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Abstract: Mixture-of-Experts (MoE) models are commonly used when there exist distinct
clusters with different relationships between the independent and dependent variables.
Fitting such models for large datasets, however, is computationally virtually impossible.
An attractive alternative is to use a subdata selected by “maximizing” the Fisher in-
formation matrix. A major challenge is that no closed-form expression for the Fisher
information matrix is available for such models. Focusing on clusterwise linear regression
models, a subclass of MoE models, we develop a framework that overcomes this challenge.
We prove that the proposed subdata selection approach is asymptotically optimal, i.e., no
other method is statistically more efficient than the proposed one when the full data size

is large.

Key words and phrases: D-optimality; Information matrix; Latent indicator; Massive data;

MLE

1. Introduction

Modern information technologies, such as cloud computing, internet of things, so-
cial networking, etc., are drivers for exponential growth of the size of datasets. Size

may now be measured by TB and even PB instead of MB and GB (Cai and Zhu,



2015)). While the extraordinary amount of data offers unprecedented opportunities
for scientific discoveries and advancement, it also poses unprecedented challenges
for analysis. These challenges are typically amplified by the complexity of the data
and the speed with which it must be analyzed. A critical question for the statistics
community is how to detect statistical relationships within high volumes of data
with a complicated structure and turn it into actionable knowledge (Bihlmann
et al., 2016]).

With large datasets, relationships between input and output variables may no
longer be homogeneous. Linear models or generalized linear models, which are
effective when relationships are homogeneous, may be inadequate in the era of big
data. One strategy for dealing with heterogeneity is through Mixture-of-Experts
(MoE) models. The rationale for MoE models is to uncover hidden clusters within
the data, such that within each cluster relationships between input and output
variables can be adequately modeled by a single regression or classification model.
While any such regression or classification model may be inadequate for the en-
tire dataset, it may be just fine for a more homogeneous cluster. Flexibility and
interpretability of MoE models has resulted in their broad use in regression, classifi-
cation, and fusion applications in healthcare, finance, surveillance, and recognition
(Yuksel et al., 2012).

The flexibility that MoE models provide goes however hand in hand with a
high computational cost. The parameters of an MoE model are usually estimated

using an EM algorithm, which requires a considerable computing time for each



iteration when the data size is large. In addition, since the EM algorithm usu-

ally converges to a local rather than global optimum (Balakrishnan et al., 2017}

1983)), different initial values of the parameters must be considered for better

estimation results. This makes this approach inefficient and daunting for large

datasets (Makkuva et al., 2019).

An attractive idea, which has received considerable attention for dealing with
massive data (full data), is selection and analysis of a much smaller subset of the
data (subdata). One possible strategy is to use a model-free sampling approach.
Some recent work includes, but is not limited to, for developing a

subdata selection method for large-scale computer experiments based on expected

improvement optimization; [Dai et al. (2023) for proposing adaptive subsampling

with the minimum energy criterion; and (2024)) for developing a stratified

sampling approach in a supervised learning framework. Model-based sampling ap-
proaches tend to perform much better when the model is, approximately, correctly
specified. They can however be poor if the model is incorrectly specified, which is
why model-free methods have gained in popularity. Nonetheless, with the flexibil-
ity of MoE models, we have found that our model-based approach based on these
models performs well on all datasets that we have studied.

Model-based sampling approaches can overcome the computational burden.

But they may reduce the information about the parameters contained in the orig-

inal full data. For example, Wang et al.| (2019); |Cheng et al. (2020) proved that

for linear and logistic regression models the information contained in the subdata



selected by using popular random subsampling methods, including uniform ran-
dom sampling, is asymptotically limited by the subdata size when the full data
size becomes large.

The Information-Based Optimal Subdata Selection (IBOSS) method (Wang
et al., [2019), which selects subdata judiciously, is computationally efficient and
does not suffer from this limitation. For fitting a linear model, it is shown in |Wang
et al. (2019) that, if each independent variable has a distribution in the domain of
attraction of the generalized extreme value distribution, the variances of the esti-
mators of the slope parameters based on analyzing subdata converge to zero when
the full data size grows even though the subdata size is fixed. Studying proper-
ties for information-based subdata selection under generalized linear and nonlinear
models is more challenging because there are no closed-form expressions for esti-
mators and information matrices depend on the unknown parameters. |Cheng et al.
(2020) developed a two-stage IBOSS-based subdata selection algorithm for logistic
regression models and proved, for selected cases, that the information matrices
based on subdata of a fixed size increase with the full data size. Inspired by the
properties of orthogonal arrays, Wang et al. (2021)) proposed an orthogonal sub-
sampling (OSS) approach for big data with a focus on linear regression models.
OSS is closely related to the IBOSS strategy since it attempts to minimize the av-
erage variance of the parameter estimators. For more related literature on subdata
selection, readers are referred to the recent review paper (Yu et al., [2023)).

With the IBOSS strategy, the goal is to select subdata that maximizes a func-



tion of the Fisher information matrix for the parameters of interest. This is even
more challenging for MoE models than for generalized linear and nonlinear mod-
els and requires novel ideas. The fact that there is no closed-form expression for
the information matrix under an MoE model prevents the use of optimal design
techniques for selecting efficient subdata, which is the strategy that was used for
linear and logistic regression models.

Focusing on the subclass of MoE models known as clusterwise linear regression
models, we address this problem by using a surrogate matrix rather than the
Fisher information matrix for guiding the subdata selection. We prove that the
surrogate matrix is asymptotically equivalent to the information matrix under some
mild conditions. We further prove that the statistical efficiency of the selection
algorithm based on the surrogate matrix is asymptotically optimal, i.e., there exists
no other method with better statistical efficiency in terms of convergence rate when
the full data size becomes large.

