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Abstract: We propose a novel approach for detecting change points in high-

dimensional linear regression models. Unlike previous research that relies on strict

Gaussian/sub-Gaussian error assumptions and has prior knowledge of change

points, we propose a tail-adaptive method for change point detection and esti-

mation. We use a weighted combination of composite quantile and least squared

losses to build a new loss function, allowing us to leverage information from both

conditional means and quantiles. For change point testing, we develop a family

of individual testing statistics with different weights to account for unknown tail

structures. These individual tests are further aggregated to construct a powerful

tail-adaptive test for sparse regression coefficient changes. For change point esti-

mation, we propose a family of argmax-based individual estimators. We provide

theoretical justifications for the validity of these tests and change point estima-

tors. Additionally, we introduce a new algorithm for detecting multiple change

points in a tail-adaptive manner using the wild binary segmentation. Extensive
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numerical results show the effectiveness of our proposed method.

Key words and phrases: Binary segmentation; Bootstrap; Heterogeneity; Multiple

change points

1. Introduction

With the advances of data collection and storage capacity, large scale/high-

dimensional data are ubiquitous in many scientific fields ranging from ge-

nomics, finance, to social science. Due to the complex data generation

mechanism, the heterogeneity, also known as the structural break, has be-

come a common phenomenon for high-dimensional data, where the under-

lying model of data generation changes and the identically distributed as-

sumption may not hold anymore. Change point analysis is a powerful tool

for handling structural changes since the seminal work by Page (1955). It

received considerable attentions in recent years and has a lot of real appli-

cations in various fields including genomics (Liu et al., 2020), social science

(Roy et al., 2017), and even for the recent COVID-19 pandemic studies

(Jiang et al., 2022). Motivated by this, in this paper, we study change

point testing and estimation for high-dimensional linear regression models.

Specifically, suppose we have n independent but (time) ordered real-

izations {(Yi,Xi), i = 1, . . . , n} with Xi = (Xi1, . . . , Xip)
>. For each time

point i, consider the following regression model:

2

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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Yi = X>i βi + εi, (1.1)

where Yi ∈ R is the response variable, βi = (βi1, . . . , βip)
> is the regression

coefficient vector for the i-th observation, and εi is the error term. For the

above model, our first question is whether there is a change point. This can

be formulated as the following hypothesis testing problem:

H0 : β1 = · · · = βn v.s. H1 : β1 = · · · = βk1 6= βk1+1 = · · · = βn, (1.2)

where k1 is the possible but unknown change point location. According to

(1.2), the linear regression structure between Y and X remains homoge-

neous if H0 holds, and otherwise there is a change point k1 that divides

the data into two segments with different regression coefficients, β(1) and

β(2). Our second goal of this paper is to identify the change point loca-

tion if we reject H0 in (1.2). Note that the above two goals are referred as

change point testing and estimation, respectively. In the practical use, both

testing and estimation are important since practitioners typically have no

prior knowledge about either the existence of a change point or its location.

Therefore, it is very useful to consider simultaneous change point detection

and estimation. Furthermore, the tail structure of the error εi in Model

(1.1) is typically unknown, which could significantly affect the performance

of the change point detection and estimation. In the existing literature, the

performance guarantee of most methods on change point estimation relies
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on the assumption that the error εi follows a Gaussian/sub-Gaussian dis-

tribution. Such an assumption could be violated in practice when the data

distribution is heavy-tailed or contaminated by outliers. While some robust

methods can address these issues, they may lose efficiency when errors are

indeed sub-Gaussian distributed. It is also very difficult to estimate the

tail structures and construct a corresponding change point method based

on that. Hence, it is of great interest to construct a tail-adaptive change

point detection and estimation method for high-dimensional linear models.

1.1 Contribution

Motivated by our previous discussion, in this paper, under the high-

dimensional setup with p � n, we propose a tail-adaptive procedure for

simultaneous change point testing and estimation in linear regression mod-

els. The proposed method relies on a new loss function in our change point

estimation procedure, which is a weighted combination between the com-

posite quantile loss proposed in Zou and Yuan (2008) and the least squared

loss with the weight α ∈ [0, 1] for balancing the efficiency and robustness.

Thanks to this new loss function with different α, we are able to borrow

information related to the possible change point from both the conditional

mean and quantiles in Model (1.1). Therefore, besides controlling the type

4

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1.1 Contribution

I error to any desirable level when H0 holds, the proposed method simulta-

neously enjoys high power and accuracy for change point testing and identi-

fication across various underlying error distributions including both lighted

and heavy-tailed errors when there exists a change point. By combining

our single change point estimation method with the wild binary segmen-

tation (WBS) technique (Fryzlewicz, 2014), we also generalize our method

for detecting multiple change points in Model (1.1).

In terms of our theoretical contribution, for each given α, a novel score-

based Rp-dimensional individual CUSUM process {Cα(t), t ∈ [0, 1]} is pro-

posed. Based on this, we construct a family of individual-based testing

statistics {Tα, α ∈ [0, 1]} via aggregating Cα(t) using the `2-norm of its

first s0 largest order statistics, known as the (s0, 2)-norm proposed in Zhou

et al. (2018). A high-dimensional bootstrap procedure is introduced to ap-

proximate Tα’s limiting null distributions. The proposed bootstrap method

only requires mild conditions on the covariance structures of X and the

underlying error distribution ε, and is free of tuning parameters and com-

putationally efficient. Furthermore, combining the corresponding individual

tests in {Tα, α ∈ [0, 1]}, we construct a tail-adaptive test statistic Tad by tak-

ing the minimum P -values of {Tα, α ∈ [0, 1]}. The proposed tail-adaptive

method Tad chooses the best individual test according to the data and thus
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enjoys simultaneous high power across various tail structures. Theoreti-

cally, we adopt a low-cost bootstrap method for approximating the limiting

distribution of Tad. In terms of size and power, for both individual and

tail-adaptive tests, we prove that the corresponding test can control the

type I error for any given significance level if H0 holds, and reject the null

hypothesis with probability tending to one otherwise.

As for the change point estimation, once H0 is rejected by our test,

based on each individual test statistic, we can estimate its location via

taking argmax with respect to different candidate locations t ∈ (0, 1) for

the (s0, 2)-norm aggregated process {‖Cα(t)‖(s0,2), t ∈ [0, 1]}. Under some

regular conditions, for each individual based estimator {t̂α, α ∈ [0, 1]}, we

can show that the estimation error is rate optimal up to a log(pn) factor.

Hence, the proposed individual estimators for the change point location

allow the signal jump size scale well with (n, p) and are consistent.

