

Generalized linear mixed models (GLMMs) are widely used in statistics to

model relationships in clustered and correlated data (McCulloch and Searle,

2004). As the marginal likelihood function of GLMMs, except for normally

distributed responses with the identity link, contains an intractable integral,

many methods have been developed to estimate and perform inference for

the parameters in a computationally efficient manner. These include the

Laplace approximation, Gauss-Hermite quadrature, and variational approx-

imations, among others (McCulloch and Searle, 2004; Ormerod and Wand,

2012; Brooks et al., 2017). A connected and well-established approach is

penalized Quasi-Likelihood (PQL) estimation (Breslow and Clayton, 1993).

As one of the first methods to circumvent the intractable integral, PQL esti-

mation has seen a resurgence in modern statistics as a very computationally

efficient method for high-dimensional multivariate GLMMs (e.g., Hui, 2020;

Kidziński et al., 2022). However, despite its long history, large sample dis-

tributional results for PQL estimation in mixed models are scarce.

The most often studied asymptotic results for maximum likelihood es-
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timators of GLMMs are based on increasing the number of clusters while

keeping the size of each cluster fixed or bounded (McCulloch and Searle,

2004; Nie, 2007). Asymptotic results when both the cluster size and number

of clusters grow are less developed, although some results for the maximum

likelihood estimator as well as the empirical best linear unbiased predictor

(EBLUP) for the linear mixed model (LMM) have been developed; see Lyu

and Welsh (2021a,b) and references therein. Recently, Jiang et al. (2022)

proved an asymptotic normality result for a maximum quasi-likelihood es-

timator of the fixed parameters, which is different from the PQL estimator,

for independent-cluster GLMMs.

This work is distinct from the above results: compared to Lyu and

Welsh (2021a,b) we consider a more general random effects structure that

permits random slopes in GLMMs. Meanwhile, Jiang et al. (2022) con-

sidered GLMMs but not the case when cluster sizes grow faster than the

number of clusters; nor did they present results for predictors of random ef-

fects, both of which are considered in this article. Furthermore, we establish

results for the prediction gap in GLMMs, which are new to the literature

and allow unconditional inference to be performed for the random effects

(noting unconditional inference for random effects in LMMs has been con-

sidered previously in a very different way through the unconditional mean
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squared error of prediction, Kackar and Harville, 1984; Prasad and Rao,

1990). Note for the PQL estimator specifically, Vonesh et al. (2002), Hui

et al. (2017) and Hui (2020) demonstrated estimation consistency under in-

creasing cluster size and number of clusters, but did not develop any large

sample distributional results.

It is important to remark that when cluster sizes do not increase, PQL

is known to be asymptotically biased (e.g., Breslow and Lin, 1995). As

such, increasing both the number of clusters and cluster size is a neces-

sary condition for the PQL estimator to be consistent. Indeed, increasing

number of clusters and cluster size is necessary for the consistency of other

estimators such as the Laplace estimator (Ogden, 2017; Hui, 2020; Ogden,

2021). With this in mind, we develop our large sample distributional results

under this setting, with the precise rates of growth to be formalised later.

We note this asymptotic framework is relevant for many applications with

large cluster sizes e.g., educational studies with large numbers of students

(units) grouped within schools (clusters), and medical studies with large

groups (clusters) of patients (units) treated at different hospitals.

We derive our asymptotic results for the PQL estimator under two dis-

tinct sampling regimes. In the first, we condition on the random effects, i.e.

treat them as fixed effects, although we will still refer to them as random
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effects for consistency. In the second, unconditional regime, we allow the

random effects to be random. Conditional inference is appropriate when

hypothetical resampling occurs within the same observed clusters, while

unconditional inference may be more appropriate when (new) clusters are

sampled from some population. Importantly, we demonstrate the asymp-

totic distributional results for the two regimes differ markedly. Conditional

on the random effects we show the PQL estimator is asymptotically nor-

mally distributed around the true parameter values, with a convergence rate

of N1/2 (square root of the total number of observations) for the fixed effects

and n
1/2
i (square root of the cluster size of the ith cluster) for the random ef-

fects (which are now also fixed parameters). We find that when a variable is

included as both a fixed and random effect covariate, the PQL estimator is

asymptotically normally distributed around a sum-to-zero reparametrized

version of the estimand. Unconditionally, we demonstrate the asymptotic

normality of the PQL estimator for the fixed effects around the true values,

but with a slower convergence rate of m1/2 (square root of the number of

clusters). Furthermore, we demonstrate that the “prediction gap” i.e., the

difference between the PQL estimator of and the true random effect, is not

in general asymptotically normally distributed; instead, it follows a normal

scale-mixture when m grows faster than ni.
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Our results have important implications for inference in GLMMs. There

is a choice of whether conditional or unconditional inference is desired, with

different asymptotic distributions needing to be applied in each case. Also,

the potential asymptotic non-normality of the prediction gap has conse-

quences in practice, since normality is often assumed when constructing

prediction intervals for the random effects in GLMMs (Bates et al., 2015;

Brooks et al., 2017). The theoretical results in this paper offer an impor-

tant step towards more formal, rigorous asymptotic inference using PQL

estimation (and perhaps other similar estimators) for GLMMs.

The structure of the article is as follows. In Section 2, we introduce

GLMMs and PQL estimation. In Sections 3 and 4, we present and develop

our asymptotic framework and results for the conditional and unconditional

regimes. In Section 5, we present results from a simulation study which

empirically verify our large sample developments. Finally, in Section 6 we

discuss the implications of our results.