In what follows, Section [2]introduces clusterwise linear regression models, while
Section [3| presents the main results. Simulation studies and the analysis of real
data are presented in Sections [4] and [f], respectively. Brief conclusions and possible
future work are discussed in Section [6] All technical details are presented in the

Appendix.



2. Mixture-of-Experts models and Clusterwise Linear Regression

Mixture-of-Experts models, which originated in the neural network literature (Ja-
cobs et al., [1991)), are widely popular regression and classification models in ma-
chine learning due to their flexibility in modeling and appealing interpretation
(Masoudnia and Ebrahimpour] 2014). Rather than using a single model, MoE
models are based on multiple models (or experts), which are mixed and combined,
to provide great flexibility. MoE models assess how the data may be clustered
into G clusters so that separate regression or classification models can be used
in each cluster. In combination with many current regression and classification
algorithms, empirical evidence shows that MoE models are powerful tools to study
relationships among variables in a variety of settings, including healthcare, finance,
social science, etc. (Yuksel et al., [2012)).

Formally, let (z!,y;), i =1,..., N, be independent, where z; = (21, ..., 2;)"
is the covariate vector and y; is the response for the ith observation. We also use
x; = (1,2z7)T. In a Mixture-of-Experts model, there are G gate functions and G
regression models (experts). While y; is modeled by x; through one of the experts,
it is unknown which expert is employed. A latent indicator vector can be used to

describe the connection. Let I; = (I, ..., I;g), where

1 if the gth expert is employed,
Ly = . (2.1)

0 otherwise.



The likelihood of I;, = 1 is modeled by the gth gate function P(I;, = 1|z;). While
more complicated choices are possible, and sometimes advisable, a popular simple

choice is

P(li,=1|z)=m,, g=1,...,G, (2.2)

with 25:1 g = 1.

If I;; = 1, then we can model the response y; by z; through the gth expert.
The choice of the experts depends on the nature of the responses. For example,
for a continuous response, a linear model may be appropriate for an expert; for a
categorical response, experts may consist of generalized linear models.

While MoE models were coined by |Jacobs et al.| (1991)), the idea can be traced
back to Fair and Jaffee (1972) and Hosmer| (1974), where the experts are linear
regression models. Such models, with the choice for the gate function as in ({2.2)),
were later called “clusterwise linear regression” (CLR) models (Spath, |1979) and
have been widely applied in the social sciences, environmental studies, engineering,
ete. (Brusco et al., 2003; Bagirov et al., 2017; [Khadka and Paz, [2017). Research
on CLR models is still ongoing, especially on developing efficient algorithms for
alleviating the computational burden (Di Mari et al., [2017; [Park et al/ [2017). If

(z],y:) belongs to the gth cluster, i.e., I, = 1, then for a CLR model we write
Yi = X;'T/Bg +é€, €~ N(07 02)7 (23)

where B, = (Bog, B1g, ---» Bpg) and for any two distinct g,¢" € {1,...,G}, B, # By

In the remainder, we will focus on CLR models.



Analysis of a CLR model is primarily based on the maximum likelihood ap-

proach (DeSarbo and Cron, [1988). From (2.3)), the distribution of y; is given by:

a
Yi ~ ngqb(yileﬂg, o2) i=1,..,N (2.4)
g=1

where ¢(+|u1, 0?) is the density function for the normal distribution with mean y and
variance o®. For simplicity of notation, we will write ¢;, instead of ¢(yi|x] By, 7).

The loglikelihood function given y = (y1, ..., yn) is then

N G
ly=) log (Z wgqsig) . (2.5)

In contrast to a linear model, for a CLR model there is no closed-form ex-
pression for the MLE due to the summation over g in the loglikelihood function
. In fact, without further restrictions there is an identifiability issue. Identi-
fiability must be considered on equivalence classes of parameter vectors, so that
two parameter vectors for which one can be obtained from the other by relabel-
ing the clusters are considered to be equivalent. But even on such equivalence
classes, identifiability is not automatic. For example, if the vectors z; belong to a
(p—1)-dimensional hyperplane, then the model is not even identifiable with G = 1
(i.e., for a single expert). Fortunately, |Hennig| (2000)) gave a sufficient condition

for identifiability of CLR model (2.3)). Let Z = {zy,...,zy} and

q
h::min{q:ZCUHi:HiGHp_l}, (2.6)

=1

where H,,_; is the set of all hyperplanes of dimension p — 1.



Theorem 1 (Theorem 2.2, (2000)). The CLR model in is identifiable
if G < h, where G is the number of clusters and h is defined in (@

The sufficient condition in Theorem [l is relatively mild. As long as the co-
variate set Z cannot be covered by the union of G or fewer (p — 1)-dimensional
hyperplanes, identifiablity holds. Thus, loosely speaking, if the covariate values
are sufficiently rich, then the sufficient condition holds and Model is identi-
fiable. For a big dataset, unless there are structural restrictions on the covariate
values, we can expect identifiability to be satisfied. For example, the Structural
Protein data used in Section [5| has p = 1 where the identifiability will be satisfied
if the number of clusters is less than the number of unique covariate values. In the
data, there are 129,711 unique covariate values, therefore if the number of clusters,
G < 129,711, then identifiability is satisfied.