1.2 Related literature

For the low dimensional setting with a fixed p and p < n, change

point analysis for linear regression models has been well-studied. Specifi-

cally, Quandt (1958) considered testing (1.2) for a simple regression model

with p = 2. Other extensions include the maximum likelihood ratio tests
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(Horváth, 1995), partial sums of regression residuals (Bai and Perron, 1998),

and so on. Other related methods include Qu (2008); Zhang et al. (2014);

Oka and Qu (2011) and among others.

Due to the curse of dimensionality, only a few papers studied high-

dimensional change point analysis, which mainly focused on the change

point estimation. See Lee et al. (2016); Kaul et al. (2019); Lee et al. (2018);

Leonardi and Bühlmann (2016); Wang et al. (2021, 2023). However, none

of the aforementioned papers handle hypothesis testing, which is the pre-

requisite for the change point detection. Furthermore, most existing lit-

erature requires strong conditions on the underlying errors εi for deriving

the desirable theoretical properties, which may not be applicable when the

data are heavy-tailed or contaminated by outliers. One possible solution

is to use the robust method such as median regression in Lee et al. (2018)

for change point estimation. As discussed in Zou and Yuan (2008); Zhao

et al. (2014), when making statistical inference for homogeneous linear mod-

els, the asymptotic relative efficiency of median regression-based estimators

compared to least squared-based is only about 64% in both low and high

dimensions. In addition, inference based on quantile regression can have

arbitrarily small relative efficiency compared to the least squared based re-

gression. Our proposed tail-adaptive method is the one that can perform
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simultaneous change point testing and estimation for high-dimensional lin-

ear regression models with different distributions. In addition to controlling

the type I error to any desirable level, the proposed method enjoys simul-

taneously high power and accuracy for the change point testing and iden-

tification across various underlying error distributions when there exists a

change point.

The rest of this paper is organized as follows. In Section 2, we introduce

our new tail-adaptive methodology for detecting a single change point as

well as multiple change points. In Section 3, we derive the theoretical results

in terms of size and power as well as the change point estimation. In Section

4, we present a brief summary of the simulation results. The concluding

remarks are provided in Section 5. Detailed proofs and the full numerical

results as well as an application to the S&P 100 dataset are given in the

online supplementary materials.

Notations: For v = (v1, . . . , vp)
> ∈ Rp, we define its `p norm as ‖v‖p =

(
∑d

j=1 |vj|p)1/p for 1 ≤ p ≤ ∞. For p = ∞, define ‖v‖∞ = max1≤j≤d |vj|.

For any set S, denote its cardinality by |S|. For two real numbered se-

quences an and bn, we set an = O(bn) if there exits a constant C such that

|an| ≤ C|bn| for a sufficiently large n; an = o(bn) if an/bn → 0 as n → ∞;

an � bn if there exists constants c and C such that c|bn| ≤ |an| ≤ C|bn| for a
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sufficiently large n. For a sequence of random variables (r.v.s) {ξ1, ξ2, . . .},

we set ξn
P−→ ξ if ξn converges to ξ in probability as n→∞. We also denote

ξn = op(1) if ξn
P−→ 0. We define bxc as the largest integer less than or equal

to x for x ≥ 0. Denote (X ,Y) = {(X1, Y1), . . . , (Xn, Yn)}.

2. Methodology

2.1 Single change point detection

In this section, we introduce our new methodology for Problem (1.2).

We first focus on detecting a single change point in Model (1.1) with

Yi = X>i β
(1)1{i ≤ k1}+X>i β

(2)1{i > k1}+ εi, for i = 1, . . . , n. (2.3)

In this paper, we assume k1 = bnt1c for some constant t1 ∈ (0, 1). Note that

t1 is called the relative change point location. We assume the change point

does not occur at the beginning or end of data observations. Specifically,

suppose there exists a constant q0 ∈ (0, 0.5) such that q0 ≤ t1 ≤ 1 − q0

holds, which is a common assumption in the literature (e.g., Dette et al.,

2018; Jirak, 2015). For Model (2.3), the conditional mean of Yi is:

E[Yi |Xi] = X>i β
(1)1{i ≤ k1}+X>i β

(2)1{i > k1}. (2.4)

Moreover, let 0 < τ1 < . . . < τK < 1 be K candidate quantile indices. For

each τk ∈ (0, 1), let b
(0)
k := inf{t : P(ε ≤ t) ≥ τk} be the τk-th theoretical
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quantile for the generic error term ε in Model (2.3). Then, conditional on

Xi, the τk-th quantile for Yi becomes:

Qτk(Yi|Xi) = b
(0)
k +X>i β

(1)1{i ≤ k1}+X>i β
(2)1{i > k1}, k = 1, . . . ,K, (2.5)

where Qτk(Yi|Xi) := inf{t : P(Yi ≤ t|Xi) ≥ τk}. Hence, if there exists a

change point in Model (2.3), both the conditional mean and the conditional

quantile change after the change point. This suggests that we can make

change point inference for β(1) and β(2) using either (2.4) or (2.5). To

propose our new testing statistic, we first introduce the following weighted

composite loss function. In particular, let α ∈ [0, 1] be some candidate

weight. Define the weighted composite loss function as:

`α(x, y; τ̃ , b,β) := (1− α)
1

K

K∑
k=1

ρτk(y − bk − x>β) +
α

2
(y − x>β)2, (2.6)

where ρτ (t) := t(τ − 1{t ≤ 0}) is the check loss function (Koenker and

Bassett, 1978), τ̃ := (τ1, . . . , τK)> are user-specified K quantile levels, and

b = (b1, . . . , bK)> ∈ RK and β = (β1, . . . , βp)
> ∈ Rp. Note that we can

regard `α(x, y; τ̃ , b,β) as a weighted loss function between the compos-

ite quantile loss and the squared error loss. For example, for α = 1, it

reduces to the ordinary least squared-based loss function with `1(x, y) =

(y − x>β)2/2. When α = 0, it is the composite quantile loss function

`0(x, y) =
∑K

k=1 ρτk(y − bk − x>β)/K proposed in Zou and Yuan (2008).

It is known that the least squared loss-based method has the best statisti-
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cal efficiency when errors follow Gaussian distributions and the composite

quantile loss is more robust when the error distribution is heavy-tailed or

contaminated by outliers. As discussed before, in practice, it is challenging

to obtain the tail structure of the error distribution and construct a corre-

sponding change point testing method based on the error structure. Hence,

we propose a weighted loss function by borrowing the information related

to the possible change point from both the conditional mean and quantiles.

We use the weight α to balance the efficiency and robustness.