2. Generalized Linear Mixed Models

We study the independent-cluster generalized linear mixed model defined

as follows. Let yij denote the jth measurement of cluster i, xij denote a

vector of pf fixed effect covariates, and zij denote a vector of pr random
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effect covariates, for j = 1, . . . , ni, and i = 1, . . . ,m. Let N =
∑m

i=1 ni,

n = m−1N , nL = min1≤i≤m ni, and nU = max1≤i≤m ni. The m clus-

ters are independent of each other. Conditional on a pr-vector of random

effects ḃi, where the dot above any quantity is used to denote its true

value (or that it is evaluated at the true parameter values), the responses

yij from cluster i are assumed to be independent observations from the

exponential family with mean µ̇ij and dispersion parameter ϕ̇. That is,

f(yij|β̇, ḃi, ϕ̇) = exp [ϕ̇−1{yijϑ̇ij − a(ϑ̇ij)} + c(yij, ϕ̇)], for known functions

a(·), c(·), and g(·) satisfying g(µ̇ij) = g{a′(ϑ̇ij)} = η̇ij = x⊤
ijβ̇ + z⊤

ij ḃi,

where β̇ denotes a pf -vector of true fixed effect coefficients, and η̇ij the

corresponding true linear predictor. For ease of development, we assume

that the canonical link is used, so that ϑ̇ = η̇. Commonly used distribu-

tions within the exponential family include the normal, Poisson, binomial

and gamma distributions. The true realised random effects ḃi are indepen-

dently and identically distributed (i.i.d.), drawn from a multivariate normal

distribution with zero mean vector and unstructured pr×pr random effects

covariance matrix Ġ. That is, ḃi
i.i.d.∼ N(0, Ġ).

Write Xi = [xi1, . . . ,xini
]⊤, and Zi = [zi1, . . . ,zini

]⊤, so we can con-

catenate the means across the measurements for each cluster to obtain

g(µ̇i) = Xiβ̇+Ziḃi for µ̇i = (µ̇i1, . . . , µ̇ini
)⊤, where g(µ̇i) denotes applying
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the link function g(·) to µ̇i component-wise. We can further concatenate

across clusters and write g(µ̇) = Xβ̇ + Zḃ, with µ̇ = (µ̇⊤
1 , . . . , µ̇

⊤
m)

⊤,

X = [X⊤
1 , . . . ,X

⊤
m]

⊤, Z = bdiag(Z1, . . .Zm), and ḃ = (ḃ⊤1 , . . . , ḃ
⊤
m)

⊤.

Here, bdiag() is the block-diagonal matrix operator, X is of dimension

N × pf , and Z is an N ×mpr sparse block-diagonal matrix, with at most

pr non-zero components per row, and at most nU non-zero components per

column.

Let yi = (y11, . . . , y1ni
)⊤ and y = (y⊤

1 , . . . ,y
⊤
m)

⊤. Then the marginal

log-likelihood function for the independent-cluster GLMM is given by

ln f(y|β, ϕ,G) =
m∑
i=1

ln

∫ ( ni∏
j=1

f(yij|β, bi, ϕ)

)
f(bi|G) dbi. (2.1)

The above integral is not available analytically except in the special case of

a normal response with an identity link function. Let θ = (β⊤, b⊤)⊤ denote

the full vector of fixed and random effects. Then for a given G and ϕ, the

PQL objective function for an independent-cluster GLMM is defined as

Q(θ) =
m∑
i=1

ni∑
j=1

ln f(yij|β, bi, ϕ)−
1

2

m∑
i=1

b⊤i G
−1bi, (2.2)

and the PQL estimator is defined as θ̂ = argmax
θ

Q(θ). As there are no

integrals in (2.2), the computational cost of PQL estimation is low relative

to standard maximum likelihood estimation (Breslow and Clayton, 1993).
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Note for normal linear mixed models, the integral in the likelihood already

possesses an analytical solution when an identity link is used, and PQL

estimation is equivalent to the mixed model equations of Henderson (1973)

assuming the error variance is known.

The PQL procedure provides explicit estimators of both the fixed and

random effects. The latter is practically useful since the random effects play

an important implicit role in fitting and using the GLMM. For instance, the

realised values of the random effects (or functions thereof) are often im-

portant in prediction problems such as small-area estimation (Jiang, 2003;

Pfeffermann, 2013), while the empirical distribution of the random effects

estimators is often examined in model diagnostics (Hui et al., 2021). On

the other hand, (2.2) alone does not incorporate estimation of the random

effects covariance matrix. From a theoretical standpoint, existing papers on

large sample theory for PQL and related objective functions have assumed

Ġ is known for the purposes of asymptotic development (e.g., Vonesh et al.,

2002; Nie, 2007). Practically speaking, several approaches have been sug-

gested to estimate Ġ when applying PQL, for example by using a working

LMM (Breslow and Clayton, 1993), the Laplace objective function (Hui

et al., 2017), or simply the sample covariance matrix of the estimated ran-

dom effects (Jiang et al., 2001). Indeed, Jiang et al. (2001) and Hui et al.
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(2017) demonstrated that the sample covariance of the estimated random

effects is a consistent estimator of Ġ under suitable regularity conditions.

