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Abstract: Two-sample inference for population mean functions is a fundamental

problem in functional data analysis. In recent years, projection-based testing

has gained popularity, which constructs a test statistic by projecting functional

observations into a finite-dimensional space. However, the criterion for selecting

projection functions remains an open question, given the various types of func-

tional spaces. In this paper, we introduce a novel measure of information loss

caused by projection and provide the first theoretical analysis of the relationship

between testing efficiency and the selection of projection functions. This anal-

ysis contributes to the understanding of projection-based testing and provides

guidelines for selecting projection functions. Specifically, we derive the theoret-

ical optimal projective space that achieves the best power and investigate three

practical projective spaces. And the tests based on these three projective spaces

exhibit superior performance in simulations and real data.

Key words and phrases: Information loss, optimal projection function, projection-

based testing, selection of projection function, two-sample test
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1. Introduction

As the application of functional data becomes increasingly diverse in

various practical settings, the demand for efficient statistical inference meth-

ods has grown correspondingly. A key area of research in functional data

analysis (FDA) focuses on the challenge of two-sample inference for popula-

tion mean functions. A considerable amount of research has been dedicated

to exploring methods for evaluating the differences between two samples.

Initially, the pointwise t-test (Ramsay and Silverman, 2005) simplified

the problem by testing the null hypothesis against the alternative hypothe-

sis at each time point separately. However, this approach is time-consuming

and does not guarantee overall significance of the null hypothesis at a given

significance level, even if the pointwise test is significant at each time point.

To address these issues, global testing methods were developed by summa-

rizing the statistics (Fan and Lin, 1998; Zhang et al., 2019) or the p-values

(Cox and Lee, 2008) of the pointwise t-test. Later, the overall difference

between mean functions was tested using the L2-norm-based test (Faraway,

1997; Benko et al., 2009; Horváth et al., 2013) and the F -type test (Shen

and Faraway, 2004; Laukaitis and Račkauskas, 2005; Estévez-Pérez and Vi-

lar, 2013) by integrating the sample mean difference function over the entire

time range. Further details on these methods can be found in Zhang (2013).
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Additionally, the Maximum Mean Discrepancy (MMD) (Wynne and Dun-

can, 2022) has been used to detect differences in functional distributions,

which can also be applied to functional mean testing problems under cer-

tain assumptions. These classic methods are typically straightforward to

operate and implement, but they often lack sufficient testing efficiency.

In recent years, projection-based testing has gained popularity as a

method to construct a test statistic by projecting functional observations

into a finite-dimensional space. Initially, random projection (Cuesta-Albertos

and Febrero-Bande, 2010; Meléndez et al., 2021) was proposed to convert

functional data into scalars and then proceed as in the standard case. How-

ever, this approach has two main drawbacks: instability of testing results

and loss of information. To address the instability issue, certain projection

functions such as basis functions and eigenfunctions have been proposed.

For instance, Górecki and Smaga (2015) proposed a test based on a ba-

sis function representation, while Horváth et al. (2013) and Pomann et al.

(2016) projected observations into the linear space spanned by the leading

eigenfunctions of the estimated sample covariance function, and the number

of eigenfunctions used is determined by the fraction of variation explained,

which is usually around 85%. Additionally, Pini et al. (2018) proposed a

generalized Hotelling’s T 2 test (GHT) in separable Hilbert spaces, which
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is equivalent to using all eigenfunctions with non-zero eigenvalues as the

projection functions. And Wang et al. (2022) proposed a testing method

based on eigenfunctions chosen via hard thresholding and also introduced

a power enhancement component to improve the power. However, the cru-

cial problem of controlling information loss still remains unaddressed. To

address this issue, it is necessary to provide a measure of useful information

and analyze the relationship between testing efficiency and the selection of

projection functions, which is the main focus of this paper.

In this paper, we make several key contributions to the field of projection-

based testing. We begin with a comprehensive theoretical analysis that ex-

plores how the selection of projection functions impacts the testing power

function, deepening the understanding of its relationship with test efficiency.

Additionally, we introduce a novel measure of information loss due to pro-

jection and provide guidelines for selecting projection functions, thereby

enhancing the power of projection-based testing. Furthermore, we derive

the most powerful projection function and conduct a thorough investiga-

tion into three practical projection spaces, guided by our developed selection

criteria. The effectiveness of these methods is validated through our simula-

tion results. Overall, our research offers new insights into projection-based

testing and proposes practical solutions to improve testing efficiency.
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The rest of the paper is organized as follows. In Section 2, we consider

general projection functions that are independent of observations, and an-

alyze the relationship between testing efficiency and selection of projection

functions. In Section 3, three types of practical projection functions are

selected based on the information criteria proposed in Section 2.3. Simu-

lation studies and illustrative examples are presented in Section 4 and 5,

respectively. Discussion and conclusions are given in Section 6. The proofs

are provided in the Supplementary Material.

