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Abstract: Assessing causal effects in the presence of unmeasured confounding is

challenging. Although auxiliary variables, such as instrumental variables, are

commonly used to identify causal effects, they are often unavailable in practice

due to stringent and untestable conditions. To address this issue, previous re-

searches have utilized linear structural equation models to show that the causal

effect is identifiable when noise variables of the treatment and outcome are both

non-Gaussian. In this paper, we investigate the problem of identifying the causal

effect using the auxiliary covariate and non-Gaussianity from the treatment. Our

key idea is to characterize the impact of unmeasured confounders using an ob-

served covariate, assuming they are all Gaussian. We demonstrate that the causal

effect can be identified using a measured covariate, and then extend the identifica-

tion results to the multi-treatment setting. We further develop a simple estimation

procedure for estimating causal effects and derive a
√
n-consistent estimator. Fi-

nally, we evaluate the performance of our estimator through simulation studies

and apply our method to investigate the effect of the trade on income.
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1. Introduction

Identifying and estimating the causal effect of a treatment on an out-

come is crucial in practice, as it provides insight into the effectiveness of

a given intervention. However, the existence of unmeasured confounding

may be a core issue in observational studies. A common assumption of

causal inference using observational data is exchangeability, which requires

that one has measured a sufficiently rich set of covariates (Rosenbaum and

Rubin, 1983). This is often challenged because investigators usually cannot

accurately learn the confounding mechanism from the measured covariates

in real scenarios.

Numerous strategies have been proposed for addressing identification

issue of causal effects under unmeasured confounding. With a valid instru-

mental variable (IV) that satisfies relevance, independence, and exclusion

restriction assumption, the causal effect can be identified for a binary treat-

ment (Angrist et al., 1996) or a continuous treatment (Kasy, 2014) under

certain conditions. Proxy variables can also be used to identify the causal

effect, and certain types of proxy variables, known as negative control vari-
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ables, are leveraged for mitigating confounding bias in observational stud-

ies (Lipsitch et al., 2010; Kuroki and Pearl, 2014; Miao et al., 2018; Tchetgen

et al., 2020). Among them, Miao et al. (2018) provides sufficient conditions

for nonparametric identification of the causal effect using double negative

control variables. For an overview of proxy variable based identification

strategies, we refer readers to Tchetgen et al. (2020).

However, auxiliary variables like instrumental variables or proxy vari-

ables, may be unavailable in real scenarios because of stringent assumptions.

To address this, many researchers focus on employing valid instrumental

variables from a candidate instrument set (Kang et al., 2016; Guo et al.,

2018; Windmeijer et al., 2019) or imposing additional nonlinear model as-

sumptions when only an invalid IV is available (Liu et al., 2022; Sun et al.,

2022). But the identification issue without a valid IV cannot be properly

tackled even under the linear model setting. In comparison, with linear non-

Gaussian model structure, identifying causal order or causal effects is still

possible in the absence of auxiliary variables. The work of Shimizu et al.

(2006) performs LiNGAM (short for Linear Non-Gaussian Acyclic Model)

analysis and shows the causal structure is identifiable using independent

component analysis (Stone, 2002). Then the paper from Hoyer et al. (2008)

further slightly relax the non-Gaussian assumptions of LiNGAM. Follow-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



ing this, Hoyer et al. (2008) extends LiNGAM to linear non-Gaussian

settings with hidden variables and shows that the causal order and the

causal effect are both identifiable. Following their promising work, many

researchers have accomplished work for causal discovery problems (Shimizu

et al., 2009, 2011; Entner and Hoyer, 2011; Chen and Chan, 2013; Salehka-

leybar et al., 2020; Wang and Drton, 2020). These articles assume non-

Gaussianity, where all noise variables are non-Gaussian, except for Chen

and Chan (2013), who considers the Gaussian confounder setting. Mean-

while, the use of non-Gaussianity to learn causal effects under hidden en-

dogeneity is a common approach in econometrics. For example, Cattaneo

et al. (2012) investigates the optimal inference problem with an IV when er-

ror variables are non-Gaussian. The research from Park and Gupta (2012)

proposed that if the outcome error is Gaussian and the treatment is non-

Gaussian, then the identification can be achieved by modeling the joint

distribution of the endogenous regressor and the error term as a Gaussian

copula. All of these researches reveal the potential of non-Gaussianity for

identifying causal effects.

Regarding multiple treatments, identification issue becomes more dif-

ficult. The research of Wang and Blei (2019) proposes a deconfounder

method for identifying multiple treatment effects. They establish a factor
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model for treatments by assuming treatments are conditionally independent

given confounders and adjust confounding bias using the estimated con-

founder. Following their work, various studies, comments, and discussions

have emerged in the literature regarding multiple treatments (D’Amour,

2019; Imai and Jiang, 2019; Miao et al., 2023; Kong et al., 2022). They

consider identifying effects of multiple causally independent treatments us-

ing a factor model and have highlighted the necessity of using auxiliary

variables or non-Gaussianity for identification. For instance, Kong et al.