In this article, we set G = Ĝ in (2.2), where Ĝ is a symmetric positive

definite matrix that is either non-stochastic or its inverse Ĝ−1 is stochasti-

cally bounded. Importantly, our large sample developments do not require

Ĝ to necessarily be a consistent estimator of the true random effects co-

variance matrix Ġ. For example, while we can use the estimators of Ġ

mentioned above, our theory also permits setting Ĝ to some fixed matrix

e.g., the identity matrix, say. Intuitively, this is because we develop our

large sample results for PQL estimation in such a way so as to do not de-

pend on the value of Ĝ itself (in a spirit similar to that of Jiang et al.,

2001; Fan and Li, 2012); only the true random effects covariance matrix Ġ

appears in our theorems.

We also adopt the above approach for the dispersion parameter in the

GLMM. That is, we set ϕ = ϕ̂ in (2.2), where ϕ̂ is a known constant or a

stochastically bounded term. In the Poisson and binomial distributions, ϕ̂

is set to its known true value ϕ̇ = 1. In cases where the true dispersion

parameter is unknown, we can use either a constant or one of the suggested

estimators of the dispersion parameter in the literature (e.g., a scaled sum

of squared conditional Pearson residuals). For the remainder of this article,
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and as discussed in Section 1, we focus on the fixed and random effects in

GLMMs. We do not discuss inferential properties of ϕ̇ and Ġ.

3. Conditional on Random Effects

In many applications of independent-cluster GLMMs e.g., for longitudinal

data, covariates included as random effects are also included as fixed effects

(Cheng et al., 2010). With this in mind, we develop our results under the

setting where all covariates are partnered i.e. included as both fixed and

random effects such that xij = zij for all (i, j) and pf = pr =: p. Next,

let A be a q × (m+ 1)p matrix with the finite selection property. That is,

for any row of A, there exists an m0 ∈ N such that the {(m0 + 1)p + 1}th

to {(m + 1)p}th components of the row are zero for all m > m0. All

components of A must have a component-wise limit, with at least one of

these limits being non-zero. We partition A into [Af ,Ar], where Af is of

dimension q × p and Ar is of dimension q × mp. Also, for an arbitrary

matrix C, let C[i:j,k:l] denote the sub-matrix comprising the ith to jth row

and kth to lth column of C and C[i,] and C[,j] denote the ith row and jth

column respectively. Similarly, for a vector c we let c[i:j] denote the sub-

vector formed by taking the ith to jth components; the quantity c[i] simply

denotes the ith component of c.
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Let µi(θ) = {a′(ηi1), . . . , a′(ηini
)}⊤, µ(θ) = {a′(η11), . . . , a′(ηmnm)}⊤,

Ẇi = ϕ̂−1diag{a′′(η̇i1), . . . , a′′(η̇ini
)} and Ẇ = ϕ̂−1diag{a′′(η̇11), . . . , a′′(η̇mnm)}.

Furthermore, write µ̇ij = a′′(η̇ij), µ̇i = µi(θ̇) and µ̇ = µ(θ̇), and let ⊗

denote the Kronecker product operator, Im denote the m×m identity ma-

trix, and 1m denote a matrix or vector of ones, with dimension indicated

by the relevant subscripts. Furthermore, let Dr = diag(n
1/2
1 1p, . . . , n

1/2
m 1p),

D = bdiag(N1/2Ip,Dr), D
∗ = bdiag(m1/2Ip,Dr), D

+ = m1/2I(m+1)p, and

define the two limiting quantities

Ω = lim
m,nL→∞

ϕ̇

ϕ̂
A bdiag

{
1

m

m∑
i=1

n

ni

(
X⊤

i ẆiXi

ni

)−1

,

(
X⊤

1 Ẇ1X1

n1

)−1

, . . . ,

(
X⊤

mẆmXm

nm

)−1}
A⊤,

Ωr = lim
m,nL→∞

ϕ̇

ϕ̂
ArDr

(
Z⊤ẆZ

)−1

D⊤
r A

⊤
r .

NoteΩ andΩr are not actually functions of ϕ̂, since ϕ̂ϕ̇
−1Ẇi = ϕ̇−1diag{a′′(η̇i1), . . . , a′′(η̇ini

)}

and similarly for Ẇ .

We consider the setting where both the minimum cluster size nL and

the number of clusters m grow to infinity, such that ni = O(nL) uniformly

for i = 1, . . . ,m. This implies for any i = 1, . . . ,m, we have ni = O(n),

n = O(ni), N = O(mni), and mni = O(N). This restriction on the growth

rates of the cluster sizes is commonly employed in asymptotic analysis of

PQL estimation (e.g., Vonesh et al., 2002). Additionally, we require the
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following regularity conditions.

(C1) The function a(η) is at least three times continuously differentiable in

its domain, with 0 < c0 ≤ a′′(η) ≤ c−1
0 < ∞ and |a′′′(η)| ≤ c−1

0 < ∞

for some sufficiently small constant c0.

(C2) For every i = 1, . . . ,m and j = 1, . . . , ni, there exists a sufficiently

large constant C1 such that ∥xij∥∞ < C1 where ∥·∥∞ is the maximum

norm. Furthermore, denote Ḣi = (n−1
i ϕ̂ϕ̇−1X⊤

i ẆiXi)
−1. Then for

all i = 1, . . . ,m, the matrices limni→∞ Ḣi = K̇i and limm,nL→∞ m−1
∑m

i=1 nn
−1
i Ḣi =

K̇ are positive definite with minimum and maximum eigenvalues

bounded from above and below by c−1
1 and c1 respectively, for a suf-

ficiently small constant c1.

(C3) The vector of true parameters θ̇ = (β̇⊤, ḃ⊤)⊤, where ḃ = (ḃ⊤1 , . . . , ḃ
⊤
m)

⊤,

is an interior point in some compact set Θ ⊂ R(m+1)p.