Our new testing statistic is based on a novel high-dimensional weighted

score-based CUSUM process of the weighted composite loss function. In

particular, for the composite loss function `α(x, y; τ̃ , b,β), define its score

(subgradient) function ∂`α(x, y; τ̃ , b,β)/∂β with respect to β as:

Zα(x, y; τ̃ , b,β) :=
[1− α

K

K∑
k=1

x
(
1{y − bk − x>β ≤ 0} − τk

)]
− α

[
x(y − x>β)

]
.

(2.7)

Using Zα(x, y; τ̃ , b,β), for each α ∈ [0, 1] and t ∈ (0, 1), we first define the

oracle score-based CUSUM as follows:

C̃α(t; τ̃ , b,β) =
1√

nσ(α, τ̃ )

( bntc∑
i=1

Zα(Xi, Yi; τ̃ , b,β)−bntc
n

n∑
i=1

Zα(Xi, Yi; τ̃ , b,β)
)
,

(2.8)

where σ2(α, τ̃ ) := Var[(1 − α)ei(τ̃ ) − αεi)] with ei(τ̃ ) := K−1
K∑
k=1

(1{εi ≤

b
(0)
k }− τk). Note that we call C̃α(t; τ̃ , b,β) oracle since we assume σ2(α, τ̃ )

is known. In Section 2.2, we will give the explicit form of σ2(α, τ̃ ) under
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2.1 Single change point detection

various combinations of α and τ̃ and introduce its consistent estimator

under both H0 and H1. In the following, to motivate our test statistics, we

study the behaviors of C̃α(t; τ̃ , b,β) under H0 and H1 respectively. First,

under H0, if we replace β = β(0) and b = b(0) in (2.8), the score based

CUSUM becomes

C̃α(t; τ̃ , b(0),β(0))

=
1√

nσ(α, τ̃ )

( bntc∑
i=1
Zα(Xi, Yi; τ̃ , b

(0),β(0))− bntc
n

n∑
i=1
Zα(Xi, Yi; τ̃ , b

(0),β(0))
)
.

By noting that under H0, we have Yi = X>i β
(0) + εi, the above CUSUM

reduces to the following Rp–dimensional random noise based CUSUM:

C̃α(t; τ̃ , b(0),β(0))

=
1√

nσ(α, τ̃ )

( bntc∑
i=1
Xi((1− α)ei(τ̃ )− αεi)−

bntc
n

n∑
i=1
Xi((1− α)ei(τ̃ )− αεi)

)
,

(2.9)

whose asymptotic distribution can be easily characterized. Since both b(0)

and β(0) are unknown, we need some proper estimators that can approxi-

mate them well under H0. In this paper, for each α ∈ [0, 1], we obtain the

estimators by solving the following penalized optimization problem:

(b̂α, β̂α) = arg min
b∈RK,
β∈Rp

[
(1−α)

1

n

n∑
i=1

1

K

K∑
k=1

ρτk(Yi−bi−X>i β)+
α

2n

n∑
i=1

(Yi−X>i β)2+λα
∥∥β∥∥

1

]
,

(2.10)

where b̂α := (̂bα,1, · · · , b̂α,K)>, β̂α := (β̂α,1, . . . , β̂α,p)
>, and λα is the non-

negative tuning parameter controlling the overall sparsity of β̂α. Note that

the above estimators are obtained using all observations (X ,Y). After

obtaining (b̂>α , β̂
>
α ), we plug them into the score function in (2.8) and obtain
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2.1 Single change point detection

the Rp–dimensional oracle score based CUSUM statistic as follows:

C̃α(t; τ̃ , b̂α, β̂α) =
(
C̃α,1(t; τ̃ , b̂α, β̂α), . . . , C̃α,p(t; τ̃ , b̂α, β̂α)

)>
. (2.11)

Using (b̂α, β̂α), we can prove that under H0, for each α ∈ [0, 1], (2.11) can

approximate the random-noise based CUSUM process in (2.9) under some

proper norm aggregations. Next, we investigate the behavior of (2.11) under

H1. Observe that the score based CUSUM has the following decomposition:

C̃α(t; τ̃ , b̂α, β̂α) = C̃α(t; τ̃ , b(0),β(0)) + δα(t) +Rα(t; b̂α, β̂α), (2.12)

where C̃α(t; τ̃ , b(0),β(0)) is the random noise based CUSUM process defined

in (2.9), Rα(t; b̂α, β̂α) is some random bias which has a very complicated

form but can be controlled properly under H1, and δα(t) is the signal jump

function. More specifically, let

SNR(α, τ̃ ) :=

(1− α)
( 1

K

K∑
k=1

fε(b
(0)
k )
)

+ α

σ(α, τ̃ )
, (2.13)

where fε(t) is the probability density function of ε, and define the signal

jump function

∆(t;β(1),β(2)) :=


bntc(n− bnt1c)

n3/2
Σ
(
β(1) − β(2)

)
, if t ≤ t1,

bnt1c(n− bntc)
n3/2

Σ
(
β(1) − β(2)

)
, if t > t1.

(2.14)

Then, the signal jump δα(t) can be explicitly represented as the products

of SNR(α, τ̃ ) and ∆(t;β(1),β(2)), which has the following explicit form:

δα(t) := SNR(α, τ̃ )×∆(t;β(1),β(2)). (2.15)
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2.1 Single change point detection

By (2.15), we can see that δα(t) can be decomposed into a loss-function-

dependent part SNR(α, τ̃ ) and a change-point-model-dependent part

∆(t;β(1),β(2)). More specifically, the first term SNR(α, τ̃ ) (short for the

signal-to-noise-ratio) is only related to the parameters α,K, b(0) as well as

σ(α, τ̃ ), resulting from a user specified weighted loss function defined in

(2.6). In contrast, the second term {∆(t;β(1),β(2)), t ∈ [0, 1]} is only re-

lated to Model (2.3), which is based on parameters t1, Σ, β(1), and β(2) and

is independent of the loss function. Moreover, for any weighted compos-

ite loss function, the process {∆(t;β(1),β(2)), t ∈ [0, 1]} has the following

properties: First, under H1, the non-zero elements of ∆(t;β(1),β(2)) are at

most (s(1) +s(2))-sparse since we require sparse regression coefficients in the

model; Second, we can see that ‖∆(t;β(1),β(2))‖ with t ∈ [q0, 1−q0] obtains

its maximum value at the true change point location t1, where ‖ · ‖ denotes

some proper norm such as ‖·‖∞. Hence, in theory, the signal jump function

δα(t) also achieves its maximum value at t1 under some proper norm. This

is the key reason why using the score based CUSUM can correctly localize

the true change point if β(1) − β(2) is big enough. More importantly, for a

given underlying error distribution ε in Model (2.3), we can use SNR(α, τ̃ )

to further amplify the magnitude of δα(t) via choosing a proper combina-

tion of α and τ̃ . In particular, recall σ2(α, τ̃ ) := Var[(1 − α)ei(τ̃ ) − αεi)].
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2.1 Single change point detection