(2022) provides identification of causal effects for a binary outcome us-

ing non-Gaussianity from an auxiliary latent variable in the binary choice

outcome model. However, identifying the causal effect for a continuous

outcome, especially when treatments can be causally correlated, remains a

unsolved challenge.

In this paper, we establish the identification results of the causal effect

using a measured covariate and the non-Gaussianity from the treatment.

This provides a new perspective for identifying the causal effect, which

suggests that finding some Gaussian covariate instead of a valid IV in a

candidate instrument set may also work. Additionally, we show that our

proposed method can be extended to handle scenarios involving multiple

treatments, among which the minimum number of required Gaussian co-
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variates equals the smaller dimension between the dimension of treatments

and the dimension of unmeasured confounders. We finally develop a simple

estimation procedure for calculating causal effects using our strategy and

derive a
√
n-consistent estimator. The simulation results show that our es-

timator can provide favorable performance. We finally apply our method to

study the effect of the trade on the income, revealing the similar conclusion

as the previous researches using a valid IV.

The remainder sections are organized as follows. Section 2 provides

the framework of our setting, including model and identification results in

Section 2.1, and the extension to multi-treatment scenario in Section 2.2.

In Section 3, we present a simple estimation process and the
√
n-consistent

estimator. We evaluate the finite-sample performance of the proposed es-

timator in Section 4. Then, in Section 5, we demonstrate the proposed

strategy using the cross-sectional data for the year 2019 from the World

Bank. Section 6 concludes the paper and provides several notable future

research topics. The appendix presents the proof for Theorem 1. Additional

proofs and simulation results can be found in the supplementary material.
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2. Framework

2.1 Model and Identification

Firstly, we consider the single treatment case. Denote A ∈ R1 as a

treatment, Y ∈ R1 an outcome, Z ∈ R1 an observed covariate, U ∈ Rt

the vector of unmeasured confounders. For simplicity, we consider a single

measured covariate, but the same conclusion holds by conditioning on other

measured covariates implicitly. Without loss of generality, we assume U,Z

both have zero mean and unit variance. We propose the following model

A = γZ + λTU + εA, (2.1a)

Y = αA+ βZ + sTU + εY , (2.1b)

where (Z,U) are Gaussian with cov(Z,U) = ξT, εA is non-Gaussian with

non-zero variance, and εA ⊥⊥ (Z,U). The noise term εY satisfies E(εY |

A) = 0. Note that we do not require any prior knowledge about the

distribution of εY , so whether εY follows Gaussian distribution does not

change the following conclusion, which differs from the requirement of Hoyer

et al. (2008) or Park and Gupta (2012). Also, the Gaussianity of Z can

be directly tested and if we admit the Gaussianity of U and the linear
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2.1 Model and Identification

model assumption, then the non-Gaussianity of εA is equivalent to the non-

Gaussianity of treatment A.

Figure 1 provides a graphical illustration of our model. According to

the potential outcome framework (Rubin, 2005), Ya is denoted as the out-

come for an individual under a potential treatment A = a. We maintain

the causal consistency assumption throughout the paper, implying no in-

terference between units and there is only one version of the potential out-

come (Rubin, 1980). The average causal effect of A on Y for a unit increase

of A can be defined as follows

ACEA→Y = E(Ya+1 − Ya) = α.

The main task is to identify the causal parameter α from observational

data of (Z,A, Y ). We summarize the identification results in the following

theorem.

Theorem 1. Under model (2.1a)-(2.1b) and assuming cov(Z,A) ̸= 0, the

effect of A on Y , namely α, is identifiable.

The above theorem establishes the identifiability of the causal effect α

when the known source of non-Gaussianity arises from εA. As previously

demonstrated, this conclusion holds regardless of the distribution of εY . Un-
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2.1 Model and Identification

Z A Y

U

α

Figure 1: Causal diagram with an observed covariate Z, a vector of unmea-
sured confounders U , a treatment A and an outcome Y .

like LiNGAM analysis assuming all noise variables to be non-Gaussian, fo-

cusing on the identification of causal order, we only require non-Gaussianity

from εA for identifying a causal effect α, which also differs from Park and

Gupta (2012) assuming outcome error to be Gaussian.

The non-Gaussianity of εA ensures that E(Z | A) is a nonlinear func-

tion of A. Furthermore, the Gaussianity of (Z,U) implies that E(U | A)

is proportional to E(Z | A), which enables us to characterize the impact

of U with Z when conditioning on A. Intuitively, the Gaussianity helps us

separate the effect of A on Y from the effect of (Z,U) on Y . Moreover,

the non-Gaussianity of εA makes it possible to identify α through the linear

independence of A and E(Z | A). More generally, we can also include the

interaction terms and some observed non-Gaussian covariates into consid-

eration. This can be summarized in the following two corollaries.