2. Theoretical Projection Testing

2.1 Problem Formulation

We assume that functional observations are random functions sampled

from an L2(T ) space equipped with the inner product ⟨f,g⟩ =
∫
T f(t)g(t)dt

and norm ∥f∥ = ⟨f,f⟩1/2, where the domain T ⊆ R is a compact inter-

val, and for simplicity, we take T = [0,1]. We consider two independent

random samples {yij}ni
j=1, i = 1,2. For each random sample, we assume

that yi1, . . . ,yini are independently and identically distributed (i.i.d.) from

Gaussian processes Yi(t) = GP(µµµi,K), characterized by a mean function

µµµi and a covariance operator K. The sample sizes are n1 and n2. Al-

though these two Gaussian processes share the same covariance opera-
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2.1 Problem Formulation

tor, they may possess different mean functions. The covariance operator

K is defined as the integral operator that (Kf)(·) =
∫
T κ(·, t)f(t)dt, with

κ(s, t) = cov{Yi(t),Yi(s)}. For any function f and a vector of d functions

denoted by Φd = (ϕ1, . . . ,ϕd)T, we define Φdf = (⟨ϕ1,f⟩, . . . ,⟨ϕd,f⟩)T, and

ΦdKΦT
d as a d×d matrix, where the (k1,k2)th element is ⟨ϕk1 ,Kϕk2⟩. With

a slight abuse of notation, we represent Φd as Φ in the following text. Our

objective is to test whether the two mean functions differ. Specifically, we

aim to test the null hypothesis,

H0 : µµµ1 = µµµ2 (2.1)

against the alternative H1 : µµµ1 ̸= µµµ2, where µµµ1 and µµµ2 are square-integrable.

The null hypothesis implies that
∫
(µµµ1(t)−µµµ2(t))2dt= 0.

Given the infinite dimension of the functional data, we adopt a testing

procedure based on d-dimensional projections of the form xij = Φyij , where

1 ≤ d < n = n1 +n2 − 2. The projective space is a linear space spanned by

ϕ1, . . . ,ϕd. By projection, the infinite-dimensional functional data yij is

reduced to a d-dimensional data xij . Since yij is from a Gaussian process,

xij is a d-dimensional random vector, which is normally distributed with

mean νννi = Φµµµi and covariance matrix ΣΣΣ = ΦKΦT for i= 1,2. Based on the
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2.2 Test Statistics and Power Function

projective space, the null hypothesis (2.1) can be reformulated as follows:

HΦ
0 : ννν1 = ννν2. (2.2)

We will show in the following theorem that rejecting HΦ
0 leads to the rejec-

tion of H0. To obtain a powerful test for H0, the projective space Φ and test

statistics should be carefully chosen. In the remaining of this section, we

assume that the projective space spanned by the projection function does

not depend on data.

Theorem 1. If the projection functions Φ satisfy that Φµµµ ̸= 0 if µµµ ̸= 0,

where µµµ = µµµ1 −µµµ2, then HΦ
0 holds if and only if H0 holds. Moreover, the

corresponding power functions are equivalent, i.e., βH(·) = βHΦ(·), where

βH(·) represents the probability of rejecting H0 given H is true.

2.2 Test Statistics and Power Function

Through Φ, we project the infinite-dimensional functional data into a d-

dimensional projective space. When d is fixed and both the independence

and the normality assumptions of xij hold, the classical Hotelling’s T 2-

test is the most powerful invariant test (Anderson, 2003). Therefore, we

apply Hotelling’s T 2 test with equal variance-covariance matrix, and the
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2.2 Test Statistics and Power Function

test statistic is defined as

T 2 = n1n2
n1 +n2

(x1 −x2)TΣ̂ΣΣ
−1

(x1 −x2), (2.3)

where xi = Φyi = ∑ni
j=1 Φyij/ni is the projected sample mean, and Σ̂ΣΣ =

ΦK̂ΦT is the projected sample variance-covariance matrix with K̂ =∑2
i=1

∑ni
j=1(yij −

yi)(yij −yi)T/(n1 +n2 −2).

Under the alternative hypothesis HΦ
1 : ννν = ννν1 − ννν2 ̸= 0, the exact dis-

tribution of the test statistics is,

n−d+1
nd

T 2 ∼ Fd,n−d+1(δ),

where Fd,n−d+1(δ) is a noncentral F -distribution with d and n−d+ 1 de-

grees of freedom. The noncentrality parameter δ = n1n2/(n1 +n2)∥∆Φ
ννν ∥2,

where ∥∆Φ
ννν ∥2 = νννTΣΣΣ−1ννν = (Φµµµ)T(ΦKΦT)−1Φµµµ. It is obvious that the value

of δ depends on the choice of the projective space. Based on the form of

∥∆Φ
ννν ∥2, we can view it as the extracted key information in terms of the

mean functions difference through projection. Under the null hypothesis

(2.2), (n−d+1)(nd)−1T 2 ∼ Fd,n−d+1(0). The power function of the size-α
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2.2 Test Statistics and Power Function

F -test can be calculated as:

βHΦ

(
∥∆Φ

ννν ∥;d,n1,n2
)

= pr

(
n−d+1

nd
T 2(∥∆Φ

ννν ∥2)> Fα
d,n−d+1 |HΦ

1

)
, (2.4)

where Fα
d,n−d+1 is the upper 100α percentile of Fd,n−d+1(0). Under the al-

ternative hypothesis (2.2), the exact distribution of T 2 depends on ∥∆Φ
ννν ∥.