Then, we have

σ2(α, τ̃ ) = (1− α)2Var[ei(τ̃ )] + α2σ2 − 2α(1− α)Cov(ei(τ̃ ), εi), (2.16)

where σ2 := Var(ε). Using (2.13) and (2.16), SNR(α, τ̃ ) can be further

simplified under some specific α. For example, if α = 1, then SNR(α, τ̃ ) =

1/σ; If α = 0, then

SNR(α, τ̃ ) =

K∑
k=1

fε(b
(0)
k )√∑K

k1=1

∑K
k2=1 γk1k2

with γk1k2 := min(τk1 , τk2) − τk1τk2 ; If we choose α ∈ (0, 1), K = 1 and

τ̃ = τ for some τ ∈ (0, 1), then we have

SNR(α, τ̃ ) =
(1− α)fε(b

(0)
τ ) + α

[(1− α)2τ(1− τ) + α2σ2 − 2α(1− α)Cov(e(τ), ε)]1/2
. (2.17)

Hence, for any underlying error distribution ε in Model (2.3), it is possible

for us to choose a proper α and τ̃ that makes SNR(α, τ̃ ) as large as possible

for that distribution. See Figure 1 for a direct illustration.

For change point detection, a natural question is how to aggregate

the Rp–dimensional CUSUM process C̃α(t; τ̃ , b̂α, β̂α). Note that for high-

dimensional sparse linear models, there are at most s = s(1) + s(2) coor-

dinates in β(1) − β(2) that can have a change point, which can be much

smaller than the data dimension p, although we allow s to grow with the

sample size n. Motivated by this, in this paper, we aggregate the first s0

largest statistics of C̃α(t; τ̃ , b̂α, β̂α). To that end, we introduce the (s0, 2)-

norm as follows. Let v = (v1, . . . , vp) ∈ Rp. For any 1 ≤ s0 ≤ p, define
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2.1 Single change point detection
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Figure 1: SNR(α, τ̃ ) under various errors with different weights α ∈

{0, 0.1, . . . , 0.9, 1} for the weighted loss with τ̃ = 0.5 and K = 1.∥∥v∥∥
(s0,2)

= (
∑s0

j=1 |v(j)|2)1/2, where |v(1) ≥ |v(2)| · · · ≥ |v(p)| are the order

statistics of v. By definition, we can see that ‖v‖(s0,2) is the L2-norm for

the first s0 largest order statistics of (|v1|, . . . , |vp|)>, which can be regarded

as an adjusted L2-norm in high dimensions. Note that the (s0, 2)-norm is

a special case of the (s0, p̃)-norm proposed in Zhou et al. (2018) by setting

p̃ = 2. We also remark that taking the first s0 largest order statistics can ac-

count for the sparsity structure of β(1) − β(2). Using the (s0, 2)-norm with

a user-specified s0 and known variance σ2(α, τ̃), we introduce the oracle

individual testing statistic with respect to a given α ∈ [0, 1] as

T̃α = max
q0≤t≤1−q0

∥∥∥C̃α(t; τ̃ , b̂α, β̂a)
∥∥∥

(s0,2)
, with α ∈ [0, 1].

By construction, T̃α can capture the tail structure of the underlying

regression errors by choosing a special α and τ̃ . Specifically, for α = 1,
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2.1 Single change point detection

it equals to the least squared loss-based method. In this case, since T̃α

only uses the moment information of the errors, it is powerful for detecting

a change point with light-tailed errors such as Gaussian or sub-Gaussian

distributions. For α = 0, T̃α reduces to the composite quantile loss-based

method, which only uses the information of ranks or quantiles. In this case,

T̃α is more robust to data with heavy tails such as Cauchy distributions. As

a special case of α = 0, if we further choose τ̃ = 0.5 and K = 1, our testing

statistic reduces to the median regression-based method. Moreover, if we

choose a proper non-trivial weight α, T̃α enjoys satisfactory power perfor-

mance for data with a moderate magnitude of tails such as the Student’s tv

or Laplace distributions. Hence, our proposed individual testing statistics

can adequately capture the tail structures of the data.

Another distinguishing feature for using T̃α is that, we can establish a

general and flexible framework for aggregating the score based CUSUM for

high-dimensional sparse linear models. Instead of taking the `∞-norm as

most papers adopted for making statistical inference of high-dimensional

linear models (e.g., Xia et al., 2018), we choose to aggregate them via using

the `2-norm of the first s0 largest order statistics. Under this framework,

the `∞-norm is a special case by taking s0 = 1.
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2.2 Variance estimation under H0 and H1

2.2 Variance estimation under H0 and H1

Note that T̃α is constructed using a known variance σ2(α, τ̃ ) which

is defined in (2.16). In practice, however, σ2(α, τ̃ ) is typically unknown.

Hence, to yield a powerful testing method, a consistent variance estimation

is needed especially under the alternative hypothesis. For high-dimensional

change point analysis, the main difficulty comes from the unknown change

point t1. To overcome this problem, we propose a weighted variance esti-

mation. In particular, for each fixed α ∈ [0, 1] and t ∈ (0, 1), define the

score based CUSUM statistic without standardization as follows:

C̆α(t; τ̃ , b̂α, β̂α) =
1√
n

( bntc∑
i=1

Zα(Xi, Yi; τ̃ , b̂α, β̂α)−bntc
n

n∑
i=1

Zα(Xi, Yi; τ̃ , b̂α, β̂α)
)
.