Corollary 1. Replacing the model (2.1b) by Y = αA+βZ + sTU + rZA+
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2.1 Model and Identification

wTUA+ εY and also assuming (i) cov(Z,A) ̸= 0, (ii) (Z,U) are Gaussian,

(iii) εA is non-Gaussian with non-zero variance, and (iv) (Z,U, εA, εY ) have

zero mean, then the effect of A on Y , namely α, is identifiable.

Corollary 2. Replacing the models (2.1a)-(2.1b) by the following models

with independent observed non-Gaussian covariates Z̃ ⊥⊥ (Z,U)

A = γZ + γ̃TZ̃ + λTU + εA, (2.2a)

Y = αA+ βZ + β̃TZ̃ + sTU + εY , (2.2b)

and also requiring the same distributional assumptions as Corollary 1, then

the effect of A on Y , namely α, is identifiable.

Note that we center (Z,U, εA, εY ) to be of zero mean in order to ensure

ACEA→Y = E(Ya+1−Ya) = α, so α still represents the corresponding causal

effect. Also, interaction terms and observed non-Gaussian covariates can

be simultaneously taken into consideration as long as we combine the two

corollaries. Throughout the following parts of the paper, we focus on mod-

els (2.1a)-(2.1b) for better illustration. Actually, our identification result

provides a new perspective for identifying causal effects in the presence of

unmeasured confounding. For example, with a candidate instrument set,

Kang et al. (2016) establishes the identification result of average causal ef-
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2.1 Model and Identification

fect with a candidate instrument set by assuming that at least 50% of the

instruments are valid. However, our identification results demonstrate that

the causal effect α can be identified using an observed Gaussian covariate

under the assumptions that εA is non-Gaussian and U is Gaussian. This

is sufficient for identification, even when all candidate instruments are in-

valid. In such a situation, an alternative is to perform normality tests in

the candidate instrument set instead of verifying stringent and untestable

conditions of instrumental variable. Furthermore, the measured covariate

Z can serve as an invalid negative control variable, eliminating the need to

find two valid negative control variables. The detailed proof of Theorem 1

can be found in the Appendix. The following example provides a specific

illustration of Theorem 1.

Example 1. Suppose Z,U, εY are three independent random variables fol-

lowing standard normal distribution, εA ∼ U(−1, 1) and γ = λ = 1, we

know that

E(Y | A) = αA+ βE(Z | A) + sE(U | A) = αA+ β̃E(Z | A),

where β̃ is some constant because E(U | A) is proportional to E(Z | A)

according to the proof of Theorem 1. We show the contradiction if E(Z | A)
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2.1 Model and Identification

is linear in A:

E(Z | A) = kA⇒ E{(Z − kA)f(A)} = 0, ∀f(·),

which implies k = E{Zf(A)}/E{Af(A)}. So we have

f(A) = A⇒ k =
E(ZA)

E(A2)
=

3

7
, f(A) = A3 ⇒ k =

E(ZA3)

E(A4)
=

35

81
,

where k takes different values for different f(·). This is a contradiction,

implying that E(Z | A) cannot be linear in A. Hence, A and E(Z | A)

must be linearly independent, which implies that causal parameter α will

be identifiable.

The above example illustrates the implication of non-Gaussianity from

εA. Such kind of non-Gaussianity allows us to distinguish A from E(Z | A).

The similar idea can also be naturally extended to the nonlinear model

setting, as illustrated in the following corollary.

Corollary 3. Replace the outcome model in (2.1b) by Y = f(A) + βZ +

sTU + ϵY , then f(·) is identifiable if (ϵA, Z, U) is Gaussian and either one

of the following conditions holds

(i) lima→∞ f(a)/|a| = 0;
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2.1 Model and Identification

(ii) f(A) does not include the linear term of A.

When we replace model (2.1b) by Y = f(A) + βZ + sTU + ϵY , the

main task becomes separating f(A) from E(Z | A). A natural choice for

simplifying the discussion is by assuming that ϵA, Z and U are Gaussian. In

this case, E(Z | A) is linear in A and hence, we only need to separate f(A)

from A. The first condition in the above corollary is the so-called sublinear

growth condition derived from the recent nonlinear causal discovery re-

search (Li et al., 2023). This implies that causal effects are still identifiable

under Gaussian graphical modeling framework with nonlinear causation.

Intuitively, the philosophy of separating f(A) from A is consistent with

that in Theorem 1 by separating A from E(Z | A), as demonstrated in the

following example.

Example 2. Assume Z,U, εY , εA are four independent random variables

following standard normal distribution in model (2.1a)-(2.1b), we replace

the linear outcome model by the following nonlinear additive model

Y = f(A) + βZ + sU + εY .
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2.2 Extensions

Taking conditional expectation with respect to A gives

E(Y | A) = f(A) + βE(Z | A) + sE(U | A) = f(A) + ψA,

where ψ is some constant. The main task is to identify f(·), which requires

an additional assumption on f(·), e.g., the sublinear growth assumption

from (Li et al., 2023). This assumption means lima→∞ f(a)/|a| = 0 and

ψ can be intuitively regarded as the slope in outcome model when we see

the tail of A. Once ψ is identified, f(·) can be immediately identified and

estimated nonparametrically. If the Taylor expansion of f(A) does not

include the linear term of A, it is still possible to identify f(·).