For a CLR model, with the unobservable indicator vector, the EM algorithm

is the workhorse for finding the MLE (Yuksel et al.,|2012). For given initial values

of the parameters, the MLE is obtained by alternating between the expectation
and maximization steps until convergence. However, the EM algorithm typically

converges to a local optimum, and not necessarily to the global optimum (Wu,

11983; |Balakrishnan et al., 2017). We generally need to try a large number of

initial values to improve its performance. In addition, GG, the number of clusters,

is unknown. If p = 1, the number of clusters G can be determined easily by

visualization (Hastie et all [2009). However, if p > 1, then graphical methods may

not work anymore. Some advanced techniques may be used. For example, AIC,



BIC, Complete log-likelihood, etc. (Hawkins et al.;[2001). Therefore we need to try
different values of GG to find the best one according to some criterion, such as AIC.
Consequently, the computational cost for analyzing a CLR model is very high. For
example, for simulated data of size N = 107 and p = 10 covariates, the computing
time for fitting a linear regression model is around 0.2 seconds. In comparison, on
the same platform, it takes around 470 seconds for fitting a CLR model with G = 5
being known and only one initial value. The computation time can be significantly
increased due to the inclusion of numerous initial parameter values, as well as the
consideration of different values for G. In this era, it is not uncommon for the
data size to be in the millions or even billions, and the structure of the data can
be more complicated. While high performance computing can be helpful, fitting
MoE models for such big datasets still poses a tremendous challenge. This can be
alleviated by using carefully selected subdata.

As indicated in the Introduction, the IBOSS strategy for subdata selection
has been proven, both theoretically and empirically, to select highly informative
subdata. Extending this strategy to CLR models would be extremely appealing
for big data analysis, and would drastically reduce computational costs by fitting
a CLR model to subdata that retains as much information about the parameters
as possible.

To describe the IBOSS strategy, let I(x;) denote the information matrix for
the ¢th data point. With §; = 1 if the ith data point belongs to the subdata

and 9; = 0 otherwise, and under the assumption of independence, the information



matrix based on the subdata is

N
I(6) = 6iI(x;). (2.7)

i=1
We want to select § = (d1,...,0x), subject to Zfil 0; = mn, to maximize, in

some way, the information matrix in (2.7). For this maximization we adopt the
approach from optimal design of experiments (Kiefer and Wolfowitz, 1959)), where
an interpretable function of I(d) is used to induce a complete ordering of the

information matrices. If ¥ is this function, then, subject to ZN

i1 0i = n, we want

to find subdata with indicator vector d°?* so that
O = arg max U(1(6)). (2.8)

We will refer to any subdata selected in this way as IBOSS subdata. Algorithms
for an approximate solution to this complex optimization problem can be based
on the characterization of an optimal design for the corresponding model.

For the CLR model, the information matrix for the i-th data point can be

written as I(x;) = E(aalgi géy%), where

a
by, = log(zﬂ-g(big)’ (2.9)

g=1
and ¢;, is defined in Equation (2.5). Here @ is the vector of the G(p + 3) — 1
parameters, with G(p + 1) of them corresponding to the 3,’s, G to the ag’s, and
G — 1 to the m,’s. However, the summation structure within the log function in
(2.9) prevents the derivation of a closed-form expression for I(x;). This in turn

means that finding an optimal design is elusive, so that a new approach is needed

for obtaining IBOSS subdata.



3. Main results

3.1 Bounding the Fisher information matrix

Without a closed-form expression for I(x;), we define a matrix that is larger than
the Fisher information matrix in terms of the Loewner order and that has a closed-
form expression. We first expand a data point from (z/,y;) to (z!,y;, I;), where
I, = (I, ..., ic)" and I, is defined in (2.1)). (Despite using the notation I both for
an information matrix and a vector of latent indicators, the meaning will always
be clear from the context.) The likelihood function under the CLR model for the

complete ith data point (z7,y;, I;) is then given by

G
Le, = H [¢ig7T9] \ (3.10)
g=1

Observe that L¢, = L, X Ly,),,, where Ly,),, is the likelihood function corresponding
to the conditional distribution of I; given y;.

Corresponding to this factorization of the complete data likelihood function,
we can write the Fisher information matrix for the i-th data point in the form of
I(x;) = Io, — I, where I, is the complete data Fisher information matrix (or
complete information matrix for short) based on the complete data likelihood func-
tion in (3.10) and Iy, is the information matrix corresponding to the conditional
distribution of I; given y;. The detailed derivation is presented in the Appendix.

The expressions for I, and Iy, can be written as follows:

ICi = blk‘dmg (Imci, IO'2|CN Iﬂci) (3.11)



3.2 Basic Strategy

where
x;x7 x;x7 x;x7
Iz = blkdi i S sl Kl 3.12
BIC; ag (ﬂ-l O'% y T2 0_% ) Nivel 0’% > ) ( )
. T 9 TG
I = blkd — = ..., — ], 3.13
i 1ag <2UjL 2<7§1 20é> ( )
and
1 1 1 1
I;\c, = blkdiag (—, — ., ) +—J, (3.14)
T T2 TG-1 ye:

where J is matrix of ones. The expression for Iy, is obtained by subtraction and

its diagonal is given by

(diag(Tsyan). - diagTseinn) Tozinss -+ Toian Tt T i, )

G

where, for a square matrix A = (a;;), the notation diag(A) denotes the diagonal

matrix with diagonal entries a;;,

(yi — x;' B )2XiXiT
Lo, in; = ]E{wig(l — Wig) 4g }a
O
2
1 (yz - XiT/Bg)2

Loz, = E{wi9<1 — Wig) [ " 502 + 201 : (3.15)
I, =E{ o - o)y wicl ; &) |y G},

Ty Ta TgTaG

and w;y = % A detailed derivation can be found in the Appendix.

3.2 Basic Strategy

Since we do not have a closed-form expression for I, we face a significant hurdle

in identifying subdata §* that maximizes det(I(d)). To solve this dilemma, we first



3.2 Basic Strategy

observe that for any 9, in Loewner order,

I(6) =Y (Io, — Iy,) < Y I, so that
€0 €0 (3.16)
det(1(8)) < det(>_ Ir,).

1€0

The notation ), s simply means that we sum only over those i for which §; = 1.
Based on ({3.16)), for a full data size N, if we have a strategy to find subdata &%

such that (a) 0y = argmaxg det() ;.5 Ic,) and (b) > Io, — I(0y) — 0 when

i€d%,
N — oo, then the subdata 8% is asymptotically optimal for maximizing det(I(9)).