(C4) The working matrix Ĝ is positive definite, and its inverse is Op(1).

Also, the working quantity ϕ̂ is strictly positive and Op(1).

(C5) For all i = 1, . . . ,m and ni ∈ N, it holds that E([n
1/2
i (X⊤

i ẆiXi +

Ĝ−1)−1{ϕ̂−1X⊤
i (yi − µ̇i) − Ĝ−1ḃi}]4) < ∞, where the power and

expectation are applied component-wise.
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3.1 Main Result for the Conditional Regime

Conditions (C1) - (C3) are needed to guarantee the existence and reg-

ular behavior of the asymptotic variance for the PQL estimating function,

and to establish a Lindeberg condition needed to obtain a central limit

theorem. Condition (C4) is required to ensure that the shrinkage of the

random effects is asymptotically negligible, and formalises our discussion

of Ĝ and ϕ̂ at the end of Section 2. Condition (C5) is needed to bound

the order of ∥θ̂ − θ̇∥∞, and is satisfied by many distributions e.g. Poisson

and binomial, when the random effects are normally distributed (see also

van de Geer and Müller, 2012).

For the remainder of this section, we consider the regime where we

condition on the random effects, so that θ̇ is a (m+1)p-vector of constants.

The assumptions and conditions outlined above however will be applied to

both the conditional and unconditional regime.

3.1 Main Result for the Conditional Regime

Let 1∗
m = (−1,1⊤

m)
⊤. Then we have the following:

Theorem 1. Assume Conditions (C1) - (C5) are satisfied and mn−1
L → 0.

Then as m,nL → ∞, and conditional on the true vector of random effects

ḃ, it holds that

(a) ∥θ̂ − (θ̇ − 1∗
m ⊗m−1

∑m
i=1 ḃi)∥∞ = op(1).
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3.1 Main Result for the Conditional Regime

(b) AD{θ̂ − (θ̇ − 1∗
m ⊗m−1

∑m
i=1 ḃi)}

D→ N(0,Ω).

The first part of the theorem establishes consistency for the PQL esti-

mator around a sum-to-zero reparametrized version of the true parameters

(see below for more discussion on the latter aspect). The block diagonal

structure of Ω in the second part of the theorem shows that conditional on

true random effects vector, the corresponding estimators are asymptotically

independent between clusters, and also asymptotically independent of the

fixed effects estimators.

We illustrate a few special cases of Theorem 1 using specific selection

matrices. First, suppose A = [Ip,0p×mp]. If
∑m

i=1 ḃi = 0p, then we obtain

AD(θ̂ − θ̇) = N1/2(β̂ − β̇)
D→ N(0, K̇) conditional on the random effects,

where K̇ is the limiting matrix defined in Condition (C2). Also, suppose

A = [0p, Ip,0p×(m−1)p]. Then from Theorem 1, we have AD(θ̂ − θ̇) =

n
1/2
1 (b̂1−ḃ1)

D→ N(0, K̇1), conditional on the random effects. The analogous

result holds for choosing any particular cluster. Finally, since the random

effects exhibit a slower convergence rate than the fixed effects, and noting

the asymptotic independence, then for an arbitrary p-dimensional constant

a we obtain n
1/2
i a⊤(β̂ + b̂i − β̇ − ḃi)

D→ N
(
0,a⊤K̇ia

)
; i = 1, . . . ,m,

conditional on the random effects. As an example, if the linear predictor

involves a fixed and random intercept and a fixed and random slope for
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3.1 Main Result for the Conditional Regime

a single covariate, then we set a = (1, xij)
⊤ and obtain n

1/2
i (η̂ij − η̇ij) =

n
1/2
i (β̂0 + b̂i0 + β̂1xij + b̂i1xij − β̇0 − ḃi0 − β̇1xij − ḃi1xij)

d→ N(0,a⊤K̇ia).

For statistical inference, we can appeal to Slutsky’s Theorem and re-

place K̇i with Ĥi, and K̇ with m−1
∑m

i=1 nn
−1
i Ĥi. Here Ĥi is defined as

(n−1
i X⊤

i ŴiXi)
−1 where Ŵi = ϕ̃−1diag{a′′(η̂i1), . . . , a′′(η̂ini

)} for some con-

sistent estimator of the dispersion parameter ϕ̃ e.g., based on the inverse

scaled sum of squared conditional Pearson residuals. Theorem 1 then pro-

vides a straightforward way to construct confidence intervals, say, for all the

parameters and combinations thereof. In fact, the forms of these intervals

are similar to standard results in (penalized) GLMs(McCulloch and Searle,

2004): this is not surprising given we are working conditional on the true

vector of random effects. say.

Finally, note the PQL estimator is consistent for a sum-to-zero reparametrized

version of the true parameters. This occurs because the PQL estimators

of the random effects must satisfy a sum-to-zero constraint regardless of

the underlying true parameter values, and under a conditional regime, this

induces an asymptotic bias 1∗
m⊗ (m−1

∑m
i=1 ḃi) in Theorem 1, which can be

interpreted as shifting the mean of the random effects into the correspond-

ing fixed effects. We offer more discussion around this asymptotic bias in

the supplementary material.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4. Unconditional Regime

We now turn to establishing results under an unconditional regime i.e.,

treating ḃi’s as random instead of conditioning on them. This has two main

implications. First, in the unconditional setting the quantity m−1
∑m

i=1 ḃi

is no longer deterministic and should not be treated as a bias term. Instead,

it is of order Op(m
−1/2), and so competes with other leading terms in the

relevant Taylor expansion to be the dominating term. This results in a

reduction of the rate of convergence for the fixed effects estimator, from

N1/2 in the conditional regime to m1/2 in the unconditional regime. Second,

in contrast to the conditional regime, the observations within the same

cluster are no longer independent. This has ramifications when applying

the central limit theorem to establish asymptotic multivariate normality. In

Section 4.1, we provide a simple but insightful example based on a Poisson

random intercept model, which demonstrates that the prediction gap is not

always asymptotically normally distributed.