This example implies that generalizing to a nonlinear outcome model

can also be achieved. However, for the sake of simplicity, we restrict our

attention to the linear setting. Next, we extend our identification results to

the multi-treatment setting.

2.2 Extensions

We now extend our identification results from the single treatment case

to the multiple treatments setting. Here, we omit the discussion with

interaction terms and some observed non-Gaussian covariates because the
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2.2 Extensions

similar conclusions, like those in Corollaries 1 and 2, can be easily derived

for multi-treatment cases. Let A ∈ Rp, Z ∈ Rl and U ∈ Rt, we consider the

following linear model

A = ΓZ + ΛU + εA, (2.3a)

Y = αTA+ βTZ + sTU + εY , (2.3b)

where Γ ∈ Rp×l,Λ ∈ Rp×t, and (Z,U) are jointly Gaussian with var(Z) =

Il, var(U) = It, and cov(Z,U) = Σ. We summarize our identification results

for multiple treatments in the following theorem.

Theorem 2. Under model (2.3a)-(2.3b), the direct effect of each Aj on Y ,

namely αj, is identifiable if the following conditions hold

(i) A and E(Z | A) are linearly independent;

(ii) rank(Γ + ΛΣT,ΓΣ + Λ) = rank(Γ + ΛΣT),

where rank(Σ1,Σ2) represents the rank of the matrix consisting of all columns

of Σ1 and Σ2.

The proof of Theorem 2 can be found in the supplementary material.

This theorem provides sufficient conditions for identifying causal effects of

multiple treatments simultaneously. In practice, the conditions outlined by

this theorem are relatively mild.
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2.2 Extensions

• Condition (i) actually requires E(Z | A) to be nonlinear in A in the sin-

gle treatment case with Z ∈ R1, which is equivalent to non-Gaussianity

of εA. Moreover, Condition (i) can be tested using observational data

of (Z,A).

• Condition (ii) is sufficient to guarantee that E(U | A) can be expressed

as the linear combination of E(Z | A), which is equivalent to requiring

cov(Z,A) ̸= 0 in the single treatment case. More generally, condition

(ii) implies that the column space of ΓΣ+Λ is subsumed in the column

space of Γ + ΛΣT, which demonstrates that the equation cov(U,A) =

Φ · cov(Z,A) has a solution for Φ. Condition (ii) holds if cov(A,Z) =

Γ + ΛΣT is of full row rank, which can be verified using observational

data of (Z,A).

Therefore, by finding a proper vector of Gaussian covariates Z that satisfies

both the linear independence condition (i) and the rank condition (ii), we

can identify the multiple treatment effects α.

How many observed Gaussian covariates do we need for identification of

α? We regard Z as some randomized variable for convenience, implying that

Z and U are independent with Σ = 0. In this case, condition (ii) reduces to

rank(Γ,Λ) = rank(Γ). Consider the special case rank(Λ) = min(p, t), then

the dimension of Z should be at least min(p, t). This demonstrates that the
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2.2 Extensions

minimum number of required Gaussian covariates equals the smaller dimen-

sion between the dimension of treatments and the dimension of unmeasured

confounders. Especially in the single treatment case, one observed Gaus-

sian covariate is sufficient for identifying α. Under the scalar unmeasured

confounder setting with t = 1, one-dimensional Z will also be enough for

identification when Γ is proportional to Λ.

Unlike the multiple treatments setting considered in Wang and Blei

(2019), we do not assume that treatments are conditionally independent

given confounders. Instead, we utilize a linear model with distributional

assumptions that permits causal relationships among treatments, even if

the causal structure of A is unknown. In the context of multiple causally

independent treatments, Kong et al. (2022) provides identification results

for binary outcome by assuming a linear Gaussian model for treatments

under scalar unmeasured confounder setting. They require an additional

auxiliary latent variable to be non-Gaussian in the binary choice outcome

model. Our identification results serve as a complement of Kong et al.

(2022) for identifying effects of multiple treatments with a continuous out-

come, while not restricting the treatment model to have a factor structure

and not assuming the dimension of unmeasured confounder to be one. The

following example gives an illustration of Theorem 2 when effects of two
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2.2 Extensions

Z

U

A1

A2

Y

α1

α2

Figure 2: Causal diagram with observed covariates Z = (Z1, Z2), unmea-
sured confounders U , two treatments (A1, A2) and an outcome Y .

causally correlated treatments are simultaneously of interest.

