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Abstract: As a useful generalization, Stukel generalized logistic models can fit binary response

variable more flexibly and conveniently comparing to other generalizations. In this paper, we

propose a projection-based test to check Stukel models. The test is shown to be consistent and

can detect root-n local alternative hypotheses, and can be used to check the standard logistic

models as well. We establish the asymptotic distribution of the proposed test under the

null hypothesis and analyze asymptotic properties under the local and global alternatives.

We evaluate the finite-sample performance via simulation studies and apply the proposed

method to analyze a real dataset as an illustration. Key words and phrases: Consistent

test; Generalized logistic models; Marked empirical process; Projection.

1. Introduction

The logistic regression model is often used when a binary response is to be regressed

upon one or more explanatory variables. For example, this may occur when the re-
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sponse represents the survival or death of a patient, and the explanatory variable

might be the characteristics of the individual or various treatment methods. The

relationship between the response probability and dosage is often modeled using a

logistic distribution function. Estimation and inference based on the maximum like-

lihood estimator (MLE) in logistic regression have been extensively studied in theory

and widely used in social science, finance industry, and medical science (Hosmer

& Lemeshow 1989, Lindsey 1997). See comprehensive introductions and techniques

for fitting the logistic models in McCullagh & Nelder (1989), Nelder & Wedderburn

(1972).

The standard logistic model assumes the response y with mean µ, which depends

on the p explanatory variables X = (x1, . . . , xp)
> in the form µ(η) = exp(η)/{1 +

exp(η)}, where η = X>β and β is a p−vector of unknown parameters in Rp. The

model still has its limitations, though its popularity is irreproachable. As Stukel

(1988) pointed out that the form of µ(η) restricts a symmetric pattern about η = 0.

When data are not symmetric, or even symmetric but have a steeper or gentler

incline in the central probability region, the logistic model may not fit the data well.

Furthermore, the maximum likelihood estimation procedure weights each observation

according to its estimated variance µ(η){1 − µ(η)} so that points in the central

probability region near µ = 1/2 have the strongest influence on the fit.

To release these limitations, several authors have generalized the standard logis-
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tic model to a more general parametric form. Prentice (1976) modeled the expected

probability curve with the cumulative distribution function of the logarithm of a

F−distribution. Pregibon (1980) defined a family of link functions as a solution of

some implicit equation, including the logit link as a special case. Aranda-Ordaz (1981)

introduced two separate one-parameter models for symmetric and asymmetric depar-

tures, respectively, from the logistic model. Guerrero & Johnson (1982) suggested a

one-parameter Box-Cox transformation of the odds, τ−1[{µ/(1−µ)}τ −1] = η, which

reduces to the logit transform in the limit when τ is 0. The parameters (except β) for

all of these models are shape parameters that generally influence the symmetry and

heaviness of tails of the fitted curve µ(η). Except for specific values, they usually do

not correspond to known distributions, although they all include the logistic model as

a special case. All of the models require nonlinear estimation procedures to calculate

the maximum likelihood estimates.

Stukel (1988) introduced a generalization of the standard logistic model, a class

of models indexed by two shape parameters (α1, α2), to extend the scope of the

standard logistic model to asymmetric probability curves and improve the fit in the

noncentral probability regions; i.e., the logit(µ) was generalized to hα defined in (2.1)

and (2.2) below. The added parameters allow the tails of the logistic regression model

to be heavier/longer or lighter/shorter than the standard logistic regression model.

This two-parameter model presents a unified structure, to account simultaneously
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for symmetric and asymmetric departures from the standard logistic model. Besides

containing provisions for lack of symmetry, the Stukel model is useful particularly

when improvement in fit in the tail regions is important. If adding two parameters to

the logistic model leads to overfitting, the model can be collapsed in a simple fashion

to give one symmetric and three asymmetric one-parameter families, one of which

may provide a more useful alternative and also additional information as to the source

of lack of fit. Thus this model provides an extensive but flexible generalization of

the standard logistic model. Among the aforementioned generalized logistic models,

Stukel model has the broadest scope, followed by the Prentice model and then other

one-parameter models. Hosmer et al. (1997) concluded that a comparison of the

Prentice model to the Stukel model showed that both offer the same level of flexibility

in terms of generating alternative models but that Stukel model is analytically easier

to use since it does not require the integration needed with the Prentice model.

As far as we know, there is little work on developing goodness of fit to check

Stukel generalized logistic model, though Stukel score test has widely been applied

to check the standard logistic models. In this paper, we propose a marked empirical

process based test for checking goodness of fit (GoF) in the Stukel generalized logistic

model. The similar idea has been used by Xia (2006), Stute & Zhu (2002), Escanciano

(2006).

This paper is organized as follows. Section 2 states the proposed statistic, the
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statistical properties of the proposed test under the null and alternative hypotheses,

and a model based bootstrap procedure for calculating the critical value. Section 3

presents simulation studies to evaluate numerical performance of the proposed pro-

cedure. In the first simulation study, we specifically focus on the performance of

several GoF tests for checking the standard logistic models. In the second simulation

study, we evaluate the performance of the proposed procedure to check the Stukel

models. Sections 4 analyzes a real dataset to illustrate the utilization of the proposed

procedure. Section 5 discusses potential further work. Technical details are deferred

to the Appendix.

