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Abstract:

Subsampling techniques can effectively reduce the computational costs of pro-

cessing big data. Practical subsampling plans typically involve initial uniform

sampling and refined sampling. Subsample-based big data inferences are

generally built on the inverse probability weighting (IPW), which may be unstable

and cannot incorporate auxiliary information. In this paper, we consider a two-

step Poisson sampling, which combines an initial uniform sampling with a second

Poisson sampling. Under this sampling plan, we propose an empirical likelihood

weighting (ELW) estimation approach to an M-estimation parameter, and then
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construct a nearly optimal two-step Poisson sampling plan based on the ELW

method to improve estimation efficiency of IPW-based optimal subsamplings.

Further, we derive methods for determining the smallest sample sizes with which

the proposed sampling-and-estimation method produces estimators of guaranteed

precision. Our ELW method overcomes the instability of IPW by circumventing

the use of inverse probabilities, and utilizes auxiliary information including the

size and certain sample moments of big data. We show that the proposed ELW

method produces more efficient estimators than IPW, leading to more efficient

optimal sampling plans and more economical sample sizes for a prespecified

estimation precision. These advantages are confirmed through real data based

simulations.

Key words and phrases: Big data; Two-step Poisson sampling; Empirical

likelihood

1. Introduction

One of the most significant features of big data is its incredibly large volume,

which poses serious challenges to its timely processing. Data analytics need

to be performed efficiently so that the results are made available to users

in a cost-effective and timely manner. A popular and efficient strategy for

solving this problem is to draw small-scale subsamples from the big data

(original sample) and make statistical inferences based on the subsamples

(Drineas et al., 2006, 2011). Compared with the original big data, the
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subsamples are usually much smaller, and so subsample-based inferences

significantly reduce the required computational resources.

Subsample-based inferences for big data generally involve two funda-

mental issues: how to draw an effective subsample and how to make efficient

statistical inferences based on the subsample. Regarding the first issue, it

is generally accepted that carefully designed sampling probabilities make

unequal probability samplings more efficient than simple random or uniform

sampling. Many researchers have developed efficient or optimal sampling

plans for frequently encountered parametric statistical problems, including

linear regression models (Ma et al., 2014), logistic regression (Fithian and

Hastie, 2014; Wang et al., 2018; Wang, 2019), softmax regression (Yao et

al. , 2023), generalized linear models (Ai et al., 2021b), quantile regression

(Ai et al., 2021a; Fan et al., 2021; Wang and Ma, 2021), and more general

models (Shen et al., 2021; Yu et al., 2022).

For the second issue, subsample-based statistical inferences for big

data are usually performed through inverse probability weighting (IPW),

which leads to the Hansen–Hurwitz estimator (Hansen and Hurwitz, 1943)

under sampling with replacement and to the Horvitz–Thompson estimator

(Horvitz and Thompson, 1952) under sampling without replacement.

However, the subsample-based IPW estimation procedure for big data
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analysis suffers from two weaknesses. First, the IPW estimator can be

highly unstable if there are extremely small probabilities, resulting in poor

finite-sample performance of the accompanying asymptotic-normality-based

inferences (Kang and Schafer, 2007); see the simulation results in the

missing data context in Han (2014, 2016) and Chen and Haziza (2017).

Second, the current IPW-based subsampling techniques do not incorporate

auxiliary information to improve estimation efficiency. For example, the

sample mean of some variables in a big dataset can be quickly calculated at

little computational cost; this can be taken as auxiliary information when

inferences are made based on a subsample.

In the case of big data, the optimal sampling depends on the statistical

problem under study and the accompanying subsample-based estimation

procedure. To consider both the generality and convenience of theoretical

analysis and implementation, we focus on M-estimation problems with

convex loss functions, and consider the use of Poisson sampling. Under

Poisson sampling, samples are drawn independently according to Bernoulli

experiments with prespecified success probabilities. Poisson sampling

never draws replicate observations and its implementation is free from

memory constraints (Yao and Wang, 2021). Popular examples of M-

estimation problems with convex loss functions include linear regression,
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quantile regression, and many generalized linear regressions. The sampling

probabilities of the ideal optimal samplings depend on the ideal parameter

estimator from the big data itself. For the optimal sampling to be

practically applicable, an initial sample is required to produce an initial

estimate of the parameter of interest.

In this paper, we consider Poisson samplings for both the two samplings,

and regard the whole sampling procedure as a two-step Poisson sampling.

We makes three contributions to the literature of subsample-based big data

analysis.

1. First, we develop an empirical likelihood weighting (ELW) estimation

method for a two-step Poisson sample from big data, incorporating

auxiliary information defined by estimating equations. The proposed

estimation procedure not only overcomes the instability of the IPW

by circumventing the use of inverse probabilities, but also achieves

enhanced efficiency by incorporating auxiliary information. We show

that, in theory, the proposed ELW estimator is asymptotically more

efficient than the IPW estimator.

2. Second, we construct a nearly optimal two-step Poisson sampling plan

by minimizing the upper bound of the asymptotic mean square error

(MSE) of the proposed ELW estimator. The sample from the first
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step is used to estimate the subsampling probabilities in the second

step.

3. Third, we determine the minimal sample size needed so that the

proposed nearly optimal sampling plan achieves the desired precision

requirement in terms of MSE and absolute error. As the ELW

estimator is more efficient than the IPW estimator, the proposed

nearly optimal two-step Poisson sampling is expected to outperform

existing optimal IPW-based subsampling plans.