Thus, T 2 in the power function (2.4) is written with a slight abuse of nota-

tion. Equation (2.4) indicates that when α,n1,n2, and d are fixed, the power

function βHΦ(·) strictly increases with ∥∆Φ
ννν ∥2. Moreover, Gupta and Perl-

man (1974) pointed out that when α,n1,n2, and ∥∆Φ
ννν ∥2 are fixed, βHΦ(·)

strictly decreases with d. This highlights the importance of carefully choos-

ing the projective space and the corresponding dimension. A theoretical

example is presented in Section ?? to make this conclusion more intuitive

and clearer.

In the preceding paragraph, we explored the changes in power with d

and ∥∆Φ
ννν ∥2 when n1 and n2 are fixed. As the sample sizes go to infinity,

under the assumptions d/n= cn → c ∈ (0,1), n1/(n1 +n2) → κ ∈ (0,1), and

∥∆Φ
ννν ∥2 = o(1), Bai and Saranadasa (1996) showed that the power function

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.3 Selection of projection functions

of Hotelling’s T 2-test satisfies

βHΦ(∥∆Φ
ννν ∥;d,n1,n2)−G

−ηα +
(
n(1− c)

2c

) 1
2
κ(1−κ)∥∆Φ

ννν ∥2

 P→ 0, (2.5)

where G(·) and ηα denote the cumulative distribution function and the

upper 100(1 −α) percentile of the standard normal distribution N(0,1),

respectively. Based on (2.5), it is clear that the limiting value of βHΦ(·)

increases as c decreases or ∥∆Φ
ννν ∥2 increases. However, c is strictly increasing,

while ∥∆Φ
ννν ∥2 is non-decreasing, with the dimension d increasing. Therefore,

it is important to carefully consider the trade-off between c and ∥∆Φ
ννν ∥2

when choosing the parameter d.

2.3 Selection of projection functions

Based on the discussion in Section 2.2, to obtain a more efficient test

of H0, we should choose a projective space, of which the corresponding

extracted information ∥∆Φ
ννν ∥2 is as large as possible and the dimension of

the projective space d is relatively small. In the following, we will delve into

a more detailed discussion on the selection of projection functions.
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2.3 Selection of projection functions

2.3.1 Measure of information loss

The projection inevitably leads to information loss. Thus, we seek to

investigate the upper bound of the extractable information. We notice

that ∥∆Φ
ννν ∥2 can be written as µµµTK−1/2PK1/2ΦTK−1/2µµµ, where PK1/2ΦT =

K1/2ΦT(ΦKΦT)−1ΦK1/2. It is straightforward to see that,

µµµTK− 1
2 (I−P

K
1
2 ΦT)K− 1

2µµµ≜ ∥εεε∥2 ≥ 0. (2.6)

Let ∥∆µµµ∥2 = µµµTK−1µµµ, then (2.6) indicates that the upper bound of ∥∆Φ
ννν ∥2

is ∥∆µµµ∥2. Thus the difference ∥εεε∥2 = ∥∆µµµ∥2 − ∥∆ννν∥2 can be taken as a

measure of information loss due to projection. It also should be noted that

∥εεε∥2 is equal to the sum of squared errors in fitting K− 1
2µµµ with K 1

2 ΦT, i.e.,

K− 1
2µµµ= K

1
2 ΦTθθθ, (2.7)

where the coefficient θθθ takes the least squares estimator θθθ0 = (ΦKΦT)−1Φµµµ.

The following proposition states that, as d → ∞, the information loss

caused by projection functions Φ tends to zero under certain conditions.

Proposition 1. When taking projection functions Φ = (ϕ1, . . . ,ϕd)T with

ϕk, k = 1,2, . . . spanning the range of K, the value of ∥∆Φ
ννν ∥2 converges to
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2.3 Selection of projection functions

∥∆µµµ∥2 as d→ ∞, resulting in no loss of information asymptotically.

2.3.2 The most powerful projection function

Although Proposition 1 is established, it is important to recall from

Section 2.2 that an excessively large d can negatively impact testing effi-

ciency. In other words, increasing d to achieve less information loss does not

necessarily lead to a more powerful test. In this section, we aim to identify

projection spaces that have high informativeness but also low dimensions.

For the case when d= 1, i.e., Φ = (ϕ1)T, both Φµµµ and ΦKΦT are scalars.

If ∥K−1/2µµµ∥<∞, by the Cauchy-Schwarz inequality, we have

∥∆Φ
ννν ∥2 = (Φµµµ)2

ΦKΦT ≤ ∥K1/2ΦT∥2∥K−1/2µµµ∥2

ΦKΦT = ∥K−1/2µµµ∥2 = ∥∆µµµ∥2.

If ∥K−1µµµ∥<∞, the equality can be achieved for ΦT = K−1µµµ≜ ϕ∗. It means

the information loss with ϕ∗ equals to 0. Considering that ϕ∗ has d= 1, it

is the most powerful projection function among all Φ with d≥ 1.

When d> 1, for given projection functions Φ = (ϕ1, . . . ,ϕd)T, it is natural

to consider their linear combination, i.e., ΦTϑϑϑ = ∑d
k=1ϑkϕk ≜ ϕ†, as the

projection function. Now let’s compare the testing efficiency of Φ and ϕ†.
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2.3 Selection of projection functions

By the Cauchy-Schwarz inequality, if ∥(ΦKΦT)−1/2Φµµµ∥<∞, we have

∥∆ϕ†
ννν ∥2 = (ϑϑϑTΦµµµ)2

ϑϑϑTΦKΦTϑϑϑ
≤ ∥(ΦKΦT)−1/2Φµµµ∥2 = ∥∆Φ

ννν ∥2.