Thus, for a fixed N, we need to identify a subdata selection strategy that
leads to a 6* that gives an approximate solution for (a) and that satisfies the
requirement in (b). Note that det(}_, s Ic,) is proportional to (det(zieé Xp(f))G,
so that maximizing det(}", 4 Ic,) is equivalently to maximizing det(>", 5 %X} ).

Wang et al.| (2019)) develop the computationally inexpensive IBOSS algorithm for

obtaining an approximate solution to precisely this problem.

Algorithm 1 (Algorithm 1 |Wang et al.| (2019)). With k as the subdata size and p
as the number of covariates, assume for simplicity that » = k/(2p) is an integer.

Execute the following steps:

1. Select the data points with the r smallest and r largest values for the first

covariate;

2. Sequentially, for j = 2,...,p, exclude the data points that were previously
selected, and select the data points with the r smallest and r largest values

for the jth covariate from the remaining data points.



3.2 Basic Strategy

Thus, 6* obtained by using Algorithm [I] gives an approximate solution to
the maximization of det(d_, s Ic,). We still need to show that it also satisfies
> icsr Ing; = 0 for N — oo. To circumvent that ) .. Ins, does not have a closed-
form expression, we will show that, in the Loewner ordering, it is dominated by a
diagonal matrix that converges to 0 when N — oo. This would immediately imply
that ), s« Ing,, which is a non-negative definite matrix, also converges to 0.

For 1 S g1, 92 S G7 let

fi1 (91792) = diag (Xixffwi(glqu)A%igl dyz’) 5 (3.17)
fi2 (91792) = fﬁ)i(ghgz)Agigld% and (3-18)
fiS(gng) = fﬁ)i(gl,gﬂd?ﬁ, (3.19)

T . T 2 2
~ _ _ ¥i—x; B _ (yi—x{ Bg)’—0
where W;(g1, g2) = \/Tg, Gigi Tg, Pigo» D,y = ~—3— 7 £ and Ay, = ——5 17— We

g9

consider
Q' = diag (blkdiag (@5, Q.= QL)) , (3.20)

where, for matrices or scalars A,, ¢ = 1, ..., L, which can be of different dimensions,
blkdiag(Aq, ..., Ar) denotes the block diagonal matrix with Ay, ..., A; along the
diagonal,
Qs = blkdiag (Qj,, - .., Q5,) (3.21)
with Qlﬂg = % > £ (9,9*)7
99" #9

Q.. = bikdiag (Qg . Qf%) , (3.22)



3.3 Main Theorems

with Qig =3 > filgg), and

g*:g*#g

Q. = blkdiag ( i ;CH) , (3.23)

with, for 1 < g < G—1, Q; _ % Z fi3(9279*) +% Z fis(szg*) + fiS(va)‘
g g T TG
9*:9"#9 9*:9*#G
With this notation, the following theorem holds.
Theorem 2. Assuming that y; ~ 25:1 Ted(X] Bg,07), then, for any &, it holds

that diag(3_,c5Inr,) < Yoies Q in terms of the Loewner ordering.

With the help of Theorem [2| we can show that >

;es In1, vanishes under certain

conditions for subdata selected by Algorithm [I]

3.3 Main Theorems

Let p, = (21, - ,uZp)T and X, = ®,p®P, be a full rank covariance matrix, where
®, = blkdiag(c.1,...,0,,) is a diagonal matrix of standard deviations and p =

(pjj*)pxp 1s a correlation matrix.

Theorem 3. Let zy, ..., zy be iid, where z; = (21, zi2, ..., 2ip) | . Assuming that y; ~
2?:1 Ted(X] By, 07), where x| = (1,2])", and §* corresponds to subdata selected
by Algom'thm then the convergence in probability, Zieé* Iy, L 0(Gp+3G—1)x (Gp+3G—1)

will be achieved when N — oo under one of the following conditions:

(a) z; ~ N(p.,X%.) and for any triplet (g,q',7) with g,¢' € {1,...,G},g # ¢ and

p
Jj €41, ....p}, it holds that > p1;0.;(Bg1 — By i) # 0;
=1



3.3 Main Theorems

(b) z; ~ LN(u,,X,) and for any triplet (g,q',7) with g,¢' € {1,...,G},g # ¢' and
Jj € {1,...,p}, it holds that By; — By ; # 0 andl ,CZ (ﬁg,l — 59/71) % 0, where
€Lmin,j

Loinj = {l ’ Pij = Pminj ; L =1, ...,p} and Prin,j = mlinplj < 0.

The condition in (a) on the parameter space © C R®*3)~1 is rather mild.
If the condition is not satisfied, the parameter space will be reduced to a lower-
dimensional subspace. The condition in (b) is more restrictive due to the require-
ment puyin; < 0, which is needed for technical reasons.

In view of Theorem [3, and guided by the basic strategy formulated at the

beginning of this subsection, we propose the following algorithm for fitting a CLR

model for a large dataset:

Algorithm 2. With k as the subdata size and p as the number of covariates, assume

for simplicity that » = k/(2p) is an integer. Execute the following steps:

1. Run Algorithm [I] to select the subdata §*;

2. Using the EM algorithm, fit the CLR model using the subdata selected in

Step 1.

While Theorem |3 establishes that the basic strategy works, it sheds no light
on the statistical or computational efficiency of Algorithm [2l The next theorem
and the empirical results in Sections 4] and |5 show that the statistical efficiency
of Algorithm [2| is asymptotically optimal. We will return to the computational

efficiency in Section [4



3.3 Main Theorems

Theorem 4. Let zq, ..., 2y, where z; = (21, Zi2, ..., Zip), be 4d and let k be the size of
the subdata. Assume that r = k/(2p) is an integer. Let y; ~ 29021 Ted(X] By, 07),
where xI' = (1,2z7)T, and let ,[Ai"gs* be the estimator of B,, g = 1,...,G, under

Algorithm [3

(a) If condition (a) in Theorem[q holds, then, when N — oo,
f o?
V(ANB) ) —» 2 (3.24)

Tg 0 L(@ZPQCPZ)—l

where Ay = blkdiag(1,y/log N, ..., \/log N).