(2.18)
For each α ∈ [0, 1], we obtain the individual based change point estimator:

t̂α = arg max
q0≤t≤1−q0

∥∥C̆α(t; τ̃ , b̂α, β̂α)
∥∥

(s0,2)
. (2.19)

In Theorem 3, we prove that under some regular conditions, if H1 holds, t̂α

is a consistent estimator for t1, e.g. |nt̂α−nt1| = op(n). This result enables

us to propose a variance estimator which is consistent under both H0 and

H1. Specifically, let h ∈ (0, 1) be a user specified constant, and define the

samples n− = {i : i ≤ nht̂α} and n+ = {i : t̂αn + (1 − h)(1 − t̂α)n ≤ i ≤

n}. Let ((b̂
(1)
α )>, (β̂

(1)
α )>) and ((b̂

(2)
α )>, (β̂

(2)
α )>) be the estimators using the

samples in n− and n+. For each α, we calculate the regression residuals:

ε̂i = (Yi−X>i β̂(1)
α )1{i ∈ n−}+(Yi−X>i β̂(2)

α )1{i ∈ n+}, for i ∈ n−∪n+. (2.20)
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2.2 Variance estimation under H0 and H1

Moreover, compute êi(τ̃ ) = K−1
K∑
k=1

êi(τk) with êi(τk) defined as

êi(τk) := (1{ε̂i ≤ b̂(1)
α,k} − τk)1{i ∈ n−}+ (1{ε̂i ≤ b̂(2)

α,k} − τk)1{i ∈ n+}. (2.21)

Let ŝ(1) and ŝ(2) be the sparsity levels of β̂
(1)
α and β̂

(2)
α . Lastly, based on ε̂i

and êi(τ̃ ), we construct a weighted estimator for σ2(α, τ̃ ):

σ̂2(α, τ̃ ) = t̂α × σ̂2
−(α, τ̃ ) + (1− t̂α)× σ̂2

+(α, τ̃ ), (2.22)

where:

σ̂2
−(α, τ̃ ) :=

1

|n− − ŝ(1)|
∑

i∈n−

[
(1− α)êi(τ̃ )− αε̂i

]2
,

σ̂2
+(α, τ̃ ) :=

1

|n+ − ŝ(2)|
∑

i∈n+

[
(1− α)êi(τ̃ )− αε̂i

]2
.

For the above variance estimation, we can prove that |σ̂2(α, τ̃ )−σ2(α, τ̃ )| =

op(1) under either H0 or H1. As a result, the proposed variance estimator

σ̂2(α, τ̃ ) avoids the problem of non-monotonic power performance as dis-

cussed in Shao and Zhang (2010), which is a serious issue in change point

analysis. Hence, we replace σ(α, τ̃ ) in (2.11) by σ̂(α, τ̃ ) and define the

data-driven score-based CUSUM process

Cα(t; τ̃ , b̂α, β̂α) =
1√

nσ̂(α, τ̃ )

( bntc∑
i=1
Zα(Xi, Yi; τ̃ , b̂α, β̂α)− bntc

n

n∑
i=1
Zα(Xi, Yi; τ̃ , b̂α, β̂α)

)
.

(2.23)
For a user-specified s0 ∈ {1, . . . , p} and any α ∈ [0, 1], we define the final

individual-based testing statistic as follows:

Tα = max
q0≤t≤1−q0

∥∥∥Cα(t; τ̃ , b̂α, β̂a)
∥∥∥

(s0,2)
, with α ∈ [0, 1]. (2.24)

In what follows, we use {Tα, α ∈ [0, 1]} as our individual testing statistics.
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2.3 Bootstrap approximation for the individual testing statistic

2.3 Bootstrap approximation for the individual testing statistic

In high dimensions, it is very difficult to obtain the limiting null dis-

tribution of Tα. To overcome this problem, we propose a novel bootstrap

procedure. In particular, suppose we implement the bootstrap procedure for

B times. Then, for each b-th bootstrap with b = 1, . . . , B, we generate i.i.d.

random variables eb1, . . . , e
b
n with ebi ∼ N(0, 1). Let ebi(τ̃ ) = K−1

K∑
k=1

ebi(τk)

with ebi(τk) := 1{εbi ≤ Φ−1(τk)} − τk, where Φ(x) is the CDF for the stan-

dard normal distribution. Then, for each individual-based testing statistic

Tα, with a user specified s0, we define its b-th bootstrap sample-based score

CUSUM process as:

Cb
α(t; τ̃ ) =

1√
nv(α, τ̃ )

( bntc∑
i=1

Xi((1−α)ebi(τ̃ )−αebi)−
bntc
n

n∑
i=1

Xi((1−α)ebi(τ̃ )−αebi)
)
,

(2.25)
where v2(α, τ̃ ) is the corresponding variance for the bootstrap samples with

v2(α, τ̃ ) := (1− α)2Var[ebi(τ̃ )] + α2 − 2α(1− α)Cov(ebi(τ̃ ), ebi). (2.26)

Note that for bootstrap, the calculation or estimation of v2(α, τ̃ ) is not a

difficult task since we use N(0, 1) as the error term. For example, when

τ̃ = 0.5, it has an explicit form of

v2(α, τ̃ ) = (1− α)2

K∑
k1=1

K∑
k2=1

γk1k2 + α2 − α(1− α)

√
2

π
.

Hence, for simplicity, we directly use the oracle variance v2(α, τ̃ ) in (2.25).

Using Cb
α(t; τ̃ ) and for a user specified s0, we define the b-th bootstrap
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2.4 Constructing the tail-adaptive testing procedure

version of the individual-based testing statistic Tα as

T bα = max
q0≤t≤1−q0

∥∥∥Cb
α(t; τ̃ )

∥∥∥
(s0,2)

, with α ∈ [0, 1]. (2.27)

Let γ ∈ (0, 0.5) be the significance level. For each individual-based testing

statistic Tα, let Fα = P(Tα ≤ t) be its theoretical CDF and Pα = 1−Fα(Tα)

be its theoretical p-value. Using the bootstrap samples {T 1
α, . . . , T

B
α }, we

estimate Pα by

P̂α =

∑B
b=1 1{T bα > Tα|X ,Y}

B + 1
, with α ∈ [0, 1]. (2.28)

Given the significance level γ, we can construct the individual test as

Ψγ,α = 1{P̂α ≤ γ}, with α ∈ [0, 1]. (2.29)

For each Tα, we reject H0 if and only if Ψγ,α = 1. Note that the above

bootstrap procedure is easy to implement since it does not require any

model fitting such as obtaining the LASSO estimators which is required by

the data-based testing statistic Tα.