Example 3. Suppose we have two treatments A1, A2, and four independent

random variables U, εY , and Z = (Z1, Z2), all following standard normal

distributions. Let εA1 ∼ U(−1, 1) and εA2 ∼ U(−2, 2). The corresponding

model is as follows (Figure 2 gives a graphical illustration)

A1 =Z1 + U + εA1 ,

A2 =A1 + Z2 + U + εA2 ,

Y =α1A1 + α2A2 + β1Z1 + β2Z2 + sU + εY ,

where the covariance matrix cov(A,Z) is of full row rank with cov(A1, Z1) =

cov(A2, Z1) = cov(A2, Z2) = 1 and cov(A1, Z2) = 0, so condition (ii) of

Theorem 2 is satisfied. To verify condition (i), we need to prove if there
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2.2 Extensions

exists x1, x2, x3, x4 subject to

x1A1 + x2A2 + x3E(Z1 | A1, A2) + x4E(Z2 | A1, A2) = 0,

then x1 = x2 = x3 = x4 = 0. This immediately implies

E{(x1A1 + x2A2 + x3Z1 + x4Z2) · g(A1, A2)} = 0, ∀g(·).

We take g(A1, A2) ∈ {A1, A2, A
3
1, A

3
2} and obtain the following linear equa-

tions 

7/3 10/3 1 0

10/3 31/3 1 1

121/5 131/5 7 0

516/5 1197/5 31 31





x1

x2

x3

x4


= 0,

which implies that the unique solution is x1 = x2 = x3 = x4 = 0 because the

determinant of coefficient matrix is −636, and both conditions of Theorem 2

are satisfied. Thus, the effects of A = (A1, A2)
T on Y , namely α = (α1, α2),

are identifiable.

The above example demonstrates the implications of our identification

results for two causally correlated treatments. Unlike existing methods, our

approach does not require the treatment model to have a factor structure
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where treatments are conditionally independent given confounders. More-

over, our results can be viewed as an extension of Kong et al. (2022) from

binary outcome to continuous outcome using non-Gaussianity. The mea-

sured covariates Z can be treated as invalid instruments or proxy variables,

and their distributional assumptions can be verified empirically. While ex-

tending our results to a nonlinear outcome model for multiple treatments

is feasible, we omit it here for simplicity.

3. Estimation and Asymptotics

Before proceeding with the estimation procedure, it is essential to check

all the required conditions using the observational data of (Z,A, Y ). For

instance, we may use the Anderson-Darling test (Anderson and Darling,

1952) to assess the Gaussianity of Z and the non-Gaussianity of A. Ad-

ditionally, depending on the number of treatments, we may need to verify

the conditions in either Theorem 1 or Theorem 2. In the single treatment

case, verifying cov(A,Z) ̸= 0 suffices. The only untestable assumption is

the Gaussianity of the unmeasured confounders U .

After obtaining all the testable analysis results, we can construct a two-

step estimator. In the first step, we estimate the conditional expectation

E(Z | A) using either a parametric working model or standard nonparamet-
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ric regression methods. Although parametric methods such as maximum

likelihood are suitable for estimation, they are prone to model misspecifica-

tion. Alternatively, nonparametric methods or machine learning techniques,

such as random forest and multi-layer perceptron, have gained wide popu-

larity because of their robustness to model misspecification (Bickel et al.,

1993; Chernozhukov et al., 2022).

After obtaining the estimator Ê(Z | A) for E(Z | A), the second step

involves directly regressing Y on A and Ê(Z | A) to construct a consistent

estimator α̂ for α. The estimation performance of α̂ heavily relies on the

precision of the conditional expectation estimator. The final estimator of α

is given by the formula

α̂ = X̂11

(
1

n

n∑
i=1

AiYi

)
+ X̂12

{
1

n

n∑
i=1

Ê(Z | Ai)Yi

}
,

where

X̂ =

X̂11 X̂12

X̂T
12 X̂22

 =


1

n

n∑
i=1

 Ai

Ê(Z | Ai)


 Ai

Ê(Z | Ai)


T


−1

.

The estimation process is summarized in the following procedure called

EUNC (short for Estimation Using Non-Gaussianity and Covariates).
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Input: n i.i.d. data {Zi, Ai, Yi}ni=1

Output: Estimator α̂ for effects of A on Y

1: procedure EUNC(input)

2: Center the data of (Z,A, Y ) to be of zero mean.

3: Test H0 :

Z is Gaussian, A is non-Gaussian and cov(A,Z) is of full row rank.

4: if H0 is true then

5: Use nonparametric methods to obtain estimator Ê(Z | A).

6: if A, Ê(Z | A) are linearly correlated

7: return FAIL

8: end if

9: Regress Y on A, Ê(Z | A)

10: else return FAIL

11: end if

12: return the coefficient in front of A as α̂

13: end procedure

The EUNC procedure can also accommodate the situations with additional

interaction terms like Corollary 1 or some observed non-Gaussian covariates

like Corollary 2. If interaction terms AUT or AZT is present, we can in-

clude ZE(Z | A)T in the EUNC procedure. If some observed non-Gaussian
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covariates Z̃ is present, we should regress Y on A, Z̃, Ê(Z | A, Z̃) rather

than A, Ê(Z | A) at the final step of the EUNC procedure. The estimator

obtained from the above procedure is
√
n consistent, which is guaranteed

when the convergence rate of Ê(Z | A) is at least n−1/4. This convergence

rate can be achieved by a correctly specified parametric model (Hansen,

1982) or by using existing nonparametric techniques (Chernozhukov et al.,

2022). We summarize this in the following theorem, and the proof is given

in the supplementary material.