=

(b) If condition (b) in Theorem[3 holds, then, when N — o,

0'2 1 —I/T

A6* 20,
V(BNB, ) — o , (3.25)
I\—v ¥ +wT
T
where By = blkdiag(l, exp(o,1v/21og N), ..., exp(o.,v/2log N)), v= (e‘“zl, ey e‘“zp> ,
and ¥ = blkdiag (e‘z“zl, ey 6_2“ZP).
In addition, in both cases, the convergence rate for V ( Agfj), g=1,...,.G, is asymp-

totically optimal.

Remark: Theorem {| delivers two important messages. First, in terms of sta-
tistical efficiency, the convergence rate of the proposed algorithm is asymptotically
optimal. Second, it shows that for a fixed subdata size, we retain rich informa-
tion about the regression parameters in the subdata. These desirable theoretical

properties are confirmed by simulation studies in Section [4]



Notice that, while the pp,; < 0 condition in (b) is more restrictive due to
the technical reasons, the simulation studies in Section {4] indicate the asymptotic

results still hold even this condition is not satisfied.

4. Simulation Studies

This section presents simulation studies to evaluate the performance of the pro-
posed algorithm in terms of mean squared error for parameter estimation and
computing time. We compare our method to obtaining subdata by random sam-
pling (Random) to analyzing the full data (Full), with the latter serving as a
benchmark.

In this simulation, we assume that the number of clusters G is known. The
full data of size N is generated from a CLR model with p = 10, G = 5, and
m = 0.1, mg = 0.1, 13 = 0.2, my = 0.3, and 75 = 0.3. We set 0, = g and
BgT = (ﬂg,07ﬁgl> where 551 = (g, g+1,... ,g—|—9) and B, = gforg=1,2,3,4,5.
For the covariance matrix of the covariates, 3., we use 3., = 0.5%#3. The
covariate vectors z; are independent and identically distributed as N(0,3,) or
LN(0,X,). For each of these, the simulation is repeated 100 times and empirical

mean squared errors (MSE) for estimating the intercept and slope parameters are

100 5 < 100 5 s
computed as MSEg, = ﬁ > 2(6;3 — Bg0)? and MSEg, = ﬁ > 2 /35(;,2 -
s=1g=1 s=1g=1

69,1

2
, respectively.
2

For full data sizes N = 10°,2 x 10°, 4 x 10°, 8 x 10°, 1.6 x 10° with fixed subdata

size k = 10000, Figures |1} and [2| display the comparison of different methods for
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Figure 1: Comparing different methods for estimating slope parameters when co-
variates are multivariate normal, subdata size k£ = 10000, and full data size N

varies

estimating the slope parameters with multivariate normal and lognormal covariate
distributions, respectively. In both Figure [1| (a) and Figure [2| (a), it is seen that
the MSE for the IBOSS method decreases as the full data size increases. This is
consistent with the result of Theorem [l

Both Figure|l| (b) and Figure |2 (b) show the computing time ¢ (in seconds) for
each method across different full data sizes. Computing times were obtained by
running Julia 1.8.5 code on an Inspiron 16 plus with 32GB ram and Intel Core i7-
12700H. The computing times for FULL increase linearly with the full data sizes on
the log-scale. The computing time (including subdata selection and data analysis)

for the IBOSS and Random methods are virtually constant across different full
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data sizes. The computing time for IBOSS is even shorter than that for Random,
which is due to faster convergence of the EM algorithm with IBOSS subdata than
with Random subdata.

To address the trade-off between computing time and statistical efficiency, one

could define the relative efficiency for method A compared to IBOSS as

MSFEposs/MSE4
TimeA/TimeIBosg ’

Effa=

where Time 4 is the CPU time for method A. If Eff4 = 0.5, say, one could think
of this as IBOSS only needing half the CPU time of method A to achieve the
same MSE, or as IBOSS achieving half the MSE of method A with the same CPU
time. Figure |3 presents these relative efficiencies (on a log-scale) for Random and
Full for different full data sizes N and subdata size k = 10000. Figure |3 shows
that the relative efficiencies for Random and Full are smaller if covariates follow
the multivariate Lognormal distribution. Also, over the range studied here, the
relative efficiencies for Random and Full tend to decrease when the full data size

N increases.

5. Application on Structural Protein Data

In this section, we compare the performance of different methods on Structural
Protein Data that was originally made available through the Protein Data Bank

(PDB)!. Biomedical researchers can use the PDB to investigate various illnesses

'Data is retrieved from https://www.kaggle.com/shahir/protein-data-set



and develop new medicines and solutions that are vital to human existence. In
this data set, we analyze the relationships between two variables: the explanatory
variable, Structure Molecular Weight, and the response variable, Residue Count.
After data cleaning, the full data size is N = 140,913. Notice that while the
response variable is a count, the response values cover a wide range from 2 to
313,236 with 129,711 unique values.