The remainder of this paper is organized as follows. In Section 2, we

introduce the ELW estimation procedure with auxiliary information under a

general two-step Poisson sampling plan, and study the asymptotic behavior

of the ELW estimator. In Section 3, we construct a nearly optimal two-step

Poisson sampling plan and discuss its practical implementation. In Section

4, we derive the minimal sample size needed for the proposed estimator

to meet a prespecified precision. Real data based simulation studies are

reported in Section 5. Section 6 concludes with a discussion. All technical

proofs are given in the supplementary material for clarity.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



7

2. Empirical likelihood weighting estimation

2.1 Setup and IPW

Suppose that the big data consist of N observations {Zi}Ni=1, which are

independent and identically distributed (i.i.d.) copies from a population Z

with an unknown cumulative distribution function F . Parametric models

indexed by a q-dimensional parameter θ are usually imposed to extract

information from data. Let `(z, θ) be a user-specific convex loss function

that quantifies the lack-of-fit of a parametric model indexed by a parameter

θ based on an observation z. The average loss or risk function is R(θ) =

E{`(Z, θ)} =
∫
`(z, θ)dF (z). We define the parameter of interest θ0 to be

the risk minimizer (Shen et al., 2021)

θ0 = arg min
θ
R(θ). (2.1)

This setup includes many common problems as special cases. When Z

is a scalar, the true parameter value θ0 is the mean or median of Z if

`(z, θ) = (z−θ)2 or |z−θ|. When Z = (Y,X>)>, θ0 may be the population-

level regression coefficient in the generalized linear regression, least-squares

regression, quantile regression, and expectile regression models under the

specification of `(z; θ) given in Table 1 of the supplementary material.

Based on the big-data observations, θ̂N = arg minθ
∑N

i=1 `(Zi, θ) is
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the ideal estimator of θ. For massive datasets, N can be so large

that the direct calculation of θ̂N is formidable or practically infeasible.

Subsampling techniques then come into play to reduce the computation

costs. As discussed in the introduction, we consider the use of two-step

Poisson sampling, where the first step is a Poisson sampling with an equal

sampling probability and the second step is another Poisson sampling, but

with generally unequal sampling probabilities. Let the unequal sampling

probabilities in the second step be πi = π(Zi), i = 1, . . . , N , for some

function π(·). The ideal sample sizes for both the Poisson samplings in the

two-step Poisson sampling plan, n10 and n20 =
∑N

i=1 πi, must be specified

beforehand.

Since no information is available about the big data, in the first step,

we choose to conduct a Poisson sampling with inclusion probabilities all

equal to α10 = n10/N . For 1 ≤ i ≤ N , denote the sampling result for Zi as

Di1, which is equal to 1 for success and 0 otherwise. Datum Zi is sampled

in the first step if and only if Di1 = 1. The sample in the first step is used

to produce an initial estimate of θ, which is then employed to determine

the sampling probabilities in the second step. For now, we assume that the

πi are known. In the second step, we again conduct a Bernoulli experiment,

but with success probability πi for datum Zi, and denote the result as Di2;
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2.1 Setup and IPW9

datum Zi is sampled if and only if Di2 = 1. Finally, the resulting two-step

Poisson sample can be written as {(DiZi, Di1, Di2), i = 1, 2, . . . , N}, where

Di = I(Di1 +Di2 > 0) and I(·) is the indicator function.

Assumption 1. The N random vectors (Zi, Di1, Di2) (i = 1, . . . , N) are

i.i.d. copies of (Z,D(1), D(2)). Suppose that the distribution F (z) of Z

is nondegenerate, E(D(1)|Z) = E(D(1)) = α10, E(D(2)|Z) = π(Z), and

α20 = E(D(2)) = E{π(Z)}.

Let D = I(D(1) + D(2) > 0), where D(1) and D(2) are as defined in

Assumption 1. Then, E(D) = 1 − {1 − E(D1)}{1 − E(D2)} = 1 − (1 −

α10)(1−α20). For a given datum Z, the overall probability of being sampled

is ϕ(Z) = E(D | Z) = 1− (1−α10){1− π(Z)} under Assumption 1. Based

on the two-step Poisson sample, the IPW estimator of θ is

θ̂IPW = arg min
θ
R̂IPW(θ) ≡ arg min

θ

1

N

N∑
i=1

Di

ϕ(Zi)
`(Zi, θ), (2.2)

where R̂IPW(θ) is the IPW estimator of the risk function R(θ).

Assumption 2. Suppose that `(z, θ) is a loss function that is convex with

respect to θ, and that `(z, θ0 + t) = `(z, θ0) + ˙̀(z)>t + ξ(z, t) holds in

a neighborhood of t = 0. Here, the function ˙̀(z) satisfies E{ ˙̀(Z)} = 0

and B ˙̀ ˙̀ = E{ ˙̀(Z) ˙̀>(Z)/ϕ(Z)} is finite, and ξ(z, t) satisfies E{ξ(Z, t)} =
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(1/2)t>V t+o(‖t‖2) and E{ξ2(Z, t)} = o(‖t‖2) for a positive-definite matrix

V as ‖t‖ → 0, where ‖ · ‖ denotes the Euclidean norm.

Assumption 2 is satisfied by many commonly-used regression models,

such as the generalized linear regression, least-squares regression, quantile

regression, and expectile regression models. Lemma 1 shows the asymptotic

normality of θ̂IPW, which has been established under various settings; see,

e.g., Wang et al. (2018), Ai et al. (2021a) and Shen et al. (2021).

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied and that

α10, α20 ∈ (0, 1) are fixed quantities. As N goes to infinity,
√
N(θ̂IPW −

θ0)
d−→ N (0,ΣIPW), where

d−→ denotes “converges in distribution to” and

ΣIPW = V −1B ˙̀ ˙̀V −1.

As discussed in the introduction, if some probabilities ϕ(Zi) are too

close to zero, R̂IPW(θ) exhibits remarkable instability, making the resulting

IPW estimator θ̂IPW in (2.2) undesirably unstable. In the context of

big data analysis, auxiliary information is often available. For example,

the response mean of a big data sample can often be quickly calculated

with little extra effort, and can be regarded as auxiliary information in

subsample-based analysis. However, the estimation efficiency of the IPW

method cannot be enhanced by incorporating auxiliary information. Based

on optimal estimating function theory (Godambe, 1960), the score function
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2.2 ELW estimation under two-step Poisson sampling11

derived from the complete-data likelihood is optimal in the class of inverse

weighting estimating functions (Qin, 2017, Section 5.2). This motivates us

to consider the full-likelihood-based inference approach under the two-step

Poisson sampling.