Theorem 3. Suppose we obtain a uniformly consistent estimator Ê(Z | A)

satisfying

sup
A∈A

|Ê(Z | A)− E(Z | A)| = op(n
−1/4),

where A is the support of A and n is the sample size, then α̂ is root-n

consistent for α in the following sense

√
n(α̂− α)

d→ N(0,Σα),
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where

Σα = var

{
X11AY +X12E(Z | A)Y +

∂α(µ)

∂µ
ξ

}
,

ξ = vec{AAT, E(Z | A)AT, E(Z | A)E(Z | A)T}, µ = E(ξ),

α(µ) = X11E(AY ) +X12E{E(Z | A)Y },

and

X =

X11 X12

XT
12 X22

 = E


 A

E(Z | A)


 A

E(Z | A)


T


−1

.

Here, the notation vec(·) represents the vectorization of the corresponding

matrix. The asymptotical variance can be estimated by the sample variance

with all expectation terms replaced by their sample means. In our simula-

tion and application parts, we will implement the bootstrap procedure in

order not to introduce complex variance expressions.

4. Simulation Study

In this section, we conduct several experiments to evaluate the perfor-

mance of the proposed estimator. We compare our approach with two stage

least square method (2SLS).
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We generate seven simulated datasets based on the model (2.1a)-(2.1b).

The non-Gaussian noise εA is drawn from exponential distribution with

rate 0.1 while Z,U and εY are all marginally following a standard normal

distribution. The value of α will be fixed at 1, the values of λ, s will be

fixed at 0.5, while the values of γ, β, ξ will vary. If the corresponding edge

in Figure 1 is present, we will set the corresponding parameter to a nonzero

number, i.e., γ = β = 1, ξ = 0.5; otherwise, it will be set to 0.

The purpose of these settings is to compare the performance of our

proposed estimator with the commonly used 2SLS estimator. Cases 1

and 2 evaluate the performance of our estimator in the valid instrumen-

tal variable (IV) setting, with Case 1 representing a strong IV scenario

with (γ, β, ξ) = (1, 0, 0), and Case 2 representing a weak IV scenario with

(γ, β, ξ) = (0.01, 0, 0). Cases 3-7 are designed to compare the two estimators

in the presence of invalid IVs due to direct effects (Z → Y ) or unmeasured

confounding. For more information on all simulated scenarios, please refer

to Table 1.

We consider sample sizes of n ∈ {100, 300, 500} and perform 300 Monte

Carlo simulations for each scenario. We employ the gradient boosting

method to estimate E(Z | A) (Friedman, 2002). The simulation results

are summarized in Table 1.
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• For Cases 1-2, covariate Z can be viewed as a valid instrumental vari-

able (IV). In Case 1, both methods exhibit relatively small bias, but

our method has smaller standard errors and more significant coverage

probability. However, in the weak IV setting (Case 2), the 2SLS estima-

tor becomes more unstable with increased variances and conservative

coverage probability, as reported in previous literature (Stock et al.,

2002).

• Cases 3-5 allow for the exclusion restriction or independence assump-

tion of the IV to be violated. In such cases, our EUNC procedure still

yields a consistent estimator, while 2SLS results in a relatively large

bias and poor coverage probability. Thus, we can conclude that em-

ploying a possibly invalid IV using the 2SLS method will provide worse

estimation results.

• In Cases 6 and 7, covariate Z can be regarded as a non-differential and

an outcome-inducing confounding proxy (Miao et al., 2018). Though

A and Z are conditionally independent, the requirement cov(Z,A) ̸= 0

in Theorem 1 still holds due to the presence of latent confounders U .

The EUNC method exhibits remarkable robustness against deviations

from invalid IV estimation and achieves superior performance across

all evaluation metrics.
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We can see that the EUNC procedure always provides favorable estimation

results even when all edges in Figure 1 are present. More simulation results

including two treatments case and sensitivity analysis for the Gaussianity

of U are provided in the supplementary material.

Table 1: Comparison results of EUNC procedure and 2SLS. Here ✓ implies
the corresponding edge exists and × means the absence of the edge. SD
represents the standard deviation and 95% CP is the coverage proportion
of the 95% asymptotic confidence intervals. Results are averaged over 300
repeated experiments. The bias and SD have been multiplied by 1000.