The two approximations below, derived from the Taylor expansion of

the PQL objective function, will be central to understanding the large sam-

ple developments we make on a more intuitive level. For a given ϕ̂, we have
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4.1 Prediction Gap - Counterexample

β̂ − β̇ = m−1

m∑
i=1

ḃi + op(1) (4.3a)

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi + (Z⊤ẆZ)−1{ϕ̂−1Z⊤(y − µ̇)}+ op(1).

(4.3b)

We will refer to both equations in the discussion of the theorems to be

presented later on.

4.1 Prediction Gap - Counterexample

We offer a motivating and insightful example to illustrate that the pre-

diction gap is not, in general, asymptotically normally distributed. This

example also offers a simple case where Xi ̸= Zi, and offers an interesting

comparison to the theory established under the assumption of Xi = Zi.

Consider a Poisson random intercept model with canonical log link.

That is, the true model is given by f(yij|ḃi) = exp(yij η̇ij − µ̇ij)/(yij!) with

ln(µ̇ij) = η̇ij = ḃi, and ḃi
i.i.d.∼ N(0, σ̇2

b ). Assume a working σ̂2
b , and apply

PQL estimation to estimate the random effects bi for i = 1, . . . , n. For

simplicity, we also assume a balanced design, such that ni = n for all

i = 1, . . . ,m. Then it is possible to show (see the supplementary material

for the formal derivation) that when mn−2 → 0, the prediction gap of the
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4.2 Fixed Effects

first cluster b̂1 − ḃ1 satisfies

n1/2(b̂1 − ḃ1) = n−1/2

n∑
j=1

{y1j exp(−ḃ1)− 1}+ op(1). (4.4)

Therefore, we obtain b̂1 = ḃ1 + op(1), and similarly for each cluster i =

1, . . . ,m. When conditioned on ḃ1, n
−1/2

∑n
j=1{y1j exp(−ḃ1) − 1} is a nor-

malised sum of independent random variables. Unconditionally however,

the sum consists of an exchangeable collection of uncorrelated but depen-

dent random variables with mean zero and finite non-zero variance. Using

the central limit theorem for exchangeable random variables (Blum et al.,

1958), it can be subsequently be shown that the quantity n−1/2
∑n

j=1{y1j exp(−ḃ1)−

1}, and hence n1/2(b̂1 − ḃ1), is not asymptotically normally distributed.

With the above example in mind, we now state the main results for the

unconditional regime.

4.2 Fixed Effects

We have the following result for the PQL estimator of the fixed effects under

an unconditional regime.

Theorem 2. Assume Conditions (C1) - (C5) are satisfied, and mn−2
L → 0.

Then as m,nL → ∞ and unconditional on the random effects ḃ, it holds

that m1/2(β̂ − β̇)
D→ N(0, Ġ).
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4.2 Fixed Effects

This result should not be too surprising given the form of (4.3a). Fur-

thermore, the rate of convergence and asymptotic distribution coincides

with the result obtained by Jiang et al. (2022) for the partnered fixed effects

for the quasi-maximum likelihood estimator. More importantly, Theorem

2 allows practitioners to straightforwardly perform statistical inference for

the fixed effects, so long as mn−2
L → 0. Although Ġ is not known, we can

appeal to Slutsky’s theorem and replace it with a consistent estimator (e.g.,

the sample covariance matrix of the estimated random effects). Theorem

2 contrasts with Theorem 1 derived under the conditional regime, where

mn−1
L → 0 is required but the convergence rate is N1/2. This reduction in

the rate of convergence arises because the leading term in the Taylor expan-

sion is different: in the unconditional regime, it is simply the normalised

sum of random effects over all the clusters, and thus its variability is domi-

nated by the term m−1/2
∑m

i=1 ḃi. However, this term is deterministic in the

conditional regime, and serves to enforce a sum-to-zero constraint instead

as discussed in Section 3. Generally speaking, the Taylor expansion can

be interpreted as comprising terms which either capture the stochasticity

in the random effects vector ḃ, or the stochasticity in responses yij given

the random effects. These terms compete with each other, and which one

dominates depends on the relative rates of m and ni. This intricacy in the
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4.3 Estimators of the Random Effects

nature of the results will be made apparent in our results for the prediction

gap in Section 4.4.

4.3 Estimators of the Random Effects

Next, we state a convergence result for the PQL estimators of the random

effects under the unconditional regime.

Theorem 3. Assume Conditions (C1) - (C5) are satisfied and mn−2
L → 0.

Then as m,nL → ∞ and unconditional on the random effects ḃ, it holds

that Ar(b̂− ḃ)
P→ 0q .

Practically, Theorem 3 confirms the asymptotic distribution of a finite

subset of the PQL estimators is the distribution of the random effects them-

selves. This can play a useful role for helping to validate the examination

of the empirical distribution of PQL estimators b̂ as a model diagnostic

tool. For instance, if the random effects are normally distributed and Ar

only selects the first cluster, then we would expect b̂1 to have an approxi-

mate N(0, Ġ) distribution. On the other hand, Theorem 3 does not help us

when it comes to performing likelihood-based inference for the true random

effects ḃ, as this does not appear in the approximation b̂1 ∼ N(0, Ġ) itself.