2.2 ELW estimation under two-step Poisson sampling

Given data {(DiZi, Di1, Di2), i = 1, 2, . . . , N}, the full likelihood is

(
N

n

) N∏
i=1

[
{ϕ(Zi)dF (Zi)}Di · (1− α)1−Di

]
, (2.3)

where n =
∑N

i=1Di and α = E(D) =
∫
ϕ(z)dF (z) is the marginal

probability of observing a value of Z. The true value of α is α0 =

1− (1−α10)(1−α20) under Assumption 1. We use the EL method (Owen,

1988) to handle F (z). Letting pi = dF (Zi), the full log-likelihood becomes

N∑
i=1

[Di log(pi) +Di log{ϕ(Zi)}+ (1−Di) log(1− α)], (2.4)

where the feasible pi satisfy pi ≥ 0,
∑N

i=1 pi = 1, and

N∑
i=1

pi{ϕ(Zi)− α} = 0. (2.5)

The previous equation follows from α =
∫
ϕ(z)dF (z). The Zi with Di =

0 are not observed. Although appearing in the expression of the above

likelihood, they do not actually contribute to the likelihood. The expression

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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of the empirical log-likelihood implies that only those pi with Di = 1 make

a contribution to the likelihood.

If we take α to be an unknown parameter, the maximum point of (2.4)

under the constraints pi ≥ 0,
∑N

i=1 pi = 1, and (2.5) is always well defined

(Liu and Fan, 2023) if there are at least two different values in {ϕ(Zi) : Di =

1, i = 1, 2, . . . , N} (or, equivalently, {π(Zi) : Di = 1, i = 1, 2, . . . , N}). Liu

and Fan (2023) took the resulting pi, say p̃i, as the weights and proposed

a biased-sample EL weighting estimation method that serves the same

purpose as IPW, but overcomes the problem of instability.

Under the two Poisson samplings in the two-step Poisson sampling, the

true parameter values α10 and α20 need to be prespecified prior to their

implementation, so that α0 = 1 − (1 − α10)(1 − α20) is known a priori.

Unlike Liu and Fan (2023), we make full use of this and other auxiliary

information to improve the efficiency of the resulting point estimator of θ.

The feasible pi should satisfy

N∑
i=1

pi{ϕ(Zi)− α0} = 0. (2.6)

In addition, for massive datasets, although solving the optimization problem

min
∑N

i=1 `(Zi, θ) is complicated and time-consuming, the big data sample

mean
∑N

i=1 Zi/N or other sample moments can be calculated relatively

easily. This can be taken as auxiliary information when we make statistical
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2.2 ELW estimation under two-step Poisson sampling13

inferences about the big data based on a subsample. Suppose that h̄ =

(1/N)
∑N

i=1 h(Zi) is available for some function h, which may be vector-

valued. For convenience, we assume that E{h(Z)} = 0 is known. This can

be formulated as one more estimating equation:

N∑
i=1

pih(Zi) = 0. (2.7)

In summary, we recommend estimating the pi by the maximum EL

estimator, which is the maximizer of the empirical log-likelihood (2.4) under

the constraints pi ≥ 0,
∑N

i=1 pi = 1, (2.6), and (2.7). By the Lagrange

multiplier method, we have

p̂i =
1∑N

j=1Dj

· Di

1 + λ̂>he(Zi)
, (2.8)

where he(Z) = (ϕ(Z)−α0, h
>(Z))> and λ̂ is the solution to

∑N
i=1Dihe(Zi)/{1+

λ̂>he(Zi)} = 0. There is a close relationship between p̂i and the IPW weights

Di/{Nϕ(Zi)}, namely

p̂i =
Di

Nϕ(Zi)
+

Di

Nϕ(Zi)

{
Op(N

−1/2) +
‖he(Zi)‖
ϕ(Zi)

Op(N
−1/2)

}
.

See our proof of Theorem 1.

Given p̂i, we propose to estimate θ by the ELW estimator

θ̂ELW = arg min
θ
R̂ELW(θ) ≡ arg min

θ

N∑
i=1

Dip̂i`(Zi, θ) (2.9)
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where R̂ELW(θ) is the ELW estimator of the risk function R(θ). If the

loss function `(z, θ) is differentiable with respect to θ for almost all z,

an alternative ELW estimator of θ can be obtained by maximizing the

empirical log-likelihood (2.4) under the constraints pi ≥ 0,
∑N

i=1 pi = 1

with (2.6), (2.7), and
∑N

i=1 pi∂`(Zi, θ)/∂θ = 0. Because the dimensions of

θ and ∂`(Zi, θ)/∂θ are the same, the resulting maximum EL estimator is

exactly equal to θ̂ELW.

Theorem 1. Suppose that Assumptions 1 and 2 hold, Bhh = E{he(Z)h>
e (Z)/ϕ(Z)}

is positive-definite, and α10, α20 ∈ (0, 1) are fixed and known. As N

goes to infinity, (a) θ̂ELW is consistent with θ0 and
√
N(θ̂ELW − θ0) =

−V −1 · N1/2
∑N

i=1 p̂i
˙̀(Zi) + op(1); (b)

√
N(θ̂ELW − θ0)

d−→ N (0,ΣELW)

with ΣELW = V −1(B ˙̀ ˙̀−B ˙̀hB
−1
hhB

>
˙̀h

)V −1, where B ˙̀h = E{ ˙̀(Z)h>
e (Z)/ϕ(Z)}

and B ˙̀ ˙̀ = E{ ˙̀(Z) ˙̀>(Z)/ϕ(Z)}; (c) If the auxiliary information defined by

(2.7) is ignored, then
√
N(θ̂ELW − θ0)

d−→ N (0,ΣELW0), where ΣELW0 =

V −1{B ˙̀ ˙̀ − (B ˙̀1B
>
˙̀1

)/(B11 − α−10 )}V −1 with B ˙̀1 = E{ ˙̀(Z)/ϕ(Z)} and

B11 = E{1/ϕ(Z)}.