2.4 Constructing the tail-adaptive testing procedure

In Sections 2.1 – 2.3, we propose a family of individual-based testing

statistics {Tα, α ∈ [0, 1]} and introduce a bootstrap-based procedure for

approximating their theoretical p-values. As discussed in Sections 2.1 and

seen from Figure 1, Tα with different α’s can have varying power perfor-

mance for a given underlying error distribution. For example, Tα with a
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2.4 Constructing the tail-adaptive testing procedure

larger α (e.g. α = 1) is more sensitive to change points with light-tailed

error distributions by using more moment information. In contrast, Tα with

a smaller α (e.g. α = 0, 0.1) is more powerful for data with heavy tails such

as Student’s tv or even Cauchy distribution. In general, as shown in Figure

1, a properly chosen α can give the most satisfactory power performance

for data with a particular magnitude of tails. In practice, however, the tail

structures of data are typically unknown. Hence, it is desirable to construct

a tail-adaptive method which is simultaneously powerful under various tail

structures of data. One candidate method is to find α∗ which maximizes

the theoretical SNR(α, τ̃ ), i.e. α∗ = arg maxα SNR(α, τ̃ ), and constructs

a corresponding individual testing statistic Tα∗ . Note that in theory, calcu-

lating SNR(α, τ̃ ) needs to know σ(α, τ̃ ) and {fε(b(0)
k ), k = 1, . . . , K}, which

could be difficult to estimate especially under the high-dimensional change

point model. Instead, we construct our tail-adaptive method by combining

all candidate individual tests for yielding a powerful one. In particular, as

a small p-value leads to rejection of H0, for the individual tests Tα with

α ∈ [0, 1], we construct the tail-adaptive testing statistic as their minimum

p-value, which is defined as follows:

Tad = min
α∈A

P̂α, (2.30)

where P̂α is defined in (2.28), and A is a candidate subset of α.
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2.4 Constructing the tail-adaptive testing procedure

Remark 1. It’s worth noting that for the construction of Tad, the issue of

selecting K in the composite quantile regression is typically left to the user.

Based on our extensive numerical studies, choosing K = 1 and τ = 0.5 has

satisfactory performance across data with various tail structures.

In this paper, we require |A| to be finite, which is a theoretical require-

ment. Note that our tail-adaptive method is flexible and user-friendly. In

practice, if the users have some prior knowledge about the tails of errors,

we can choose A accordingly. For example, we can choose A = {0.9, 1}

for light-tailed errors, and A = {0} for extreme heavy tails such as Cauchy

distributions. However, if the tail structure is unknown, we can choose A

consisting both small and large values of α ∈ [0, 1]. For example, according

to our theoretical analysis of SNR(α, τ̃ ), we find that SNR(α, τ̃ ) tends to

be maximized near the boundary of [0, 1]. Hence, we recommend to use

A = {0, 0.1, 0.5, 0.9, 1} in real applications, which is shown by our numer-

ical studies to enjoy stable size performance as well as high powers across

various error distributions. Let Fad(x) be its theoretical distribution func-

tion. Note that Fad(x) is unknown. Hence, we can not use Tad directly for

Problem (1.2). To approximate its theoretical p-value, we adopt the low-

cost bootstrap method proposed by Zhou et al. (2018), which is also used

in Liu et al. (2020). Let P̂ad be an estimation for the theoretical p-value of
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Tad using the low-cost bootstrap. Given the significance level γ ∈ (0, 0.5),

define the final tail-adaptive test:

Ψγ,ad = 1{P̂ad ≤ γ}. (2.31)

For the tail-adaptive testing procedure, given γ, we reject H0 if Ψγ,ad = 1.

3. Theoretical results

In this section, we give some theoretical results. In Section 3.1, we

provide some basic model assumptions. In Sections 3.2 and 3.3, we discuss

the theoretical properties of the individual and tail-adaptive methods.

3.1 Basic assumptions

To save space, we offer concise descriptions of our assumptions below.

Assumption A gives some conditions for the design matrix such as the

non-degeneracy of the covariance matrix Σ in terms of its eigenvalues. As-

sumptions B-C impose some restrictions on the moments of the error terms

as well as the design matrix. Assumptions D are some regular conditions

for the underlying distribution of the errors. Assumption E imposes some

conditions for the parameter spaces in terms of (s0, n, p, s,β
(1),β(2)). For

more details, please refer to Section ?? of the supplementary materials.
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3.2 Theoretical results of the individual-based testing statistics

3.2 Theoretical results of the individual-based testing statistics

3.2.1 Validity of controlling the testing size

Before giving the size results, we first consider the variance estimation.

Recall σ2(α, τ̃ ) in (2.16) and σ̂2(α, τ̃ ) in (2.22). Theorem 1 shows that the

pooled weighted variance estimator σ̂2(α, τ̃ ) is consistent under H0, which

is crucial for deriving the Gaussian approximation results as shown in Theo-

rem 2 and shows that our testing method has satisfactory size performance.

Theorem 1. For α = 1, suppose Assumptions A, B, C, E hold. For

α = 0, suppose Assumptions A, C.1, D, E hold. For α ∈ (0, 1), suppose

Assumptions A - E hold. Let rα(n) =
√
s log(pn)/n if α = 1 and rα(n) =

s

√
log(pn)

n
∨ s 1

2 (
log(pn)

n
)
3
8 if α ∈ [0, 1). Under H0, for α ∈ [0, 1], we have

|σ̂2(α, τ̃ )− σ2(α, τ̃ )| = Op(rα(n)).

Based on Theorem 1 as well as some other regularity conditions, the

following Theorem 2 justifies the validity of our bootstrap-based procedure.

Theorem 2. Suppose the assumptions in Theorem 1 hold. Then, under

H0, for the individual test with α ∈ [0, 1], we have

sup
z∈(0,∞)

∣∣P(Tα ≤ z)− P(T bα ≤ z|X ,Y)
∣∣ = op(1), as n, p→∞. (3.32)

Theorem 2 demonstrates that we can uniformly approximate the distribu-

tion of Tα by that of T bα. The following Corollary further shows that our
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3.2 Theoretical results of the individual-based testing statistics

proposed new test Ψγ,α can control the Type I error asymptotically for any

given significant level γ ∈ (0, 1).

Corollary 1. Suppose assumptions in Theorem 2 hold. Under H0, we have

P(Ψγ,α = 1)→ γ, as n, p,B →∞.

3.2.2 Change point estimation

We next consider the performance of the individual test under H1. We

first give some theoretical results on the change point estimation. To that

end, some additional assumptions are needed. Recall Π = {j : β
(1)
j 6= β

(2)
j }

as the set with change points. For j ∈ {1, . . . , p}, define the signal jump

∆ = (∆1, . . . ,∆p)
> with ∆j := β

(1)
j − β

(2)
j . Let ∆min = minj∈Π |∆j| and

∆max = maxj∈Π |∆j|. We now introduce the following Assumption F.

Assumption F. There exist constants c > 0 and C > 0 such that

0 < c ≤ lim inf
p→∞

∆min

∆max

≤ lim sup
p→∞

∆max

∆min

≤ C <∞. (3.33)

Note that Assumption F is only a technical condition requiring that ∆min

and ∆max are of the same order. Theorem 3 provides a non-asymptotic

estimation error bound of the argmax-based individual estimators.

Theorem 3. Suppose ‖∆‖(s0,2) �
√

log(pn)/n and Assumption F hold.