Z → A Z → Y U → Z
Sample
size

Bias SD 95% CP

EUNC 2SLS EUNC 2SLS EUNC 2SLS

Case 1 ✓ × ×
100 0.8 35.2 15.2 4396.1 96.7% 97.7%
300 0.5 28.6 7.7 2799.4 95.7% 99.0%
500 0.4 29.0 5.8 1449.2 96.0% 98.3%

Case 2
✓

(weak)
× ×

100 3.1 57.7 15.4 6169.1 97.3% 92.7%
300 2.3 18.5 8.2 18612.8 98.3% 94.3%
500 2.3 150.8 6.4 8043.3 95.7% 93.7%

Case 3 ✓ ✓ ×
100 6.4 2394.6 20.7 44166.6 94.0% 95.0%
300 3.1 1420.3 9.9 29372.0 97.3% 93.7%
500 1.5 1442.4 6.9 23295.0 95.3% 94.7%

Case 4 ✓ × ✓
100 0.7 175.6 14.9 7749.6 97.7% 95.3%
300 0.7 282.4 7.5 6789.6 94.3% 93.7%
500 1.2 77.3 5.7 6341.5 94.7% 87.3%

Case 5 ✓ ✓ ✓
100 9.5 835.8 22.4 185903.3 96.7% 91.7%
300 3.6 1148.0 10.0 14379.8 96.7% 86.7%
500 2.4 1210.0 7.1 81481.0 97.0% 81.7%

Case 6 × × ✓
100 1.7 1978.0 15.1 8744.9 97.0% 87.7%
300 0.2 476.9 8.4 19060.6 97.7% 89.7%
500 0.7 1017.0 6.5 22641.7 96.3% 91.0%

Case 7 × ✓ ✓
100 1.8 713.7 25.4 56002.6 97.0% 89.0%
300 1.6 82528.3 14.6 111138.4 97.3% 89.7%
500 0.9 1605.3 10.6 88177.2 96.3% 89.7%
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5. Application

In this section, we apply our method to a real-world dataset inves-

tigating the impact of the trade on income. We prioritize the search for

Gaussian covariates, rather than focusing on identifying valid instrumental

variables from a candidate set like previous literatures (Frankel and Romer,

1999; Kukla-Gryz, 2009; Lin et al., 2022; Fan and Wu, 2022). One of the

main challenges in estimating the effect of trade on income is the potential

endogeneity due to unmeasured common confounders for trade and income.

Based on the study of Lin et al. (2022), we consider a modified structural

model between income and trade share as follows:

Ỹi = b+ αAi + βZ̃i + εi, (5.1)

where Ỹi = log(Yi), Z̃i = log(Zi), and Yi is income per capita in country i,

Ai is the share of international trade to GDP, Zi is an observed covariate,

and εi is an endogenous error term.

We collect cross-sectional data for the year 2019 from the World Bank

and use 154 records for analysis after removing missing values. The trade

share A is a non-Gaussian treatment because it fails to pass the Anderson-

Darling test. We then perform the Anderson-Darling test to select an ob-
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Figure 3: Confidence intervals of causal effect estimates for our method and
2SLS. Here GB, RF, Sieve and MLP represent Gradient Boosting, Random
Forest, sieve estimation and Multi-Layer Perceptron. These methods are
respectively used for calculating conditional expectation in our method.

served Gaussian covariate Z̃, and the log value of total annual freshwater

withdrawals (in billion cubic meters) is finally regarded as a Gaussian co-

variate with a p-value of 0.75.

The results are summarized in Figure 3. We employ four nonparametric

methods for calculating E(Z̃ | Ã) and use 2SLS estimator as a compari-

son. The 95% confidence intervals are obtained by nonparametric bootstrap

method. Our method yields significantly positive effect estimates regard-

less of the method used for estimating the conditional expectation. This

corroborates with previous findings using instrumental variables (Frankel

and Romer, 1999; Kukla-Gryz, 2009; Lin et al., 2022; Fan and Wu, 2022).

In contrast, when considering the Gaussian covariate as a valid IV in the
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2SLS method, there is no statistically significant evidence suggesting that

the trade share affects income. These results indicate that our method

can yield similar conclusions by employing a Gaussian covariate instead

of a valid IV, which can be particularly useful when only potentially in-

valid instrumental variables are available. Practitioners can also include

some interaction terms or observed non-Gaussian covariates into analysis

to enhance credibility, as demonstrated by Corollary 1 and Corollary 2.

6. Conclusions and Future work

Our study focuses on the problem of identifying causal effects using

auxiliary covariates and non-Gaussianity from the treatment. We present

sufficient conditions for identifying effects of both single and multiple treat-

ments using observed Gaussian covariates, which can be partially verified

with observational data. Our results reveal that for a single treatment, iden-

tifying the causal effect can be facilitated by finding a Gaussian covariate

with other non-Gaussian covariates being conditioned, rather than a valid

instrumental variable. Additionally, our identification results for multiple

treatments indicate that the minimum number of required Gaussian co-

variates equals the smaller dimension between the dimension of treatments

and the dimension of latent confounders. Treatments can also be causally
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correlated without a factor structure.