The results in Theorem 1 hold with h(Z) = g(Z) − 1
N

∑N
i=1 g(Zi)

for any completely known function g(Z). Because ΣIPW − ΣELW =

V −1B ˙̀hB
−1
hhB

>
˙̀h
V −1 is nonnegative-definite, the ELW estimator is asymp-

totically more efficient than the IPW estimator. Roughly speaking,
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ΣIPW − ΣELW = V −1B ˙̀hB
−1
hhB

>
˙̀h
V −1 is the projection of V −1 ˙̀(Z) onto the

orthogonal complement of the augmentation space (Tsiatis, 2006) consisting

of he(Z). This indicates that as the dimension of h increases or equivalently

more auxiliary information is incorporated, the ELW estimator is more

efficient. Even so, its calculation burden becomes heavier. When the

dimension of h is fixed, it may be desirable to determine the optimal

choice for h by maximizing V −1B ˙̀hB
−1
hhB

>
˙̀h
V −1 in some sense. However,

the optimal choice of h depends not only on the underlying criterion but

also on unknown quantities, making it not necessary or useful in practice.

We choose h to be Y −N−1
∑N

i=1 Zi in our numerical studies for convenience.

Note that ΣIPW−ΣELW0 = V −1B ˙̀1B
>
˙̀1
V −1/(B11−α−10 ) is nonnegative-

definite because

B11 − α−10 =
1

α2
0

E
[
{ϕ(Z)− α0}2

ϕ(Z)

]
> 0,

Therefore, the efficiency gain of the ELW estimator over the IPW estimator

remains even if we ignore constraint (2.7), or if no auxiliary information

is incorporated in the ELW estimator. It can be verified that ΣELW0 −

ΣELW = V −1{B ˙̀hB
−1
hhB

>
˙̀h
− (B ˙̀1B

>
˙̀1

)/(B11 − α−10 )}V −1 is nonnegative-

definite, which again indicates that incorporating auxiliary information

enhances the efficiency of the proposed ELW estimator.
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2.3 The case with negligible sampling fraction

Thus far, we have assumed that the overall sampling fraction of the big data

is nonnegligible, i.e. α0 ∈ (0, 1). When the volume of the big data is huge,

it is reasonable to assume that the sampling fraction may be negligible.

Assumption 3. Suppose that π(z) depends on N and is written as πN(z),

there exist a positive sequence {bN}∞N=1, a positive function 0 < π∗(Z) ≤ 1,

and a positive constant α1∗ such that bN → ∞, bN/N → 0, bNπN(Z) →

π∗(Z), and bNα10 → α1∗ as N →∞.

Under Assumption 3, we have bNα20 = E{bNπN(Z)} → α2∗ =

E{π∗(Z)} as N →∞. Define α0 = α10+α20 and ϕ(Z) = α10+πN(Z). Then,

bNα0 and bNϕ(Z) converge to α∗ = α1∗ + α2∗ and ϕ∗(Z) = α1∗ + π∗(Z),

respectively. Because α10 and the πN(Zi) are prespecified, the log-likelihood

(2.4) under Assumption 3, up to a constant not depending on the unknown

parameters pi, is equal to
∑N

i=1Di log(pi). The proposed ELW estimator

θ̂ELW is still defined as (2.9) with πN(Z) in place of π(Z).

Theorem 2. Let he∗(Z) = (ϕ∗(Z) − α∗, h
>(Z))>. Suppose that As-

sumptions 1–3 hold, the distribution of Z is nondegenerate, and that

Chh∗ = E{he∗(Z)h>
e∗(Z)/ϕ∗(Z)} is positive-definite. As N goes to infin-

ity,
√
N/bN(θ̂ELW − θ0)

d−→ N (0,ΣELW∗) and
√
N/bN(θ̂IPW − θ0)

d−→
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N (0,ΣIPW∗), where ΣELW∗ = V −1(C ˙̀ ˙̀∗ − C ˙̀h∗C
−1
hh∗C

>
˙̀h∗)V

−1 and ΣIPW∗ =

V −1C ˙̀ ˙̀∗V
−1 with C ˙̀h∗ = E{ ˙̀(Z)h>

e∗(Z)/ϕ∗(Z)} and C ˙̀ ˙̀∗ = E{ ˙̀(Z) ˙̀>(Z)/ϕ∗(Z)}.

Theorem 2 indicates that even as the sampling fraction tends to zero,

both the ELW and IPW estimators are consistent at the rate
√
N/bN , a

lower rate than
√
N , and our ELW estimator is still asymptotically more

efficient than the IPW estimator. Although the asymptotic results here

are slightly different from those in Lemma 1 and Theorem 1, the variances

of θ̂ELW and θ̂IPW can always be approximated by ΣELW/N and ΣIPW/N ,

respectively.

3. Optimal two-step Poisson sampling plan

The asymptotic efficiency of subsample-based statistical inferences depends

critically on the underlying subsampling plan. Carefully chosen sampling

plans can lead to remarkable efficiency gains over uniform sampling, which

motivates optimal subsampling for big data.

3.1 Ideal optimal sampling plan

MSE is a popular evaluation criterion for the performance of a point

estimator. For a vector-valued parameter θ, the MSE of an estimator

θ̂ is defined as Mse(θ) = E(‖θ̂ − θ‖2). According to Theorem 1, the
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3.1 Ideal optimal sampling plan18

proposed ELW estimator has no asymptotic bias, therefore its asymptotic

MSE is equal to the trace of asymptotic variance. For a constant matrix

Q, Theorem 1 implies that N times the asymptotic MSE of Qθ̂ELW is

approximated by

N ×Mse(Qθ̂ELW) ≈ tr[QV −1(B ˙̀ ˙̀−B ˙̀hB
−1
hhB

>
˙̀h

)V −1Q>].