If ∥(ΦKΦT)−1Φµµµ∥<∞, ∥∆ϕ†
ννν ∥2 can reach its upper bound ∥∆Φ

ννν ∥2 with ϑϑϑ=

(ΦKΦT)−1Φµµµ≜ θθθ0. It means the extracted information of Φ and ΦTθθθ0 ≜ϕ†∗

are the same. Thus, ϕ†∗, having a lower dimension, is more efficient than

Φ, and is the most powerful projection function among all ϕ†. What’s

more, ∥∆ϕ†∗
ννν ∥2 = ∥∆ϕ∗

ννν ∥2 = ∥∆µµµ∥2 if there exists a constant c such that

ϕ†∗ = cϕ∗, which means ϕ†∗ is equivalent to ϕ∗ if ϕ∗ is in the span of Φ.

Remark 1. In practice, both K and µµµ are unknown, and θθθ0 can be estimated

by θ̂θθ0 = (ΦK̂ΦT)−1Φµ̂µµ = Σ̂ΣΣ
−1
ν̂νν. It can be verified that the statistic T 2 in

(2.3) with the projection function ΦTθ̂θθ0 ≜ ϕ̂†∗ is equal to the one with Φ.

Therefore, the tests based on Φ or ϕ̂†∗ are equivalent in practice.

2.3.3 Selection Criteria

Combining the analyses from the previous sections, we propose three

perspectives for identifying efficient projection spaces with finite dimen-

sions, which we then apply practically in Section 3. Specifically,

1. Minimize information loss. In Section 3.1, we employ an optimization
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2.3 Selection of projection functions

algorithm within the Krylov subspace to approximate the optimal

projection function that achieves zero information loss.

2. Maximize the extracted information. In Section 3.2, we assess the

useful information that each eigenfunction can extract and propose

to select eigenfunctions based on this assessment.

3. Accurately fit Equation (2.7). In Section 3.3, we utilize B-Spline basis

functions as projection functions. These are data-independent and are

particularly suitable when the sample size is small.

As previously discussed, a large d can adversely affect testing efficiency.

Moreover, we know that when fitting functional observations with basis

functions, the optimal rate of d increases very slowly with the number of

observed discrete time points (Eubank, 1999). Therefore, if the projection

space is appropriately chosen, projection functions Φ with a finite d can

satisfactorily fit Equation (2.7). Consequently, we recommend conducting

projection-based testing with a finite number of functions. In practice, the

specific value of d can be determined by consulting the fitting performance

of Equation (2.7). And for the projection spaces in Section 3, we will provide

specific methods for determining the value of d.

Existing papers have only investigated testing based on a specific pro-
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jection space and have not considered the choice of projection functions.

Their performance can be evaluated by analyzing the information they ex-

tract. For instance, the random projection function (Cuesta-Albertos and

Febrero-Bande, 2010) may only capture useful information by chance and

is inherently unstable. The commonly used eigenfunctions with the largest

eigenvalues (Horváth et al., 2013; Pomann et al., 2016) do not necessar-

ily align with the direction of mean difference. Moreover, employing all

eigenfunctions with non-zero eigenvalues (Pini et al., 2018) can introduce

significant noise into the statistic, thereby disrupting the testing. Addition-

ally, the classical L2-norm-based test (Benko et al., 2009) can be interpreted

as a test based on the projection function µ̂µµ= µ̂µµ1 − µ̂µµ2, which does not take

the covariance function K into consideration, thus making it less sensitive

in testing. These analyses are consistent with their performance in the

simulation studies.

3. Practical Projection Functions and Power Analysis

3.1 Krylov Subspace

According to the discussion in Section 2.3, the theoretical most powerful

projection function is ϕ∗ = K−1µµµ, which results in information loss ∥εεε∥2 = 0.

However, the direct estimation of ϕ∗ is difficult. Through some calculation,
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3.1 Krylov Subspace

we find that minimizing the loss of information ∥εεε∥2 with respect to Φ

is equivalent to minimizing a quadratic function ⟨ϕ,Kϕ⟩/2−⟨µµµ,ϕ⟩ with re-

spect to ϕ. The projection function ϕ∗ is the minimizer of both optimization

problems. If the minimizer exists, we propose to apply the conjugate gra-

dient (CG) algorithm in Kraus and Stefanucci (2019) to approximate ϕ∗.

The CG algorithm solves the minimization problem with ϕ restricted to the

d-dimensional Krylov subspace Kd(K,µµµ), spanned by µµµ,Kµµµ, . . . ,Kd−1µµµ, in

the first d steps. Namely, the CG algorithm minimize ⟨ϕ,Kϕ⟩/2 − ⟨µµµ,ϕ⟩

subject to ϕ ∈ Kd(K,µµµ) and the solution obtained by the CG algorithm

ϕCG
d is a linear combination of µµµ,Kµµµ, . . . ,Kd−1µµµ.