As an aside, note the above means we can apply the continuous mapping

theorem and show that q−1
∑q

i=1 b̂ib̂
⊤
i − q−1

∑q
i=1 ḃiḃ

⊤
i

P→ 0 for any q ∈ N.
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4.4 Prediction Gap

Since q−1
∑q

i=1 ḃiḃ
⊤
i

P→ Ġ as q → ∞, this further reiterates the use of a

sample covariance matrix of the estimated random effects as an estimator

of Ġ (consistent with Jiang et al., 2001; Hui et al., 2017).

4.4 Prediction Gap

In this section, we present a result for the large sample distribution of a

finite subset of the prediction gap, b̂ − ḃ, in the unconditional regime. As

mentioned above, the asymptotic distribution as well as the convergence

rate of the prediction gap depends on the relative rates of growth of m and

ni. This contrasts with the conditional regime, where there is no dependence

on the relative rate and the PQL estimator of the random effects is always

normally distributed with the convergence rate n
1/2
i .

We first introduce some terminology. Suppose we have two arbitrary

continuous cumulative distribution functions (cdfs) F1 and F2 with sup-

ports in Rp. Then we define the convolution of F1 and F2, denoted F1 ∗F2,

as (F1 ∗ F2)(z) =
∫
Rp F1(z − τ )dF2(τ ). Next, for a random variable P , we

say P ∼ mixN{µ(b),Σ(b), Fb} if P |b ∼ N{µ(b),Σ(b)} and Fb is the cdf

of b, where the conditional mean vector µ(b) and covariance matrix Σ(b)

may depend on b. In other words, P has cdf FP (p) =
∫
ΨP |b(p)dFb(b),

where ΨP |b is the cdf of N{µ(b),Σ(b)}. A special case of this normal
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4.4 Prediction Gap

scale-mixture distribution is when µ(b) and Σ(b) do not depend on b, so

that FP (p) =
∫
ΨP |b(p)dFb(b) = ΨP |b(p)

∫
dFb(b) = ΨP |b(p); in other

words, the normal scale-mixture distribution reduces to a normal distribu-

tion. Note estimators with asymptotic normal mixture distributions have

arisen in previous literature, for instance, on results relating to local asymp-

totic normality and non-ergodic models (Cam and Yang, 1988; Basawa and

Scott, 2012).

Using the above definition, we obtain the following results.

Theorem 4. Assume Conditions (C1)-(C5) are satisfied and mn−2
L → 0.

Then as m,nL → ∞ and unconditional on the random effects ḃ, for each

i = 1, . . . ,m we have the following:

(a) If mn−1
i → ∞, then n

1/2
i (b̂i − ḃi)

D→ mixN(0, K̇i, Fḃi
).

(b) If mn−1
i → γi ∈ (0,∞), then n

1/2
i (b̂i − ḃi)

D→ mixN(0, K̇i, Fḃi
) ∗

N(0, γ−1
i Ġ).

(c) If mn−1
i → 0, then m1/2(b̂i − ḃi)

D→ N(0, Ġ).

Corollary 1. Assume Conditions (C1)-(C5) are satisfied, and mn−2
L → 0.

If mn−1
L → ∞, then as m,nL → ∞ and unconditional on the random effects

ḃ, ArDr(b̂− ḃ)
D→ mixN(0,Ωr, Fḃ).
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4.4 Prediction Gap

Theorems 3 and 4 bears some similarity to the results of Lyu and Welsh

(2021a), who show for LMMs that the distribution of the EBLUP can

asymptotically be written as the convolution between the distribution of

the random effects and the distribution of a smaller order stochastic term.

However, the above is the first to establish such results for GLMMs. Theo-

rem 4 states that the correct asymptotic distribution to use when perform-

ing inference using the PQL estimate of the random effects depends on the

relative growth rates of m and ni. As hinted at previously, this is a con-

sequence of there being two competing terms in the corresponding Taylor

expansion (4.3b): one term arising from the random effects, and the other

term arising from the distribution of the responses given the random effects.

When mn−1
i → ∞ i.e., the number of clusters grows faster than the

cluster size, the appropriate asymptotic distribution is given by the scale-

mixture distribution mixN{0, (ϕ̂ϕ̇−1X⊤
i ẆiXi)

−1, Fḃi
}, noting again that

ϕ̂ϕ̇−1Ẇi = ϕ̇−1diag{a′′(η̇i1), . . . , a′′(η̇ini
)}. Corollary 1 offers a slightly more

general result than that given in Theorem 4 for the mn−1
L → ∞ case. Note

in the linear case, the GLM iterative weights Ẇ do not depend on the ran-

dom effects ḃ, and so the corresponding normal scale-mixture distribution

reduces to a normal distribution, consistent with the asymptotic normality

result derived for the EBLUP in Lyu and Welsh (2021a). Practically, nu-
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4.4 Prediction Gap

merical techniques or simulation are required to compute the quantiles of

the normal scale-mixture distribution for constructing prediction intervals.

We use this approach in our simulations in Section 5.