According to Theorem 2, this approximation still holds when the sampling

fraction is negligible. The MSEs with Q = I and V correspond to the A-

and L-optimality criteria, respectively. When Q = V , the MSE criterion

is independent of V , and hence has much practical convenience. However,

Q = I is preferred when we are more interested in the efficiency of the ELW

estimator itself.

Because he(Z) = (ϕ(Z)−α0, h
>(Z))>, E{ ˙̀(Z, θ0)} = 0, and E{h(Z)} =

0, we have

B ˙̀h = E

{
˙̀(Z, θ0)(−α0, h

>(Z))

ϕ(Z)

}
, Bhh = E

[
{(−α0, h

>(Z))>}⊗2

ϕ(Z)

]
− α0e

⊗2
1 ,

where e1 is a unit vector in which the first component is 1. Let π =

(π1, . . . , πN) with πi = π(Zi), and ϕ = (ϕ1, . . . , ϕN), where ϕi = 1 − (1 −

α10)(1− πi). Given π, natural “estimators” of B ˙̀ ˙̀, B ˙̀h, and Bhh are

B̂ ˙̀ ˙̀ =
1

N

N∑
i=1

{ ˙̀(Zi, θ0)}⊗2

ϕi
, B̂ ˙̀h =

1

N

N∑
i=1

˙̀(Zi, θ0)b
>
i

ϕi
, B̂hh =

1

N

N∑
i=1

b⊗2i
ϕi
− α0e

⊗2
1 ,
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3.1 Ideal optimal sampling plan19

where bi = (−α0, h
>(Zi))

> for i = 1, . . . , N . Accordingly, a natural

consistent “estimator” of N ×Mse(θ̂ELW) is

H∗(ϕ) = tr{QV −1(B̂ ˙̀ ˙̀− B̂ ˙̀hB̂
−1
hh B̂

>
˙̀h

)V −1Q>}.

Because there is a one-to-one map from π to ϕ, determining the optimal

sampling plan π is equivalent to determining the optimal ϕ. The optimal

ϕ in terms of parameter estimation accuracy is the solution to

min
ϕ
H∗(ϕ) s.t.

N∑
i=1

ϕi = Nα0, α10 < ϕi < 1 for i = 1, . . . , N. (3.1)

Unfortunately, there is no closed-form solution to problem (3.1), which

makes it impractical and motivates us to derive a nearly optimal sampling

plan using several techniques.

Let ai(θ0) = QV −1 ˙̀(Zi, θ0). First, we replace problem (3.1) by

min
ϕ
H(ϕ) s.t.

N∑
i=1

ϕi = Nα0, α10 < ϕi < 1 for i = 1, . . . , N. (3.2)

where

H(ϕ) =
1

N

N∑
i=1

‖ai(θ0)‖2

ϕi
− 1

N
tr


(

N∑
i=1

ai(θ0)b
>
i

ϕi

)(
N∑
i=1

bib
>
i

ϕi

)−1( N∑
i=1

bia
>
i (θ0)

ϕi

) .

The fact that H∗(ϕ) ≤ H(ϕ) holds for any ϕ implies that a sampling

plan with a small H(ϕ) somehow leads to a small H∗(ϕ). The solution to

problem (3.2) is a nearly optimal ϕ and hence produces a nearly optimal

sampling plan.
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3.1 Ideal optimal sampling plan20

Second, we transform the optimization problem (3.2) to an equivalent

constrained optimization problem. DefineH1(ϕ,K) = (1/N)
∑N

i=1 ‖ai(θ0)−

Kbi‖2/ϕi, where K is a matrix of the same dimensions as ai(θ0)b
>
i . Clearly,

H(ϕ) = minK H1(ϕ,K) for any fixed ϕ. Because H1(ϕ,K) is a convex

function of (ϕ,K), it follows that

min
ϕ
H(ϕ) = min

ϕ
min
K

H1(ϕ,K) = min
ϕ,K

H1(ϕ,K),

and that the solution to (3.2) can be obtained by solving

min
ϕ,K

H1(ϕ,K) s.t.
N∑
i=1

ϕi = Nα0, α10 < ϕi < 1 for i = 1, . . . , N. (3.3)

If we retain only the equality constraint, then

min
ϕ,K

H1(ϕ,K) = min
K
{min

ϕ
H1(ϕ,K)} = min

K

{H2(K)}2

N2α0

=
{minK H2(K)}2

N2α0

,

where H2(K) =
∑N

i=1 ‖ai(θ0)−Kbi‖. Denote K̂ = arg minK H2(K). In this

situation, a nearly optimal ϕ is ϕ̂ = (ϕ̂1, . . . , ϕ̂N) with

ϕ̂i = α0 ·
‖ai(θ0)− K̂bi‖

N−1
∑N

j=1 ‖aj(θ0)− K̂bj‖
. (3.4)

Note that (ϕ̂, K̂) is generally different from (ϕ̂∗, K̂∗), which is the minimizer

of problem (3.3), because the optimization problems with and without the

inequality constraint α10 < ϕi < 1 (i = 1, . . . , N) are not equivalent. From

a practical perspective, we propose to take K̂ as an approximation of K̂∗
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and adopt the optimal sampling plan with ϕ solving

min
ϕ
H1(ϕ, K̂) s.t.

N∑
i=1

ϕi = Nα0, α10 < ϕi < 1 for i = 1, . . . , N. (3.5)

By the Karush–Kuhn–Tucker condition, the solution to (3.5) is

ϕ̂ei = max

{
α10, min

(
γ̂ · ‖ai(θ0)− K̂bi‖

N−1
∑N

j=1 ‖aj(θ0)− K̂bj‖
, 1

)}
, (3.6)

where the subscript “e” denotes that ϕ̂ei is the “exact” solution to (3.5),

and γ̂ > 0 is the solution to

N−1
N∑
i=1

max

{
α10, min

(
γ · ‖ai(θ0)− K̂bi‖

N−1
∑N

j=1 ‖aj(θ0)− K̂bj‖
, 1

)}
= α0.