We denote by ϕ̂CG
d the solution with µµµ,K substituted with µ̂µµ,K̂. Since

the projected difference ννν is a scalar, we can calculate the test statistic as

follows,

TCG =
(
n1n2
n1 +n2

) 1
2 µ̂µµTϕ̂CG

d

⟨ϕ̂CG
d ,K̂ϕ̂CG

d ⟩1/2 .

Under certain assumptions, we establish the convergence of the statistics

TCG under both the original null hypothesis and alternative hypothesis.

Assumption 1. The proportion of the sample sizes converges to a constant,

n1/(n1 +n2) → κ ∈ (0,1) as n0 = min(n1,n2) → ∞.
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3.1 Krylov Subspace

Assumption 2.

n
−1/2
0 ω−1

d ∥γd∥+n−1
0 ω−3

d → 0 as n0 → ∞,

where ωd is the smallest eigenvalue of the d×d matrix H = ΦCGKΦT
CG with

ΦCG = (µµµ,Kµµµ, . . . ,Kd−1µµµ)T and the d-vector γd =H−1ΦCGµµµ.

Theorem 2. If Assumptions 1 and 2 hold,

1. Under H0,

TCG
D→N(0,1).

2. Under H1,

n1 +n2
n1n2

T 2
CG = ∥∆̂CG,d

ννν ∥2 P→ (µµµTϕCG
d )2

⟨ϕCG
d ,KϕCG

d ⟩
= ∥∆CG,d

ννν ∥2,

which means T 2
CG grows linearly with n0, and the test is consistent,

i.e. T 2
CG

P→ ∞. And

TCG −
(
n1n2
n1 +n2

) 1
2

∥∆CG,d
ννν ∥ D→N(0,1).

Remark 2. In practice, we use the sample-splitting method (Huang, 2015),

which randomly divides the data into two parts, one part for estimating the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.2 Principle Components

conjugate gradient solution, and the other part for calculating the projection

test statistic. The purpose of random splitting is to preserve the Type I

error rate. To mitigate the impact of randomness and less power issues of

sample-splitting, we repeat this procedure J times and take the average of

statistics as our final test statistics. Taking a larger J helps to obtain more

stable results, and we set J = 100 in our simulation. In addition, the value

of d can be determined using the stopping rule of the CG algorithm, such

as when the relative difference between successive iterations of the solution

falls below a specified threshold.

3.2 Principle Components

Functional principle component analysis (FPCA) is commonly used in

FDA. Galeano et al. (2015) proposed a Mahalanobis distance for functional

observations, which shares the same form as ∥∆µµµ∥. They also used a finite

number of eigenvalues and eigenfunctions to approximate the functional

Mahalanobis distance. Building upon this idea, we consider the projective

space spanned by the eigenfunctions of K, which is denoted as Ed(K) and

the corresponding projection funciton is ΦPC(B) = (ψr1 , . . . ,ψrd
)T. Here,

B = {r1, . . . , rd} represents a subset of the indices of eigenfunctions. The

spectral decomposition of K is K = ∑∞
r=1λrψrψ

T
r , where λ1 > λ2 > · · · ≥ 0
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3.2 Principle Components

are the eigenvalues and ψr1 , . . . ,ψrd
are the eigenfunctions. Once ΦPC(B)

is determined, the extracted information is,

∥∆PC,d
ννν ∥2 =

d∑
k=1

(µµµTψrk
)2

λrk

≜
d∑

k=1
Qrk

, rk ∈B. (3.8)

In FDA, one common approach is to select the eigenfunctions corre-

sponding to the leading d eigenvalues (Horváth et al., 2013), i.e., Bλ =

{1, . . . ,d}. This choice provides a good approximation of the variation of

functional observations. However, ∥∆PC,d
ννν ∥2 based on ΦPC(Bλ) is not nec-

essarily the largest among all possible choices. In order to obtain a more

efficient test after projection, we instead choose the subset of indices BQ,

where the corresponding Qrk
are the d largest among all {Qr = (µµµTψr)2/λr |

λr > 0}. The projective space spanned by ΦP C(BQ) results in the largest

extracted information among all possible combinations of the eigenfunctions

of K for a given d.

In practice, let λ̂r and ψ̂r denote the estimated eigenvalues and eigen-

functions of K̂, respectively. The test statistic is

T 2
PC(B) = n1n2

n1 +n2

d∑
k=1

(µ̂µµTψ̂rk
)2

λ̂rk

, rk ∈B.

Assumption 3. No ties exist in λr1 , . . . ,λrd
and min1≤k≤dλrk

> 0.
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3.2 Principle Components

Assumption 4. As n0 → ∞, λ4
d∗n0d−2 → ∞ and λ2

d∗n0(dad∗)−2 → ∞,

where a1 = 23/2(λ1 − λ2)−1, ak = 23/2 max{(λk−1 − λk)−1,(λk − λk+1)−1}

for k = 2,3, . . . , and d∗ = max1≤k≤d rk.

Theorem 3. If Assumptions 1 and 3 hold,

1. Under H0,

T 2
PC(B) D→ χ2

d,

where χ2
d is a chi-square random variable with d degrees of freedom.