There are several notable aspects of the approach developed in this pa-

per. First, as illustrated in our second example, we can extend from a linear

setting to a nonlinear outcome model. Second, we can perform sensitivity

analysis to evaluate the robustness of Gaussian assumptions of latent con-

founders. Third, simulation studies show that our method has the potential

to handle the weak instrumental variable problem. Thus, comparing theo-

retical properties between the proposed estimator and the 2SLS estimator

would be an interesting problem. Fourth, efficiently searching for Gaussian

covariates in a large candidate instrument set remains challenging but of

great practical and theoretical interest. We leave the study of these issues

as a future research topic as it is beyond the scope of this paper.

Supplementary Materials

Supplementary Material available online includes additional technical

proofs and simulation results including two treatments case and sensitivity

analysis of the Gaussianity of unmeasured confounders.
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Appendix

Proof of Theorem 1

Let Z
U

 ∼ N

0,

1 ξT

ξ It


 , ξ ∈ Rt.

The conditional expectation of Z given εA and A will be

E(Z | εA, A) = E(Z | εA, γZ + λTU + εA)

= E(Z | εA, γZ + λTU)

= E(Z | γZ + λTU),

where the last equality holds because εA ⊥⊥ (Z,U). It is easy to observe

 Z

γZ + λTU

 ∼ N

0,

 1 γ + ξTλ

γ + λTξ γ2 + λTλ+ 2γξTλ


 ,

which implies

E(Z | εA, A) = E(Z | γZ + λTU) =
γ + ξTλ

γ2 + λTλ+ 2γξTλ
(γZ + λTU).
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Similar arguments show

E(U | εA, A) = E(U | γZ + λTU) =
γξ + λ

γ2 + λTλ+ 2γξTλ
(γZ + λTU).

When cov(A,Z) = γ + ξTλ ̸= 0, we have

E(U | εA, A) =
γξ + λ

γ + ξTλ
E(Z | εA, A),

which means

E(U | A) = γξ + λ

γ + ξTλ
E(Z | A).

So the conditional expectation of Y given A will be

E(Y | A) = αA+ βE(Z | A) + sTE(U | A)

= αA+

{
β +

sT(γξ + λ)

γ + ξTλ

}
E(Z | A).

(6.1)

Now we demonstrate that E(Z | A) is nonlinear in A when εA is non-

Gaussian with non-zero variance below. To show E(Z | A) is actually

nonlinear in A, we prove by contradiction. Suppose E(Z | A) = cA for

some constant c ∈ R1, then we must have

E(U | A) = γξ + λ

γ + ξTλ
E(Z | A) = c(γξ + λ)

γ + ξTλ
A,
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which implies

E(ζ | ζ + εA) = γE(Z | A) + λTE(U | A) = c̃(ζ + εA), (6.2)

where

A = ζ + εA, ζ = γZ + λTU, c̃ = c

{
γ + λT

(γξ + λ)

γ + ξTλ

}
.

Then the equation (6.2) demonstrates

E{(1− c̃)ζ − c̃εA | ζ + εA} = 0. (6.3)

Multiply equation (6.3) by exp{it(ζ + εA)} and take expectation:

E[(1− c̃)ζ exp{it(ζ + εA)}]− E[c̃εA exp{it(ζ + εA)}] = 0.

The independence of ζ and εA implies

E{(1− c̃)ζ exp(itζ)}E{exp(itεA)} − E{c̃εA exp(itεA)}E{exp(itζ)} = 0.
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Without loss of generality, we assume var(ζ) = var(εA) = 1 below for con-

venience. The characteristic function of the standard normal distribution

implies

E{exp(itζ)} = exp

(
− t2

2

)
, E{(1− c̃)ζ exp(itζ)} = (1− c̃)it exp

(
− t2

2

)
.

Let ϕ(t) = E{exp(itεA)} and ϕ
′
(t) = iE{εA exp(itεA)}, then we have

(1− c̃)it exp

(
− t2

2

)
· ϕ(t) + c̃ exp

(
− t2

2

)
· iϕ′

(t) = 0,

which means

(1− c̃)tϕ(t) + c̃ϕ
′
(t) = 0 (6.4)

When c̃ ∈ {0, 1}, ϕ(t) is a constant and εA is deterministic, which is infea-

sible because we have assumed the variance of εA is non-zero. Thus, for all

c̃ ̸∈ {0, 1}, we have

ϕ
′
(t) + (c̃−1 − 1)tϕ(t) = 0, and ϕ(0) = 1. (6.5)
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Solving (6.5) gives the characteristic function of εA

ϕ(t) = exp

(
− c̃−1 − 1

2
t2
)
,

which implies εA must be Gaussian. This is a contradiction and hence,

E(Z | A) must be nonlinear in A. Now let

h = β +
sT(γξ + λ)

γ + ξTλ
, g(A) =

{
A,E(Z | A)

}T
.

From equation (6.1), we have

α
h

 = E
{
g(A)g(A)T

}−1
E
{
g(A)Y

}
,

which means α is identifiable.
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