For α = 1, suppose Assumptions A, B, C, E.2 - E.4 as well as n1/4 =

o(s) hold; For α = 0, suppose Assumptions A, C.1, D, E.2 - E.4 as
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3.2 Theoretical results of the individual-based testing statistics

well as lim
n,p→∞

s
1/2
0 s2

√
log(p)/n‖∆‖(s0,2) = 0 hold; For α ∈ (0, 1), sup-

pose Assumptions A, B, C, D, E.2 - E.4 as well as n1/4 = o(s) and

lim
n,p→∞

s
1/2
0 s2

√
log(pn)/n‖∆‖(s0,2) = 0 hold. Then, under H1, for each α ∈

[0, 1], with probability tending to one, we have

∣∣t̂α − t1∣∣ ≤ C∗(s0, τ̃ , α)
log(pn)

nSNR2(α, τ̃ )‖Σ∆‖2
(s0,2)

, (3.34)

where C∗(s0, τ̃ , α) > 0 is some constant only depending on s0, τ̃ and α.

Remark 2. Theorem 3 shows that our individual estimators are consistent

under the condition ‖∆‖(s0,2) �
√

log(pn)/n. Moreover, according to Ri-

naldo et al. (2021), for high-dimensional linear models, under Assumption

F, if ‖∆‖∞ � 1/
√
n, any change point estimator t̂ has an estimation lower

bound |t̂ − t1| ≥ c∗
1

n‖∆‖2
∞

, for some constant c∗ > 0. Hence, consider-

ing (3.33) and (3.34), with a fixed s0, Theorem 3 demonstrates that our

individual-based estimators are rate optimal up to a log(pn) factor.

3.2.3 Power performance

We discuss the power properties of the individual tests. Note that for

the change point problem, variance estimation under the alternative is a

difficult but important task. As pointed out in Shao and Zhang (2010), due

to the unknown change point, any improper estimation may lead to non-

monotonic power performance. This distinguishes the change point problem
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3.2 Theoretical results of the individual-based testing statistics

substantially from one-sample or two-sample tests where homogenous data

are used to construct consistent variance estimation. Hence, for yielding

a powerful change point test, we need to guarantee a consistent variance

estimation. Theorem 4 shows that the pooled weighted variance estimation

is consistent under H1. This guarantees that our proposed testing method

has reasonable power performance.

Theorem 4. Suppose the assumptions in Theorem 3 hold. Let rα(n) =√
s log(pn)/n if α = 1 and rα(n) = s

√
log(pn)

n
∨s 1

2 (
log(pn)

n
)
3
8 if α ∈ [0, 1).

Under H1, for each α ∈ [0, 1], we have

|σ̂2(α, τ̃ )− σ2(α, τ̃ )| = Op(rα(n)).

Using the consistent variance estimation, we are able to discuss the

power properties of the individual tests. Define the oracle signal to noise

ratio vector D = (D1, . . . , Dp)
> with

Dj :=


0, for j ∈ Πc

SNR(α, τ̃ )×
∣∣∣t1(1− t1)

(
Σ(β(1) − β(2))

)
j

∣∣∣, for j ∈ Π,

(3.35)

where SNR(α, τ̃ ) is defined in (2.13). Theorem 5 stated below shows that

we can reject the null hypothesis with probability tending to 1.

Theorem 5. Let εn := O(s
1/2
0 s
√

log(pn)/n)∨O(s
1/2
0 s2

√
log(pn)/n‖∆‖(s0,2)).

For each α ∈ [0, 1], assume the following conditions hold: When α = 1, sup-

pose that Assumptions A, B, C, E.2 - E.4 hold; When α = 0, suppose that
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3.2 Theoretical results of the individual-based testing statistics

Assumptions A, C.1, D, E.2 - E.4 as well as

lim
n,p→∞

s
1/2
0 s2

√
log(p)/n‖∆‖(s0,2) = 0 (3.36)

hold; When α ∈ (0, 1), suppose that Assumptions A - D, E.2 - E.4 as well

as (3.36) hold. Under H1, if D in (3.35) satisfies

√
n× ‖D‖(s0,2) ≥

C(τ̃ , α)

1− εn
s

1/2
0

(√
log(pn) +

√
log(1/γ)

)
, (3.37)

then we have
P(Φγ,α = 1)→ 1, as n, p,B →∞,

where C(τ̃ , α) is some positive constant only depending on τ̃ and α.

Theorem 5 demonstrates that with probability tending to one, our pro-

posed individual test with α ∈ [0, 1] can detect the existence of a change

point for high-dimensional linear models as long as the corresponding sig-

nal to noise ratio satisfies (3.37). Combining (3.35) and (3.37), for each

individual test, we note that with a larger signal jump and a closer change

point location t1 to the middle of data observations, it is more likely to

trigger a rejection of the null hypothesis. More importantly, considering

εn = o(1), Theorem 5 illustrates that for consistently detecting a change

point, we require the signal to noise ratio vector to be at least an order

of ‖D‖(s0,2) � s
1/2
0

√
log(pn)/n, which is particularly interesting to fur-

ther discuss under several special cases. For example, if we choose s0 = 1

and α = 1, our proposed individual test reduces to the least squared loss

based testing statistic with the `∞-norm aggregation. In this case, we re-

quire ‖D‖∞ �
√

log(pn)/n for detecting a change point. If we choose
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3.3 Theoretical results of the tail-adaptive testing statistics

α = 0 with the composite quantile loss, the test is still consistent as long

as ‖D‖∞ �
√

log(pn)/n. Note that the latter one is of special interest

for the robust change point detection. Hence, our theorem provides the

unified condition for detecting a change point under a general framework,

which may be of independent interest. Moreover, Theorem 5 reveals that

for detecting a change point, our individual-based method with α ∈ [0, 1]

can account for the tails of the data. For Model (2.3) with a fixed signal

jump ∆ and a change point location t1, considering (3.35) and (3.37), the

individual test Tα is more powerful with a larger SNR(α, τ̃ ).

3.3 Theoretical results of the tail-adaptive testing statistics

In this section, we discuss the size and power properties of the tail-

adaptive test Ψγ,ad defined in (2.31). To present the theorems, we need ad-

ditional notations. Let FTα(x) := P(Tα ≤ x) be the CDF of Tα. Then P̂α in

(2.28) approximates the following individual tests’ theoretical P -values de-

fined as Pα := 1−FTα(Tα). Hence, based on the above theoretical P -values,

we can define the oracle tail-adaptive testing statistic T̃ad = minα∈A Pα. Let

F̃T,ad(x) := P(T̃ad ≤ x) be the CDF of T̃ad. Then we can also define the

theoretical tail-adaptive test’s P -value as P̃ad := F̃T,ad(T̃ad). Recall P̂ad be

the low cost bootstrap P -value for P̃ad. In what follows, we show that P̂ad
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3.3 Theoretical results of the tail-adaptive testing statistics

converges to P̃ad in probability as n, p,B →∞.