2. Under H1, if Assumption 4 also holds , then

n1 +n2
n1n2

T 2
PC(B) = ∥∆̂PC,d

ννν ∥2 P→
d∑

k=1

(µµµTψrk
)2

λrk

= ∥∆PC,d
ννν ∥2,

which means T 2
PC grows linearly with n0. In particular, if µµµ is not

orthogonal to the linear span of ψr1 , . . . ,ψrd
, then T 2

PC(B) P→ ∞. And

T 2
PC − n1n2

n1 +n2
∥∆PC,d

ννν ∥2 D→ χ2
d.

Note that under H1 in Theorem 3, the consistency of the test based on

the eigenfunctions of K̂ relies on the assumption that µµµ is not orthogonal to

the linear span of ψr1 , . . . ,ψrd
. However, this assumption is not guaranteed
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3.2 Principle Components

to hold in practice, even when d is large enough. This prompts us to consider

the test based on the eigenfunctions of M̂, where

M̂ = 1
n1 +n2 −1

2∑
i=1

ni∑
j=1

(yij −y)(yij −y)T,

and y = ∑2
i=1

∑ni
j=1 yij/(n1 + n2). We know that K̂ is a measure of the

within-population covariation and will converge to K regardless of the truth

or falsity of H0, while M̂ is a measure of the overall covariation and will

converge to K only under H0. Under H1, M̂ converges to M = K +κ(1 −

κ)µµµµµµT, which is proved to be a covariance function (Horváth and Kokoszka,

2012) and thus has orthonormal eigenfunctions ψ∗
k and eigenvalues λ∗

k sat-

isfying the spectral decomposition M = ∑∞
k=1λ

∗
kψ

∗
kψ

∗T
k . It is obvious that

µµµ(̸= 0) is not orthogonal to the range of M as µµµTMµµµ≥ κ(1−κ)(µµµTµµµ)2 > 0.

When selecting projection functions ΦPC∗(B) = (ψ∗
r1 , . . . ,ψ

∗
rd

)T, it should

be noted that ΦPC∗KΦT
PC∗ is not a diagonal matrix. Therefore, ∥∆PC∗,d

ννν ∥2 =

(ΦPC∗µµµ)T(ΦPC∗KΦT
PC∗)−1ΦPC∗µµµ cannot be simplified as a sum of d-terms,

as in (3.8). Specifically, the rk, rk′th element of ΦPC∗KΦT
PC∗ is λ∗T

rk
Kλ∗

rk′ ,

which is equal to −κ(1 −κ)µµµTψ∗
rk
µµµTψ∗

rk′ when rk ̸= rk′ , and to λ∗
rk

−κ(1 −

κ)(µµµTψ∗
rk

)2 when rk = rk′ , for rk, r
′
k = 1, . . . ,d. However, selecting the eigen-

function ψ∗
rk

with larger (µµµTψ∗
rk

)2/λ∗
rk

≜ Q∗
rk

is still reasonable. By ig-
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3.2 Principle Components

noring the off-diagonal elements, the information extracted by ψ∗
rk

, which

is (µµµTψ∗
rk

)2/{λ∗
rk

−κ(1 −κ)(µµµTψ∗
rk

)2} = 1/{1/Q∗
rk

−κ(1 −κ)}, is positively

correlated with Q∗
rk

. Thus, we select the subset BQ∗ with rk satisfying

Q∗
r1 ≥ ·· · ≥ Q∗

rd
> 0 for a given d. After projecting the observations onto

ΦPC∗(BQ∗), we use the Hotelling’s T 2 statistic, which will take the covari-

ance into consideration.

Remark 3. In practice, we determine d by identifying the jump point in

Q̂rk
, i.e. d= argmaxk Q̂rk

/Q̂rk+1. To prevent selecting eigenfunctions with

eigenvalues close to 0, we advise choosing the subset B within {k : λ̂k > c1}

or taking Q̂rk
= (µ̂µµTψ̂rk

)2/(λ̂rk
+ c2), where c1, c2 are constants close to 0.

Remark 4. The main difference between our test in this section and the

one proposed by Wang et al. (2022) is the selection criterion for the eigen-

functions. While Wang et al. (2022) defines Qk directly and uses a hard

threshold to sum up Qk with two manually specified parameters, we select

the eigenfunctions that can extract the most useful information, which is de-

termined by Qk as derived from our analysis. Moreover, to cope with the sit-

uation when µ is orthogonal to the linear span of the eigenfunctions, Wang

et al. (2022) adds a power enhancement component to their test statistic.

In contrast, we propose the test based on the eigenfunctions of M, which

are inherently not orthogonal to µ.
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3.3 Basis Functions

3.3 Basis Functions

Basis functions are a common tool in FDA. For instance, Shen and

Faraway (2004) and Górecki and Smaga (2015) proposed functional two-

sample tests based on B-Spline basis and orthonormal basis, respectively.

These tests use an F -test statistic, calculated from the coefficients of the

functional observation represented by the selected basis functions. In con-

trast, our test considers a projective space Ld(·) spanned by basis functions,

which can accurately fit the two-sample difference K−1/2µµµ but not the func-

tional observations. The test statistic is the Mahalanobis distance between

the projected two-sample data. Notably, the projective space Ld(·) is data

independent, thus it inherits the theoretical analysis in Section 2.