3.2 Practical considerations

The sampling plans with ϕ̂i and ϕ̂ei are not practically applicable, because

both of them depend on θ0, which needs to be estimated beforehand. To

this end, the convention is to draw an initial sample, say {z̃i = (ỹi, x̃
>
i )> :

i = 1, . . . , n1}, by uniformly sampling from the big data being studied.

The first step in our two-step Poisson sampling plays exactly the same

role. Let θ̃ = arg minθ
∑n1

i=1 `(z̃i, θ) and Ṽ be a consistent estimator of

V based on the first-step sample. Denote K̃ = arg min
∑n1

i=1 ‖ãi − Kb̃i‖,

where b̃i = (−α0, h
>(z̃i))

>, and ãi = Ṽ −1 ˙̀(z̃i, θ̃) in the A-optimality

criterion or ãi = ˙̀(z̃i, θ̃) in the L-optimality criterion. Calculating K̃
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may be computationally intensive, and so we use the least-squares estimate

K̃ =
(∑n1

k=1 ãkb̃
>
k

)(∑n1

j=1 b̃j b̃
>
j

)−1
instead. Define

ϕ̃ei = max

{
α10, min

(
γ̃ · ‖ai − K̃bi‖

n−11

∑n1

j=1 ‖ãj − K̃b̃j‖
, 1

)}
, 1 ≤ i ≤ N,(3.7)

where γ̃ > 0 is the smallest solution to

n−11

n1∑
i=1

max

{
α10, min

(
γ · ‖ãi − K̃b̃i‖

n−11

∑n1

j=1 ‖ãj − K̃b̃j‖
, 1

)}
= α0.

Our recommended sampling plan for the second step is π̃ = (π̃1, . . . , π̃N)

with

π̃i = (ϕ̃ei − α10)/(1− α10), (3.8)

where α10 ∈ (0, 1) is the known sampling fraction of the first-step sampling.

4. Sample size determination

For a given subsample, the performance of the IPW and ELW estimators

depends not only on the underlying sampling plan, but also on the size of the

subsample. If the size n or the ideal size n0 of a two-step Poisson subsample

is too small, the resulting estimator will be so unstable that it does not make

any sense. When the (optimal) sampling plan is fixed, it is necessary to

specify the subsample size that guarantees the resulting estimate meets a

certain precision requirement. To the best of our knowledge, this issue
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has never been discussed in the literature of subsampling for big data. We

address the issue of determining n0 under each of the following two precision

requirements on θ̂ELW: (R1) The asymptotic MSE of θ̂ELW is no greater

than a prespecified positive constant C0, i.e., Mse(θ̂ELW) ≤ C0. (R2) The

absolute error of θ̂ELW is no greater than a critical value d0 > 0 at the

confidence level (1− a), i.e.,

P (‖θ̂ELW − θ0‖ ≤ d0) ≥ 1− a. (4.1)

We assume that the sample fraction α10 > 0 of the first sample is known,

but that for the second sample α20 is unknown. Because n0/N = α0 = 1−

(1−α10)(1−α20), when the (optimal) sampling plan is fixed, determining α20

is equivalent to determining n0. Recall that a nearly optimal subsampling

plan can be approximated by (3.4) or ϕ̃∗ = (ϕ̃∗1, . . . , ϕ̃∗N), where ϕ̃∗i is ϕ̂i

with K̂ replaced by K̃. With the sampling plan ϕ̃∗, an upper bound for the

asymptotic MSE of θ̂ELW is

H(ϕ̃∗)/N =
1

N3α0

{
N∑
j=1

‖aj(θ0)− K̃bj‖

}2

=
1

n0

{
1

N

N∑
j=1

‖aj(θ0)− K̃bj‖

}2

,

which can be estimated by n−10 (n−11

∑n1

j=1 ‖ãj − K̃b̃j‖)2 based on a pilot

sample of size n1 ≈ Nα10. Under requirement (R1), a sufficient

approximation is to constrain n−10 (n−11

∑n1

j=1 ‖ãj − K̃b̃j‖)2 ≤ C0. Note that

the elements of K̃ and b̃j contain the unknown parameter α0 = n0/N .
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Therefore, the minimal sample size n0 that satisfies requirement (R1) should

be the solution to

n0 =
1

C0

{
1

n1

n1∑
j=1

‖ãj − K̃b̃j‖

}2

. (4.2)

This is our first recommended sample size determination method, which we

denote as M1 for convenience.

To determine the sample size under requirement (R2), note that the

inequality ‖θ̂ELW − θ0‖ ≤ d0 is equivalent to ζ>ΣELWζ ≤ Nd20, where

ζ =
√
NΣ

−1/2
ELW(θ̂ELW−θ0) approximately follows the q-dimensional standard

normal distribution, where q is the dimension of θ. The distribution of

ζ>ΣELWζ can be further approximated by a weighted chi-square distribution

of
∑q

k=1 λkζ
2
k , where the λk are the eigenvalues of ΣELW and the ζk

are i.i.d. standard normal random variables. According to Kim et al.

(2006)[Lemma 2, page 453], the cumulative distribution of
∑p

k=1 λkζ
2
k can

be approximated by that of ν−1χ2
ν , where ν =

∑q
k=1 λk/

∑q
j=1 λ

2
j . It follows

that P (‖θ̂ELW − θ0‖ ≤ d0) ≈ P (χ2
ν ≤ νNd20), which together with (4.1)

implies the approximation νNd20 = χ2
ν(1−a), where χ2

ν(1−a) is the (1−a)th

quantile of the chi-square distribution with ν degrees of freedom.

Moreover, ν is approximately equal to ν̃ =
∑q

k=1 λ̃k/
∑q

j=1 λ̃
2
j , where

the λ̃k are the eigenvalues of Σ̃ELW = Ṽ −1(B̃ ˙̀ ˙̀ − B̃ ˙̀hB̃
−1
hh B̃

>
˙̀h

)Ṽ −1. Herein,

B̃ ˙̀ ˙̀, B̃ ˙̀h, and B̃hh are the sample-mean estimates of B ˙̀ ˙̀, B ˙̀h, and Bhh based
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on the first sample. Because ΣELW (and hence λk) depends on α0 = n0/N ,

so do Σ̃ELW, λ̃k, and ν̃. We denote ν̃ by ν̃(n0) to highlight this dependence.