When mn−1
i → 0 i.e., the cluster sizes grows faster than the number of

clusters, Theorem 4 shows that the appropriate approximation to consider

is the normal distribution N(0, n−1Ġ). Note this is identical to the fixed

effects result of Theorem 2, and yields relatively straightforward prediction

intervals for ḃi as long as we have a consistent estimator for Ġ. Intuitively,

the asymptotic distribution here is identical to that derived in Theorem

2 because the dominating terms in the Taylor expansions in both cases

are effectively the same. Finally, when mn−1
i → γ ∈ (0,∞), Theorem 4b

states that the asymptotic distribution of the PQL estimates is given by

the convolution of the two cases above, noting that these two leading terms

in the Taylor expansion are asymptotically independent. Again, numerical

techniques/simulations are needed to compute prediction intervals.

In summary, Theorem 4 offers an asymptotically valid way of computing

prediction intervals for the realised random effects in the unconditional

regime, when the random effects have a corresponding partnered fixed effect

in the model. It implies that estimating the variance of the prediction

gap, and then naively assuming normality in order to construct prediction
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intervals for the random effects, will fail to yield asymptotically correct

inference under the unconditional regime for PQL estimation.

4.5 Linear Predictor

Neither Theorems 2 nor 4 above derive the joint distribution of the fixed

effects estimator and prediction gap, of which the linear predictor is a func-

tion. Below, to address this, we establish a separate result specifically for

the sum of a random effect and its partnered fixed effect, given an arbitrary

p-dimensional constant vector a.

Theorem 5. Assume Conditions (C1)-(C5) are satisfied, mn−2
L → 0, and

mn
−1/2
U → ∞. Then as m,nL → ∞ and unconditional on the random

effects ḃ, it holds for each i = 1, . . . ,m that n
1/2
i a⊤(β̂ + b̂i − β̇ − ḃi)

D→

mixN(0,a⊤K̇ia, Fḃi
).

As an example, consider again a linear predictor involving a fixed and

random intercept and a fixed and random slope for a single covariate. Then

we set a = (1, xij)
⊤ and obtain n

1/2
i (η̂ij−η̇ij) = n

1/2
i (β̂0+b̂i0+β̂1xij+b̂i1xij−

β̇0− ḃi0− β̇1xij − ḃi1xij)
d→ mixN(0,a⊤K̇ia, Fḃi

). For performing inference

on the linear predictor in a GLMM or functions thereof, Theorem 5 states

that we again need to employ the normal scale-mixture distribution. This

result differs from the asymptotic normality of the linear predictor derived
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under the conditional regime in Section 3. Note we can also develop a

similar result for the difference between the prediction gaps of two clusters,

and we refer to the supplementary material for details of this result.

To conclude the section, we remark that Theorems 2-5 do not offer

results on the joint distribution of the prediction gap and fixed effects.

However, we know from the associated proof that the prediction gaps for

each cluster are asymptotically independent from each other as well as from

the fixed effects estimator when mn−1
U → ∞ and mn−2

L → 0, and so a joint

distribution result can be derived from this.

5. Simulation Study

We performed a numerical study to assess the usefulness of our asymptotic

results in finite samples. We simulated data from an independent-cluster

GLMM with five fixed and random effect covariates, considering Poisson

and Bernoulli responses, as follows. First, we set the first component of

xij = zij equal to one to represent a fixed/random intercept. The second

and third components are simulated from a bivariate normal distribution

with mean zero and standard deviation one, with correlation equal to 0.5.

The fourth component is generated independently from a standard normal

distribution, and the last component is simulated from a Bernoulli distri-
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bution with a probability of success equal to 0.5. Next, we set the 5-vector

of true fixed effect coefficients to either β̇ = (2, 0.1,−0.1, 0.1, 0.1)⊤ for Pois-

son responses, or β̇ = (−0.1, 0.1,−0.1, 0.1, 0.1)⊤ for Bernoulli responses

and the 5 × 5 random effects covariance matrix in both cases to Ġ = I5.

Based on these true parameter values, we simulated the random effect co-

efficients ḃi
i.i.d.∼ N (0, Ġ). Finally, conditional on ḃi the responses yij were

generated from either a Poisson distribution with log link, or a Bernoulli

distribution with logit link. We varied the number of clusters as m =

{25, 50, 100, 200, 400} and the cluster sizes ni = n = {25, 50, 100, 200, 400},

noting we assumed equal cluster sizes in the simulation design for simplic-

ity For each combination of (m,n), we simulated 1000 datasets. For the

conditional regime, we simulated ḃ only once and conditioned on this for

all simulated datasets; for unconditional regime, we simulated a new ḃ for

each simulated dataset.

For each simulated dataset, we fitted the corresponding GLMM us-

ing PQL estimation, where we use the sample covariance matrix of the

estimated random effects as our update for Ĝ. That is, we iteratively max-

imize equation (2.2) with respect to β and b for a given Ĝ (noting ϕ̂ = 1 is

known for both these distributions), and update Ĝ as m−1
∑m

i=1 b̂ib̂
⊤
i , until

convergence.
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We assessed performance separately under the conditional and uncon-

ditional regimes. In the former, we examined the empirical coverage prob-

ability of 95% coverage intervals constructed for β and for b1 (the choice

of the first cluster is arbitrary). The intervals were constructed based on

Theorem 1, with the asymptotic covariance matrix Ω computed using the

true parameter values. We refer to such intervals as coverage intervals as

opposed to confidence intervals. We also performed Shapiro-Wilk tests on

the components of the (1000) realised PQL estimates of β and b1, in order

to assess the asymptotic normality of their respective sampling distribu-

tions. For the unconditional regime, we examined the empirical coverage

probability of 95% coverage intervals constructed from Theorems 2 and 4

respectively. Again, this was done for the fixed effect coefficients β and

the random effects for the the first cluster b1. To construct all intervals, we

used the true parameter values to compute the relevant asymptotic variance

(this was done solely to reduce the computational burden of the numerical

study), and, when required, obtained quantiles of relevant normal scale-

mixture distributions by directly simulating 10,000 samples from them. We

also performed Shapiro-Wilk tests on the components of the (1000) realised

values of β̂− β̇ and b̂1 − ḃ1. Finally, we examined histograms for the third

components of β̂−β̇ and b̂1− ḃ1, which are representative of the histograms
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5.1 Simulation Results

of the other components, as an additional method of assessing asymptotic

normality of the corresponding sampling distributions.