For B-Spline basis, the projection function is ΦBS = (φ1, . . . ,φd)T, where

φk is the cubic spline basis with d−2 inner knots. The test statistic is

T 2
BS = n1n2

n1 +n2
(ΦBSµ̂µµ)T(ΦBSK̂ΦT

BS)−1ΦBSµ̂µµ.

Theorem 4. If Assumption 1 holds

1. Under H0,

T 2
BS

D→ χ2
d.
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3.4 Comparison

2. Under H1,

n1 +n2
n1n2

T 2
BS = ∥∆̂BS,d

ννν ∥2 P→ (ΦBSµµµ)T(ΦBSKΦT
BS)−1ΦBSµµµ= ∥∆BS,d

ννν ∥2,

which means T 2
BS grows linearly with n0. In particular, if µµµ is not

orthogonal to the linear span of φ1, . . . ,φd, then T 2
BS

P→ ∞. And

T 2
BS − n1n2

n1 +n2
∥∆BS,d

ννν ∥2 D→ χ2
d.

Remark 5. The selection of the type and number of basis functions is crit-

ical and should be customized for each specific case. For periodic functional

data, Fourier basis functions are preferred because they match the periodic

features. For non-periodic data, B-spline basis functions are more suitable,

given their flexibility in modeling diverse data structures. Furthermore, we

can determine the value of d by fitting Equation (2.7) with a penalty.

3.4 Comparison

To summarize the above, the selection of ϕCG
d in the Krylov subspace

aims to minimize the information loss. The projective space ΦPC(BQ) and

ΦPC∗(BQ∗), chosen in the eigenspace of K and M, respectively, intend

to maximize the extracted information. The projective space ΦBS, selected
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3.4 Comparison

based on the basis function family, is to enhance performance in fitting (2.7).

Although these information criteria are equivalent, the testing efficiency of

these projection functions may not be the same for a given d, as stated in

the following proposition.

Proposition 2. For a given d, the testing power function of H0 based on

ΦPC(BQ) is higher than that based on ϕCG
d when there are infinite eigenval-

ues of K close to 0, and the latter is higher than or equal to that based on

ΦPC(Bλ).

Furthermore, besides the performance in testing efficiency, projection

functions selected from different subspace require different assumptions to

achieve the same properties. For example, the consistency of the test based

on ΦPC(BQ) and ΦBS relies on the assumption that µµµ is not orthogonal to

the linear span of ψr1 , . . . ,ψrd
and φ1, . . . ,φd, respectively. In contrast, this

assumption is naturally satisfied for ϕCG
d and ΦPC∗(BQ∗). Additionally, the

advantage of ΦBS is that there is no need to estimate projection functions,

which avoids estimation errors and results in better performance under finite

sample size.
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4. Simulation

In this section, we compare the performance of our projection tests

with several existing methods. The function of individual j in sample i is

generated by the following function:

yij(t) = µi(t)+
√

2ξij1sin(2πt)+
√

2ξij2cos(2πt)+ εijt, (4.9)

where µ1(t) = t,µ2(t) = t+at3, ξij1
iid∼ N(0,10), ξij2

iid∼ N(0,5), and observa-

tion noise εijt
iid∼ N(0,0.25). The functions are observed on a grid of p= 100

equispaced points in [0,1].

As discussed in Section 2, the dimension of the projective space can

impact the testing power. In the Supplementary Material ??, we provide a

comprehensive analysis of the finite sample behavior of the projection tests

under various values of d. In this section, we set d = 5 for the conjugate

gradient solution and d= 6 for the B-Spline basis with order min(d,4), and

the tests based on these two types of projective spaces are recorded as CG

and BS, respectively. For principal components, we denote PC K Q and

PC M Q as the tests based on the selected eigenfunctions of K and M,

respectively, where the selection criterion is described in Section 3.2. We

also consider seven other existing testing methods. The first four meth-
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ods are based on principal components, HT (Wang et al., 2022) based on

permutation, GHT (Pini et al., 2018), PC K λ (Horváth et al., 2013) and

PC M λ (Pomann et al., 2016). Furthermore, we include the method based

on random projection function (RP, Cuesta-Albertos and Febrero-Bande,

2010), as well as the methods based on distance, L2 (Benko et al., 2009)

and MMD (Wynne and Duncan, 2022). Further details about these meth-

ods are provided in the preceding sections. We implement FPCA and MMD

using the R packages refund and fdahotelling, respectively. In Figures 1

- 3, we present the results with n1 = n2 = 20,50,100, respectively, which

correspond to total sample sizes smaller than, equal to, and greater than p.

In Figure 1 - 3, it is obvious that the empirical size of each methods is

around 0.05, and the empirical power of each methods tends to 1 as a and

n1,n2 increases. Our four methods, HT, and GHT exhibit increasing power

as a increases from 0 to 0.5, while the other five methods are less sensitive

when a = 0.5, which is in accordance with our analysis in Section 2.3.3.