Considering the choice G = 3, the estimated parameters for two of the three
clusters exhibit remarkable similarity. This observation strongly suggests that
G = 2 is a more suitable choice. To compare this method to Random, we compute
the MSEs for the slope parameters by using 500 bootstrap samples of size n, using
n =2 x10% 4 x 10*, and 8 x 10%. The original data is treated as the population of
interest. Bootstrap samples then function as samples drawn from that population.
This mirrors the relationship between a population distribution and a randomly
drawn sample in simulation studies in Section |4l Subdata of size & = 1000 is used,

both for IBOSS and Random. The MSEs for the slopes are defined as in Section [4]

QFULL

except that we replace 3,1 by the slope estimates from the full data, 8,7

Figure 4] (a) shows that IBOSS has a smaller MSE for the estimation of slope
parameters than Random. Also, as n increases, the MSE for IBOSS decreases,
which is consistent with Theorem . For comparing computing time, Figure [4| (b)
demonstrates a similar pattern as in the simulation studies. Figure [5| shows that
relative efficiencies for Random and Full tend to decrease when n increases, which

is also consistent with results in the simulation studies.
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Figure 4: Comparing different methods for estimating slope parameters based on

500 bootstrap samples of different size n for the Structural Protein Data

6. Conclusions and Future Work

The size of data sets continues to grow, along with increased heterogeneity in data
sets. Mixture-of-Experts (MoE) models are powerful and versatile for modeling
and understanding heterogeneous data, but fitting them is computationally ex-

pensive, especially for large data sets. One efficient strategy to address this issue

is the IBOSS strategy proposed by Wang et al. (2019). It not only reduces the

computational burden by selecting subdata but also retains high statistical effi-
ciency. This paper developed the IBOSS subdata strategy for Clusterwise Linear
Regression (CLR) models, a subclass of the MoE models. We proved that, under

relatively mild conditions, the IBOSS subdata selection algorithm proposed by

‘Wang et al| (2019) can be used for Clusterwise Linear Regression Model (CLR)
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models. More importantly, we proved that this strategy is asymptotically optimal.
The theoretical results are confirmed by simulation studies and a real example.

There remain important unanswered questions that are beyond the scope of
this paper and that need more research. First, different clusters may have different
support in the covariate space for a general MoE model with gate functions that
depend on the covariates. In this case, IBOSS as applied for CLR models may
not work well. For example, if there is a cluster in which none of the points
have any extreme covariate values, we will completely miss that cluster in the
subdata. Deriving an IBOSS strategy for general MoE models will be much harder
because the more complicated gate functions make the information matrix even
more complicated. The path of finding an appropriate matrix that has a closed-
form expression and that bounds the actual information matrix could still work,
but how to find an appropriate bounding matrix will need additional research.
Second, the model in each cluster can be a generalized linear regression model or
other nonlinear model rather than a linear regression model. This too will make
the information matrix and developing an IBOSS subdata selection strategy only
more complicated.

While we do not have answers to these questions yet, we expect that these
can be resolved in the future by methods akin to those used in this paper. Also,
the IBOSS strategy is motivated by results in the optimal design of expriments
literature, and we believe that the wealth of knowledge and resources in that

literature will continue to provide great guidance for developing innovative and



superior subdata techniques and algorithms for general MoE models and many
other models.
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A. The Fisher Information Matrix

We start with the first derivatives of the log-likelihood with respect to the param-

eters:
8ly. g Z‘Z;ig »
- = E—y 9Pig ]
aﬂg X mea Wig 9By forg=1,...,G,
6,
Oly, "9 03 dlogsi
> = %G g, Ologdig B
80'3 - chi1 b Wig 002 for g = 1,... ,G, and
Ay orcs |
i — ig — PiG :%_wz_'c fOI' :1G_1
aﬂ-g Zlazl mdil ( Tg TG ) g y R

This leads to the following expressions for the second derivatives of the log-likelihood

with respect to the parameters:

1, _ Ologpig Owiy fw D*log i,
0B 4087 0B, 0BL " 0B,0B8Y

(1w, )0log¢ig dlogoig " D?logi,
— Wig g 8[39 aﬂgv 19 aﬂgaﬂg)




aloyd)ig _ (yifxiTﬂg)xi 82109¢ig _ _XiXiT
where 98, — o2 and B0 — o3 for 1 < g <G,

2
Ol —wwyﬂu4mW@1 | Plogsy
= Wig ig ig N
da20o? do? d(o2)

Ologpig __ 1 (yi—xiTBg)? *logpig 1 (yi—xiTBy)*?
WhereTE"——%+ Y 2039 and 8(03);_ﬂ—ﬁ‘—29for1§g§G,
and

Ply, ¢y — dic)”

(6779>2 (Zlczl TPi)? 7
for1<g<G-1.
The Fisher information matrix is now obtained by taking the negative expec-

tation for all second-order derivatives, leading to the form
Ig(xi)  Igg2(xi) Igx(x;)
Ixi) = [ 2(xi) Le(xi) IL2.(x)

IT,7r (X7,> IZ_;’W (Xz) Iﬂ- (Xl)

Furthermore,
Iﬂl (XZ) I,31/32 <X1> T I,Blﬂc (Xl)
Iﬂ1ﬂ2 (XZ) IﬂQ (Xl) T Iﬁzﬂc (XZ)
Ip(x;) =
Ig g (i) Ippe(xi) -+ Ipa(xi)
where

. ' 8lOg¢zg alOg(ng '8210‘9(@9
Ty ) = B (w1 — ) G000 v s
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09 Jg
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forg=1,..,G;

Io’2 (Xz) Io’%o'g (Xz) Iafaé (Xz>
I2,2(x; I2(x; L2 (x;
La(xi) = (i) Iy(xi) (i)
Ig'QU'2 (XZ> IO'SU% (X/L> IO'2 (XZ)
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alog¢zg 82log¢lg
I2 i) = E i 1 i )
it {wg( wg)[ do? ] ? 0(02)?
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(¢ig — Pic)* }
I (x)=—E{ — 2= 06)
) { (Zf:l Tgbig)?
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=E - + - -2 - (A.28)
g G g''G

forg=1,....G—1.