5.1 Simulation Results

For reasons of brevity, below we focus on results for the unconditional

regime. Results for the conditional regime are presented in the supple-

mentary material and largely support the use of Theorem 1 for inference.

For the unconditional regime, Figures 1 and 2 display the empirical

coverage probabilities and results from applying the Shapiro-Wilk test, re-

spectively. For the fixed effect coefficients, the coverage probabilities for

the intervals obtained based on Theorem 2 were relatively accurate across

most combinations of (m,n), with the exception of when (m,n) = (25, 25).

For the random effect coefficients, the coverage probabilities for intervals

calculated based on Theorem 4 approached the nominal coverage rapidly as

(m,n) increased for the Poisson response case, while for the Bernoulli case

convergence was slightly slower due to the reduced amount of information

per response.

The Shapiro-Wilk tests run were consistent with the conclusions reached

in Theorems 2–4. Specifically, PQL estimates of the fixed effect coefficients

generally did not exhibit signs of non-normality, but the difference between
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Figure 1: Empirical coverage probability of 95% coverage intervals for the
fixed and random effects, obtained under the unconditional regime.
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Figure 2: p-values from Shapiro-Wilk tests applied to the fixed and ran-
dom effects estimates obtained using maximum PQL estimation, under the
unconditional regime.

the estimators and true random effects displayed evidence of non-normality

except when n grew faster thanm. This is also supported by the histograms

in Figure 3 which show some evidence of higher kurtosis in the cases corre-

sponding to small p-values in the Shapiro Wilk test. The histograms also

suggest that both m and n need to grow for the estimators to be consistent

for the true fixed and random effects, and in particular n needs to grow

for the estimators to be unbiased. This is true especially for the Bernoulli

responses, for which convergence was much slower and very large cluster

sizes were needed for the estimators to be relatively unbiased.

In the supplementary material, we present additional results which

showed that the sample covariance matrix of the estimated random effects
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Figure 3: Histograms for the third components of β̂−β̇ (left panels) and b̂1−
ḃ1 (right panels), under the unconditional regime. Vertical facets represent
the cluster sizes, while horizontal facets represent the number of clusters.
The dotted blue line indicates zero, and the red curve is a kernel density
smoother.
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became a better estimator of the true random effects covariance matrix Ġ

as both m and n grew. Also, recall from our discussion in Section 2 that

our asymptotic developments only require a working Ĝ, which need not be

a consistent estimator of the true random effects covariance matrix. As a

demonstration of this, we performed several additional simulations where in

the PQL estimation procedure, we simply fix Ĝ to a constant matrix and

considered choices e.g., some constant multiplied by the identity matrix.

Results in the supplementary material demonstrate that coverage probabil-

ities for our proposed intervals still tended to the nominal level as (m,n)

increased, while corresponding Shapiro-Wilk tests and histograms were also

consistent with our theory in large sample sizes and the empirical results

presented above.

6. Discussion

In this article, we established new asymptotic distributional results for fixed

effects, random effects, and the prediction gap, for an independent-cluster

GLMM fitted using penalized quasi-likelihood estimation. Our results have

important implications when it comes to inference and prediction for mixed-

effects models. For the conditional regime, we establish asymptotic normal-

ity for any finite subset of the parameters. For random effects predictions
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and inference in the unconditional regime, we validate examining the em-

pirical distribution of the estimated random effects as a diagnostic tool for

assessing deviations away from the assumed random effects distribution (as

is already commonly done in practice for GLMMs e.g., Hui et al., 2021). On

the other hand, while the random effects estimators obtained using PQL

are asymptotically normally distributed when the true random effects are

normally distributed, we demonstrate that the difference between these two

i.e., the prediction gap, need not be normally distributed. Our large sample

results thus suggest the use of a normal approximation when performing

unconditional inference for the random effects, as is commonly done in prac-

tice (Bates et al., 2015; Brooks et al., 2017), can be potentially misleading.

An important avenue of future research is to establish rates of conver-

gence, especially in the unconditional regime, when xij contains both zij

plus additional components which are only included as purely fixed effects

in the model. In the supplementary material, we develop some further re-

sults for such unpartnered fixed effects in the special cases of LMMs and

GLMs. In both these cases, we see the convergence rate improves from

Op(m
1/2) to Op(N

1/2), compared to the partnered fixed effects. On the

other hand, for random effects without a partnered fixed effect, it is likely

that the correct asymptotic distribution for the prediction gap will be the
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normal scale-mixture irrespective of the relative rates of m and ni, as we

saw in the motivating counterexample. Also, relaxing the canonical link

assumption is an interesting and important extension to our work; we con-

jecture that non-canonical links could be accounted for by generalising the

form of the GLM iterative weights, as is done in GLMs.

Supplementary Materials

The supplementary material contains proofs of our theorems and extra sim-

ulation results.
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