We introduce Assumption E.1′ to describe the scaling relationships

among n, p, and s0. Let Gi = (Gi1, . . . , Gip)
> with Gi ∼ N(0,Σ) be-

ing i.i.d. Gaussian random vectors, where Σ := Cov(X1). Define

CG(t) =
1√
n

( bntc∑
i=1

Gi −
bntc
n

n∑
i=1

Gi

)
and TG = max

q0≤t≤1−q0
‖CG(t)‖(s0,2).

As shown in the proof of Theorem 2, we use TG = max
q0≤t≤1−q0

∥∥CG(t)
∥∥

(s0,2)
to

approximate Tα. For TG, let fTG(x) and cTG(γ) be the probability density

function (pdf), and the γ-quantile of TG, respectively. We then define h(ε)

as h(ε) = maxx∈I(ε) f
−1
TG

(x), where I(ε) := [cTG(ε), cTG(1− ε)].

With the above definitions, we now introduce Assumption E.1′:

(E.1)′ For any 0 < ε < 1, we require h0.6(ε)s3
0 log(pn) = o(n1/10).

Note that Assumption E.1′ is more stringent than Assumption E.1. The

intuition of Assumption E.1′ is that, we construct our tail-adaptive test-

ing statistic by taking the minimum P -values of the individual tests. For

analyzing the combinational tests, we need not only the uniform conver-

gence of the distribution functions, but also the uniform convergence of

their quantiles on [ε, 1− ε] for any 0 < ε < 1.

The following Theorem 6 justifies the validity of the low-cost bootstrap

procedure in Section 2.4.
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3.3 Theoretical results of the tail-adaptive testing statistics

Theorem 6. For Tad, suppose Assumptions A - D, E.1′, E.2 - E.4 hold.

Under H0, we have

P(Ψγ,ad = 1)→ γ, and P̂ad − P̃ad
P−→ 0, as n, p,B →∞.

We now discuss the power. Theorem 7 shows that under some regularity

conditions, our tail-adaptive test has its power converging to one.

Theorem 7. Let εn := O(s
1/2
0 s
√

log(pn)/n)∨O(s
1/2
0 s2

√
log(pn)/n‖∆‖(s0,2)).

Suppose Assumptions A - D, E.2 - E.4 as well as lim
n,p→∞

s
1/2
0 s2

√
log(p)/n‖∆‖(s0,2) =

0 hold. If H1 holds with

√
n× ‖D‖(s0,2) ≥

C(τ̃ , α)

1− εn
s

1/2
0

(√
log(pn) +

√
log(|A|/γ)

)
, (3.38)

then for Tad, we have

P(Ψγ,ad = 1)→ 1 as n, p,B →∞,

where C(τ̃ , α) is some positive constant only depending on τ̃ and α.

Note that based on the theoretical results obtained in Section 3.2, The-

orems 6 and 7 can be proved using some modifications of the proofs of

Theorems 3.5 and 3.7 in Zhou et al. (2018). Hence, we omit the detailed

proofs for brevity. Lastly, recall the tail-adaptive based change point es-

timator t̂ad = t̂α̂ with α̂ = arg minα∈A P̂α. According to Theorem 3, the

tail-adaptive estimator is also consistent.
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Figure 2: Empirical sizes of the individual and tail-adaptive tests for models

with banded covariance matrix under the setting of (n, p) = (200, 400). The

results are based on 1000 replications.

4. Simulation Studies

We have carried out extensive numerical studies to examine the finite

sample performance of our proposed new methods. To save space, we put

the detailed model settings and results in Appendix ?? of the supplementary

materials. The simulation results, including size, power, and single and
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Figure 3: Empirical powers of the individual and tail-adaptive tests for mod-

els with banded covariance matrix under the setting of (n, p) = (200, 400).

The change point is at t1 = 0.5. The results are based on 1000 replications

with B = 200 for each replication.

multiple change point estimation, can be summarized as follows:

(i) Figure 2 shows that the proposed individual and tail-adaptive tests

can control the size very well under various model settings with different

tail structures including both lighted and heavy tails. The individual test
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Figure 4: Boxplots of the scaled Hausdorff distance of different methods

for detecting multiple change points based on 100 replications. The three

change points are at (0.25, 0.5, 0.75). VPWBS and DPDU are techniques

in Wang et al. (2021) and Xu et al. (2022). The constant c represents the

signal strength and a larger c denotes stronger signal jump.

with α = 0 can even control the size well for Student’s t2 and Cauchy

distributions. (ii) In terms of power performance, as shown in Figure 3, the

individual tests perform differently under various tail structures. However,
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the tail-adaptive method can have powers close to its best individual one

whenever the errors are lighted or heavy-tailed. (iii) For multiple change

point estimation, similar to the power analysis, the performance of the

individual estimators depends on the underlying error distributions. Figure

4 indicates that the tail-adaptive estimator can perform close to its best

individual estimator. Moreover, compared with the existing techniques, the

tail-adaptive method enjoys better performance for multiple change point

detection. (iv) For the choice of s0, the size performance is stable across

different choices of s0 under H0. Moreover, under H1, choosing s0 > 1

can have high powers and accuracies than using s0 = 1 for change point

testing and estimation. In practice, we recommend taking s0 = blog(p)c.

In summary, the numerical results are consistent with our theory developed

in Section 3 and demonstrate the advantages of our tail-adaptive method

over the existing methods.

5. Summary

In this article, we propose a general tail-adaptive approach for simul-

taneous change point testing and estimation for high-dimensional linear

regression models. The method is based on the observation that both the

conditional mean and quantile change if the regression coefficients have a
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change point. Built on a weighted composite loss, we propose a family of

individual testing statistics with different weights to account for the un-

known tail structures. Then, we combine the individual tests to construct

a tail-adaptive method, which is powerful against sparse alternatives under

various tail structures. In theory, with mild conditions on the regression

covariates and errors, we show the optimality of our methods theoretically

in terms of size, power, and change point estimation. In the presence of

multiple change points, we combine our tail-adaptive approach with the

WBS technique to detect multiple change points. With extensive numerical

studies, our proposed methods have better performance than the existing

methods under various model setups.
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size, power, multiple change point detection. In addition, an interesting

application to the S&P100 data analysis is also provided.
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