Our recommended sample size n0 under requirement (R2), denoted as M2,

is the root of

ν̃(n0) = ν∗, (4.3)

where ν∗ is the solution to νNd20 = χ2
ν(1− a) with respect to ν.

5. Numerical results

In this section, we investigate the finite-sample performance of the proposed

ELW estimation and sampling strategy as well as the sample size determi-

nation method by analyzing two real datasets: a bike sharing dataset and

a hospital length-of-stay dataset.

5.1 Methods under comparison

We use ELW and ELWAI to denote the proposed ELW estimation methods

without and with auxiliary information, where the full-data response mean

is taken as auxiliary information. We compare their performance with the

two-step IPW estimation method of Yu et al. (2022), where the resulting

estimator is an inverse-variance weighting average of the IPW estimator

based on the second-step sample and the pilot estimator based on the first-
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5.1 Methods under comparison26

step sample. As a benchmark, we also consider the one-step estimator based

only on the first-step uniform sample.

We use ELWS and ELWAIS to represent the proposed nearly optimal

two-step Poisson sampling plans corresponding to the ELW and ELWAI

estimation methods, respectively. Specifically, ELWAIS refers to the sam-

pling plan with the second-step subsampling probabilities being (3.8), which

incorporates auxiliary information, while ELWS refers to the counterpart

without utilizing auxiliary information. We compare them with the optimal

sampling plan (IPWS) of Yu et al. (2022, equation (21)), which is derived

based on their IPW method. The second-step subsampling probabilities of

IPWS is

π̃i =
n20

N
· (1− %)|yi − exp(x>

i θ̃)|h(xi)

n−11

∑n1

j=1 |ỹj − exp(x̃>
j θ̃)|h(x̃j)

+
%n20

N
, i = 1, . . . , N, (5.1)

where θ̃ is the pilot estimator based on the first step sample {(x̃j, ỹj) :

j = 1, . . . , n1} and n20 is the average size of the second step sample. Note

that a shrinkage technique (Ma et al., 2014) is used with a tuning parameter

% ∈ [0, 1] when calculating the IPWS optimal sampling probabilities. When

% = 0, the function h(x) = ‖x‖ and ‖Ṽ −1x‖ with Ṽ = n−11

∑n1

j=1 e
x̃>j θ̃x̃⊗2j

correspond to the L- and A-optimality criteria of the classical IPW method,

respectively. We fix % = 0.2 for consistency with the setup of Yu et al.

(2022). As estimation efficiency is of primary concern, we consider only
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optimal subsampling probabilities under the A-optimality criterion. The

results under the L-optimality criterion are similar and omitted to save

space.

5.2 Data description

The bike sharing dataset consists of N =17,379 observations and is available

from the UCI Machine Learning Repository (https://archive.ics.uci.

edu/ml/datasets/bike+sharing+dataset). We are interested in the

problem of how the number of bikes rented hourly (Y ) is influenced by

four covariates: a binary variable (X1) indicating whether a certain day is

a working day or not, temperature (X2), humidity (X3), and windspeed

(X4). The hospital length-of-stay dataset coinsists of N =100,000

observations on patients admitted into hospital and is available from the

Microsoft Machine Learning Services (https://microsoft.github.io/

r-server-hospital-length-of-stay/). The problem of interest is to

investigate how the length of stay within hospital (Y ) is influenced by two

covariates: readmission count and the number of symptoms including renal

disease, asthma, iron deficiency, pneumonia, substance dependence, fibrosis,

malnutrituion, blood disorder, depression, major psychological disorder,

and other psychological disorder during encounter. As the readmission
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count data are categorized into six groups with levels 0, 1, 2, 3, 4, and 5+,

we encode readmission count as five dummy variables X1–X5, indicating the

non-zero levels, and encode number of symptoms as X6. For each dataset,

we model the responses given the covariates by Poisson regression, which is

widely used for count data modelling. To eliminate the influence of scales

of different variables, we centralize and standardize the covariates in both

datasets.

5.3 Estimation and sampling comparisons

From each of the two big datasets, we generate 5000 samples by each of the

IPWS, ELWS, and ELWAIS sampling plans and then calculate the IPW,

ELW, and ELWAI estimates of the regression coefficient θ based on each

sample. We set the ideal sample size n10 to 200 in the first step, and set the

ideal sample size n20 to 300, 500, and 1000, respectively, in the second step.

For fair comparisons, we set the size of the uniform sample for the one-step

estimator to be the same as the overall sample sizes (namely, n10 + n20).

We evaluate the estimation performance of the one-step, IPW, ELW, and

ELWAI estimators in terms of the empirical MSE

MSE =
1

5000

5000∑
b=1

‖θ̆b − θ̂N‖2, (5.2)
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where θ̆b is a generic subsample-based estimate in the bth repetition and θ̂N

is the full-data-based estimate of regression coefficients reported in Table 2

of the supplementary material. Figure 1 displays the logarithm of empirical

MSE versus n20 for the one-step estimator under the uniform sampling plan

and the IPW, ELW, and ELWAI estimators under the two-step sampling

plans.
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Figure 1: Plots of the logarithm of MSE versus n20 for the one-step (×),

IPW (◦), ELW (N), and ELWAI (?) estimators when data were drawn by

the uniform (dot-dashed line), IPWS (dotted line), ELWS (dashed line),

and ELWAIS (solid line) sampling plans from the two real datasets.

We first examine the performance of the one-step, IPW, ELW, and

ELWAI estimation methods from Figure 1. Clearly, all three two-step
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estimators have much lower MSEs than the one-step estimator. This

confirms that employing carefully designed non-uniform sampling strategies

can enhance the efficiency of the resulting subsample-based estimators.