Furthermore, the slightly lower performance of HT might be due to the less-

than-ideal choice of parameters for the hard threshold. The empirical power

of our four methods and HT increase significantly with sample size, while

GHT performs similarly for n1 = n2 = 20,50 and only shows improvement

when n1 = n2 = 100, which can be seen from the Figure 4.
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Figure 1: The empirical power function of different methods with sample
size n1 = n2 = 20. The horizontal dotted line represents the confidence level
of 0.05. Different scales are used on both sides of the vertical dotted line,
with the left side ranging from 0 to 0.5 and the right side ranging from 1
to 10.
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Figure 2: The empirical power function of different methods with sample
size n1 = n2 = 50. The horizontal dotted line represents the confidence level
of 0.05. Different scales are used on both sides of the vertical dotted line,
with the left side ranging from 0 to 0.5 and the right side ranging from 1
to 10.
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Figure 3: The empirical power function of different methods with sample
size n1 = n2 = 100. The horizontal dotted line represents the confidence
level of 0.05. Different scales are used on both sides of the vertical dotted
line, with the left side ranging from 0 to 0.5 and the right side ranging from
1 to 10.
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Figure 4: The empirical power function of different methods with sample
size n1 = n2 = 20,50,100. The horizontal dotted line represents the confi-
dence level of 0.05.
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5. Case Study

To demonstrate the practical application of the proposed tests, we con-

duct an experiment on the BeetleFly data set (Dau et al., 2018). This data

set involves distinguishing between the outlines of a beetle and a fly, with

20 instances in each class. Each instance is represented by a functional data

observed at 512 points, obtained by mapping the outline into a 1-D series

of distances to the center.

We apply the eleven testing methods in simulation to examine whether

the outlines of a beetle and a fly are significantly different. With the excep-

tion of the method PC K λ, all other methods conclude that the outlines

are significantly different. Furthermore, we investigate the sensitivity of

these methods to the sparsity of functional observations in practice. We

partition the observations of each instance into K parts, creating K new

data sets. We apply the ten testing methods on each of the K data sets

and record whether the null hypothesis is rejected or not. The rejection

percentage is the average of all the K data sets. We selected K = 2, . . . ,10,

where a larger value of K indicates sparser functional observations in the

new data set. Table 1 presents the rejection percentage of 4 methods, and

the other 6 methods have a rejection percentage of 1 for all K values.

Additionally, we examine the sensitivity of these methods to the sam-
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Table 1: The stability of different methods to the sparsity of functional
observations, where a larger value of K indicates sparser observations

method K = 2 3 4 5 6 7 8 9 10
HT 1 1 1 1 1 1 1 1 0.6

GHT 1 1 1 1 1 1 1 1 0.9
RP 0.5 0.33 0.75 0.8 0.83 0.86 0.38 0.78 0.5

PC K λ 0 0 0 0 0 0 0 0 0

Table 2: The stability of different methods to the sample size, where a
smaller value of n0 indicates a smaller sample size

method n0 = 18 16 14
BS 1 1 1

PC M Q 1 1 1
PC K Q 1 1 1

CG 1 1 1
HT 1 1 0.98

GHT 1 1 1
RP 0.52 0.44 0.48
L2 0.92 0.88 0.64

MMD 1 1 0.92
PC M λ 0.52 0.48 0.40
PC K λ 0.20 0.08 0.16

ple size in practice. Specifically, for a given n0, we randomly sampled n0

instances without replacement from each class to form a new data set. We

repeat this process 50 times and run the test. We consider n0 = 18,16,14,

where a smaller value of n0 indicates a smaller sample size. Table 2 presents

the rejection percentage of different methods under different n0.

Given that beetles and flies are two distinct creatures, it is reasonable

to assume that their outlines are different. Therefore, a higher rejection
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percentage in Tables 1 and 2 indicates a better method. From the results,

it is evident that the four methods proposed in this paper demonstrate

greater stability in handling observation sparsity and small sample size.

6. Conclusion and Future Work

Projection-based methods have gained significant popularity in FDA,

and this paper tackles a crucial aspect of such methods: the selection of

projection functions that minimize information loss and enhance the effi-

ciency of two-sample tests. By conducting an in-depth analysis of the rela-

tionship between testing power and projection function selection, we offer

valuable guidelines for choosing practical projection functions that perform

well. The methods we propose, based on our investigation of three practical

projection spaces, have shown promising results in our simulations.

Furthermore, we emphasize the flexibility and adaptability of the pro-

posed projection-based test, particularly in scenarios with relaxed assump-

tions or more complex data structures. Notably, the assumption of equal

covariance matrices can be circumvented by utilizing an appropriately esti-

mated pooled covariance matrix. While our paper does not explicitly tackle

the non-Gaussian scenario, this challenge can be adeptly managed by ac-

quiring critical values through permutation techniques. Additionally, the
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analytical approach we have developed for selecting projection functions

extends beyond the realm of two-sample testing; it holds applicability in

various other FDA domains, including projection-based clustering, classifi-

cation, and regression.

Supplementary Materials

The online Supplementary Material contains additional simulations and

the technical proofs.
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Horváth, L., P. Kokoszka, and R. Reeder (2013). Estimation of the mean of functional time series

and a two-sample problem. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 75 (1), 103–122.

Huang, Y. (2015). Projection test for high-dimensional mean vectors with optimal direction. PhD

dissertation, Department of Statistics, The Pennsylvania State University at University

Park.

Kraus, D. and M. Stefanucci (2019). Classification of functional fragments by regularized linear

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES

classifiers with domain selection. Biometrika 106 (1), 161–180.
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