B. The proofs of main results

Before we present a proof of Theorem [2| we need the following lemma.
Lemma 1. Assuming y; ~ 25:1 Ted(X] By, 02), then the following inequalities
hold for any 1 < g1,92 < G, g1 # go:
diag (ExixgwiglwiggA%igl> < %fil (91792)7
E (wiglwngAg'igl> < %fiZ (91,92), (B.29)
E (wig, Wig,) < %fii’y(gl;gQ)-
Here the first inequality is under the Loewner ordering.

Proof. Since the proofs of all inequalities are similar, we only provide the proof for

the first inequality.
diag <E (Xin'Twiglwingl%igID
- diag (xix{ J Tabmnta dyi)
< diag (xx! | Zotmrntin nL )

< dl(lg <XinT f % V ﬂ-glqﬁiglﬂ—gzgﬁing%igl dyz) - %le (gla 92)- (BSO)



Now we are ready to prove Theorem

Proof of Theorem[4 By (A.26) and the definition of Ag, , we have

diag (Iﬂg\Mi) = diag (xixiT Z ]Ewigwig*A%ig> .

g*:g*#g

Similarly, by (A.27) and the definition of A, , we have

_ A2
Iz v, = g szngg*AaiQ

g*:g*#g

and by (A.28)), we have
WigWig= W;gWig* Wi W5
I =K E g9 2 Pty Iy
7 g| M; ( ( o) + 7% + g

g*:g*#g 9

By Lemma [1f and the definition of Q¢, the conclusion follows. O

Proof of Theorem[3. By Theorem the result follows if we show that ), . Q' L

0(Gp+3G-1)x(Gp+3G—1)- This follows if, for all i € 6* and g # ¢/,

P
£i1(9,9") = Opr1)x(pr1);

fi2(g.g) = 0, and (B.31)

fis(g,9") =0

where f;1, fio and f;3 are defined in (3.17) - (3.19). We prove the two cases sepa-

rately.

Case (a):



For any covariate, Algorithm I is guaranteed to select r data points with the r
largest values for the covariate in the full data and r data points with the r smallest
values of the covariate in the full data. However, when selecting data points based
on covariate [, [ > 2, some or all of the data points with the r largest and r smallest
values for the [th covariate may already have been selected. So, Algorithm I may
select data points in which none of the values are among the r largest or r smallest
values for any covariate. However, what we can guarantee for the subdata 6*
selected by Algorithm I is the following. For any ¢ € §*, there exists a j; € {1, ..., p}

and m; € {1,.rp, N —rp+1,..., N} so that x; = (1,zj(.:ni)1, ...,z(mi)ji,...,zj(.:ni)p),

where z(y,,); is the mi" order statistic of {21, ..., zn;} and zj(mi)l

is the concomitant
of 2(,); for the ith covariate, [ # j. Without loss of generality, let j; = 1. For

i=1,...,Nand g =1,..,G, define v, = x! 8,. Then we have

fii(g,9') = diag (XinT J (g, g’)N,.gdyz-)
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. 2 / , [ 20 //(J' T3, —xT'3 ,)2 T3 _ T )2
= diag (xx]) | "o [ o+ Z<§§+:§,[;5 ) } exp{ - ) }
g

Ug+0’§, 02+0 4(03+o’§,)

2Ty

= diag (x;x})

o2+0? p o2+02 ! (U2+U )2

2
(B9.0-Byr 0+ 2(mi1 Baa By A0 2 (Byu—B,r 1))
XPL~ 1(o3+0%,)

2
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where x] = (1, Z(m)1, AmD2 Py From the results in Examples 2.8.1 and 5.5.1

of |Galambos| (1987), when (21, ..., zip) ~ N(p., X)

Zmy)l = Mzl — 021V QZOQN + OP(l)a m; =1, TP,y (B33)
Zmi)1 = Hz1 + 0211/ 2logN + Op(1), m;=N—rp+1,...N, (B.34)
zfmi)l = 1 — proz1\/ 2logN + Op(1), m; = 1,...rp, (B.35)

z%mi)l = o1 + PO /2l0gN+OP<1>7 m; = N—T’p—l— 1,...,N. (B36)

We distinguish between m; € {1,...,rp} and m; € {N —rp +1,...,N}. First,

)

for m; € {1,..rp}, by (B.33) and (B.35) we have x! = <1,—p110Z1\/2logN—|—

O,(1), ..., —pp10.11/2logN + Op(l)), so that (B.32) can be written as
2 102 (—VEGN 3 puoea(Bpu—B, ) +0p(1)
. 2y 100, [ 202 /0 ) VO 2. P11O=15g,1 =P 1 P
diag (XiXZ) igiag, g [agg—%aﬁf i=1 Gt } X

(—VE6GN 3 11021 (Byi—Byr ) +0p (1))
exp { — Sl }

4(‘73""0—3/)

(B.37)

Second, for m; € {N —rp + 1,.., N}, by (B.34) and (B.36) we have x; =
(l,pnaz“/QlogN + O,(1),...,pp10:1v/2logN + Op(1)>, so that (B.32) can be

written as

2
(\/2logN lgpjl pz10z1(5g,l—r3g/,l)+op(1))

. QMG 1060 1 202//02
diag (x;xT) | |54 [05105 Ty } x (B.38)
g g g
p 2
<\/2logN 12:1 pllUZI(5g,l_6g/’l)+op(1))
eXp { - — 4(UZ+U§/) }- (B.Sg)

p
With the condition for Case (a), > pno.1(Bg1 — Byy) # 0, this implies that
=1

when N — oo, (B.37)) LN O(p+1)x(p+1) and (B.39) LR O(pt+1)x(p+1)- Consequently



P
£i1(9,9') = Opr1)x(pr1)-

Case (b): By the same argument as in the proof of Case (a), it suffices to show

that, for all i € 6%,

1=

fi1 (97 9/)

fiolg.g)) = 0 (B.40)