Below, we focus on the the evaluation of the two-step subsampling and

estimation methods. In terms of MSE, both ELW and ELWAI outperform

IPW uniformly for all combinations of sampling plan, real dataset and

n20. This suggests that the proposed ELW estimation method always

produce more reliable estimates than the IPW method regardless of whether

auxiliary information is incorporated. Meanwhile the ELWAI estimator

always has a uniformly smaller MSE than the ELW estimator in all

cases, which confirms our finding below Theorem 1, namely incorporating

auxiliary information does lead to higher estimation efficiency for the ELW

method.

Next, we investigate the efficiency of the three two-step sampling

plans: ELWS, ELWAIS and IPWS. Figure 1 shows that given each of the

IPW, ELW and ELWAI estimation methods, the corresponding (nearly)

optimal sampling plan leads to uniformly smaller MSEs than the other two

sampling plans. For example, if we choose the ELW method to estimate

the regression coefficient, ELWS leads to a more reliable estimator than

IPWS and ELWAIS. This makes sense as each of the three sampling plans

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5.3 Estimation and sampling comparisons31

is designed for the corresponding estimation method.

Finally, it is natural to take an estimation method and the corre-

sponding (nearly) optimal sampling plan as a toolkit for processing big

data. We see that for all combinations of n20 and real dataset, the

ELW estimation and sampling technique gives uniformly more efficient

estimators than the IPW-based counterpart, and the ELWAI estimation

and sampling technique uniformly outperforms the ELW-based counterpart.

Again this demonstrates the superiority of the proposed ELW methods over

the existing IPW method, and that of the ELWAI method over the ELW

method by incorporating auxiliary information.

Besides estimation efficiency, computational cost is another important

concern in the process of big data. Table 1 presents the average CPU times

(in milliseconds) per subsample of the IPW, ELW and ELWAI estimation

methods and the IPWS, ELWS and ELWAIS sampling methods. Regarding

the three estimation methods, ELW is slower than IPW, and ELWAI is

slower than ELW, as are expected. In particular, ELW spends about

twice CPU time than IPW, and ELWAI spends more than four times

CPU time than ELW in average when processing a subsample. Even so,

the three sampling methods takes almost the same time per subsample.

As the average estimation times are negligible compared with the average
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sampling times, the overall estimation and sampling times of the proposed

two methods are almost the same as that of the IPW-based method. Table

1 also reports the computation time for calculating the full-data-based

estimates. We see that in the analyses of the bike sharing data and hospital

length-of-stay data, the two-step sampling and estimation procedures can

save much computation times than that based on the full data.

Table 1: Average CPU times (unit: millisecond) per subsample of the three

estimation methods and the three sampling methods under comparison.

Bike sharing dataHospital length-of-stay data

n20 300 500 1000 300 500 1000

Estimation

IPW 0.3 0.4 0.7 0.5 0.6 0.9

ELW 0.6 0.6 1.0 1.1 1.2 1.5

ELWAI 3.4 3.7 4.1 5.1 6.1 6.9

Sampling

IPWS 27.9 29.5 25.4 181.2 186.4 180.3

ELWS 28.8 29.4 25.1 183.2 184.2 174.5

ELWAIS 29.0 29.3 25.3 186.8 187.7 182.9

Full-data-based estimation 63.3 238.8

In addition, we also conduct simulations to investigate the performances
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of two sample size determination methods, M1 and M2. See the supple-

mentary material. Our general finding is that these methods do produce

desirable estimates with promised precision.

6. Discussion

The problem of optimal subsampling has a long-standing tradition within

the field of survey sampling for inference regarding finite populations; see,

e.g., Neyman (1938), Hajek (1959), Cassel et al. (1976), Brewer (1979),

Isaki and Fuller (1982), and Bellhouse (1984). These works, however,

are primarily concerned with linear estimators of scalar finite population

characteristics. Stimulated by modern technological developments, the

question of optimal subsample selection has attained renewed attention

during the past few years for more complex inference problems, such as

logistic regression for big data (Wang et al., 2018; Wang, 2019). However,

the current optimal subsamplings for big data are built on the well-

known Horvitz-Thompson estimator or the IPW estimator, which becomes

unstable when some inclusion probabilities are close to zero. This motivates

our optimal Poisson sampling for big data based on the ELW method.

Based on a two-step Poisson sample from a big dataset, we have

developed an ELW estimation method for M-estimation problems. The
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proposed approach not only overcomes the instability of the conventional

IPW-based estimation method, but also improves the estimation efficiency

by incorporating auxiliary information. A nearly optimal two-step Poisson

sampling plan was constructed accordingly. Theoretically, the ELW method

is asymptotically more efficient than the IPW method, which means that

the proposed sampling and estimation method requires fewer samples to

achieve the target estimation precision. Recently, Wang and Kim (2022)

proposed a maximum sampled conditional likelihood method to overcome

the instability of IPW. As built on a parametric model, their method suffers

from model mis-specification. In contrast, our ELW method does not have

this problem.

We assumed the convexity of the loss function in the M-estimation

problem for technical convenience. Our ELW estimation method also

applies to general M-estimation problems, general estimating equation

problems (Qin and Lawless, 1994) and more general sampling plans

including those with replacement. Further efforts may be needed to

establish the asymptotic normality of the resulting point estimator, which

is the foundation for constructing optimal sampling plans.

The two-step Poisson sampling we have considered consists of a pilot

uniform sampling and a refined sampling. Under this sampling framework,
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we established two sample size determination methods under estimation

precision requirements (R1) and (R2), respectively. These methods are new

in the literature of optimal subsampling for big data. They may need to be

modified when the parameter of interest is a smooth function of θ, such as

Cθ for a given matrix C, rather than θ itself. In addition, the current two-

step Poisson sampling consists of only two subsampling processes, although

this may be extended to multiple subsampling processes when needed.

Supplementary Material

The online supplementary material contains the proofs of Lemma 1 and

Theorems 1–2, and additional simulation results.
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