0(p+1)x(p+1)

P
fiz(g,9') =0
for any pair (g,¢’). Since proofs of the three convergences are similar, we only
show a proof of the first one and use the same notation as in the proof for part

(a) of Theorem |3 Without loss of generality, set j; = 1. By the same argument

as used in (B.32)), we have

g g

no_ . A
fulg,g') = diag (xx?) | | =58 | 5 I

_ 2
_ (ﬁg,O*ﬁg/,ngZ(mi)l (Bg1=By 1)+30_ ZY%” (Bg.1 *ﬁg/,l))
exp (o3+0%) ’

T (m;)2 (mi)p).

where x; = (1, 24u1, 2] -y 21 From the results in Theorem 6 of |Wang

et al.| (2019), when (21, ..., 2ip) ~ LN (p., 3,),

Zmin = exp( — 0,1v/2logN)Op(1), m; € {1,...,rp}; (B.42)
Zmin = exp(0:1v/2logN) Op(1), m; € {N —rp+1,...,N};(B.43)
A" = eap( — puoav2logN)Op(1),  my; € {1,..,1p}; (B.44)
Zmit = exp(pro.1v/2logN)Op(1), m; € {N —rp+1,...,N}.(B.45)

As in the proof for Case (a), we consider the cases m; € {1,...,rp} and m; €

2
m;)l
T) 2Tg T 10gT 1 [203//03 (59,0_189/70+Z(mi)1(189,1_69/,1)+le:2 ZE 2 (59,1—59/,1)) } %

(B.41)



(N —rp+1,..,N}. First, for m; € {1,...,rp}, by (BAZ) and (BA), (BAL) can

be written as

TG 1 0g0 4 2Cf2/ o2
diag (x;x7') 2may! 797 [ 2% + oy } Xexp{—%}, (B.46)
g g/

] 2152 2152 2. .22
1 Ug+crg, Ug+og, (crg+crq,)

where
X; = (1, emp{ - p11021\/2logN}Op(1) yeood ea:p{ — pp1021\/2logN}Op(1)> and

A = 5;1,0 - Bg’,[) + Op(l) GIEP{ — Pmin, 1021V ZZOQN} X Z (5g,l . 5gf,l) +

leamin,l

lﬂ%ﬂ <e:vp{ N ple'zl\/W}(ﬁg,l - 6gl,l))] .

With the condition on the parameters for Case (b), we have that py,; < 0 and

S (Bys — Bya) # 0. Thus (BA6) = 0(ys1)x(pr1) When N — oo,

leﬁmin,j

Second, for m; € {N —rp+1,..., N}, by (B.43)) and (B.45)), (B.41]) can be written

as
. [27gT 1060 202, /02 A2 A2
~T 979’9994’ g9 2 _ 2
d'la/g (Xlxi ) U§+U2/ |:0'3+0'2/ + (0’34—0’2,)2] X eXp { 4(03+U2/)} (B47)
g g 97"y 9 "g
where

X; = (1, exp{pllazlx/QlogN}Op(l) s exp{pplazlx/QlogN}Op(l)) and

Ay = Bgo — Byo+ Op(1) e:z:p{aleQZogN} X (59,1 - 59’71> +

> <€$P{Pl10z1\/m}(5g,l - 59/,1))]

I>1
With the condition on the parameters for Case (b), we have 8,1 — g1 # 0. Thus

(IB.47)) L 0(p+1)x(p+1) when N — oo. Thus the conclusion follows.



O

Proof of Theorem[]. For Case (a), by Theorem 6 in Wang et al| (2019), when

zZ ~ N(“’za 22)7

D xx! = ) 0 + Op(y/log N) (B.48)

i€d* 0 4rlogN® . p°®,

and

=

-1
1
AN (ZXZX?> AN == —|—Op .
v 0 L(®.p°®.)"! <(VlogN>

Notice that I(6*) = > ... Io, — Y ics- In,- By Theorems 2 and 8] we have

(B.49)

Y ics L, L 0(Gp+3G-1)x(Gp+3G—1) when N — oo, which implies that I(6*) L

Y ics+ Io, when N — oo. By the expressions for I, and Igc, in (3.11) and (3.12)),

respectively, the desired conclusion follows from (B.49)).

For Case (b), also by Theorem 6 in|Wang et al. (2019), when z; ~ LN (., X.,),

kvt
> xix] = (B.50)
i€d* v (2,
where, with v = (vy,...,v,) and @ = (Qj,5,),,...»

Q,; =rexp (20Zj\/210g N) {62”21 + op(l)},
Qj,j, = 2rexp {(azjl + 0.4,)v/21og N}op(l), and
Vj =T exp <0zj\/210g N) {e“”’ + op(l)}



REFERENCES

and

! 2 ( 1 —vt
By (Z xpc?) By = z +op(1). (B.51)

ics* v p¥+ Tt

By a similar argument as for Case (a), the desired conclusion follows.

P

Next we want to show that §* provides the fastest convergence rate for V( —

3,
0 among all subdata § of size k. We consider Case (a) only since the proof
for Case (b) is similar. From (3.16)), for any § with subdata size k, we have
I6)7" > (Xics Ici)_l in Loewner order, and further we have {I(8)'};; >
{(Xes I(;i)fl}jj > ({Xes Ici}jj)fl for all j. Then for estimating the slope pa-

rameters of the gth cluster with any subdata &, we have

2

2
)2 250 8) 2 P (hef) ™ () )

1€6
2

o
= —% min ((le + 011/ 2logN + 0op(1)) 72, (o1 + 0.11/2logN + 0p(1))’2>

km,
(B.52)

for j = 1,...,p. From (B.52), for any 6, the lower bound of the convergence rate
of V( Ag’j) is 1/log N. On the other hand, from (3.24), it is clear V( Ag;) achieves

this lower bound. O
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