2. Stukel Model and Proposed Test Statistic

2.1 Stukel Model

The form of the Stukel generalized logistic model (Stukel 1988) is:

P (Y = 1|X) = µα(η) = exp (hα(η)) / {1 + exp (hα(η))}

where η = X>β, and hα(η) is a strictly increasing nonlinear function of η indexed by

two shape parameters, α1 and α2, defined as follows. For η > 0(i.e., µ > 1/2),

hα =


α−11 {exp (α1|η|)− 1} , α1 > 0

η, α1 = 0

−α−11 log (1− α1|η|) , α1 < 0

(2.1)
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2.1 Stukel Model6

and for η 6 0( i.e., µ 6 1/2),

hα =


−α−12 {exp (α2|η|)− 1} , α2 > 0

η, α2 = 0

α−12 log (1− α2|η|) , α2 < 0

. (2.2)

The Stukel model indexed by (α1, α2) was called h family model (Stukel 1988). The

subclass with α1 = 0 was called the α2h family model, and the subclass with α2 = 0

called the α1h family model. The one-parameter subclasses can be used to examine

symmetric or asymmetric deviations from the standard logistic model. See Figure

1 for the patterns of hα(η) versus η (left) and µα(η) versus η with different (α1, α2)

values.
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Figure 1: Plots of hα(η) (left) and µα(η) (right) against η for different (α1, α2).
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2.1 Stukel Model7

Note that Stukel model can also be expressed as

η = h−1α [logit{P (Y = 1|X)}] = X>β. (2.3)

Write µα(η) = P (Y = 1|X) = g(hα(η)) = {1 + exp(−hα(η))}−1 and ε(X,β) = Y −

g(hα(X>β)). Whether the mean function g(hα(X>β)) can properly describe a gener-

alized logistic regression relationship is equivalent to checking whether E{ε(X,β)|X} =

0, which holds if and only if E{ε(X,β)|X>W} = 0 for all unit vectors W ∈ IRp. We

are motivated by this fact to define our test statistic as follows.

Consider

H0 : Pr (E{ε(X,β)|X} = 0) = 1 for some β (2.4)

against the alternative hypothesis:

H1 : Pr (E{ε(X,β)|X} = 0) < 1 for any β ∈ IRp.

Let {(Yi, Xi), i = 1, · · · , n} be a sample from (Y,X), then the log-likelihood function

is

L(α,β) =
n∑
i=1

[
Yi log

{
g(hα(Xi

>β))
}

+ (1− Yi) log
{

1− g(hα(Xi
>β))

}]
. (2.5)

The maximum likelihood estimators (MLE) β̂n and α̂n are the solution to

Ln(β) =
∂L(α,β)

∂β
=

n∑
i=1

X>i {Yi − g(hα(Xi
>β))}∂hα(ηi)

∂ηi
= 0 (2.6)
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2.1 Stukel Model8

Ln(α) =
∂L(α,β)

∂α
=

n∑
i=1

{Yi − g(hα(Xi
>β))}∂hα(ηi)

∂α
= 0 (2.7)

Let ε̂(Xi, β̂n) = Yi − g(hα̂n(Xi, β̂n)). The sample version of E{ε(X, β)I(X>W ≤ u)}

is 1/n
∑n

i=1 ε̂(Xi, β̂n)I(X>i W ≤ u). Define

Mn(u,W ) =
1√
n

n∑
i=1

ε̂(Xi, β̂n)I(X>i W ≤ u) (2.8)

for u ∈ IR1, where W is uniformly distributed on the unit sphere in IRp : Sp = {w ∈

IRp : ‖w‖ = 1}.

Our test statistic is

Tn =

∫ ∞
−∞

∫
Sp
{Mn(u,W )}2 dwFnw(du), (2.9)

where Fnw(u) = 1/n
∑n

i=1 I(X>i W ≤ u) and w has been integrated out. When the

test statistic is sufficiently large, the null hypothesis can be rejected. The estimated

empirical process Mn(u,W ) is actually the cumulative sum of the estimated model

error, and Tn is a Crámer-von Mises (CvM) statistic.

Note that the test statistic Tn can be formulated as a summation.

Tn =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂(Xi, β̂n)ε̂(Xj, β̂n)Aijl, (2.10)

where Aijl =
∫
Sp I(X>i w ≤ X>l w)I(X>j w ≤ X>l w)dw, which can be calculated as

(Escanciano 2006):

Aijl = Cq

∣∣∣∣π − arccos

{
(Xi −Xl)

>(Xj −Xl)

‖Xi −Xl‖ · ‖Xj −Xl‖

}∣∣∣∣ ,
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2.2 Statistical Properties9

here Cq = π(p/2)−1/Γ(p/2 + 1), Γ(·) is the gamma function. Therefore, Tn is equal to

a summation multiplying a constant. This equivalence avoids multiple integrations

and makes the computations much easier.

2.2 Statistical Properties

We now examine the statistical properties of the test statistic under the null hypoth-

esis and the power performance under the alternative hypotheses.

Let H(·) be the derivative of g(·) to β. For any function η, denote ηi(β) =

η(X>i β) and ηi = η(X>i β0) with β0 being the true value, for instance, Hi(β) =

H(X>i β), gi = gi(β0). Denote h
′
(η) = ∂hα(η)

∂η
and h

′′
(η) = ∂2hα(η)

∂η2
. Let Gn(β) =∑n

i=1Xih
′
iHi(β)h

′
iX
>
i and Sn =

∑n
i=1XiX

>
i . Let H = diag(h

′
(η1)H1h

′
(η1), . . . , h

′
(ηn)

Hnh
′
(ηn)) and X = (X1, . . . , Xn)>.

In what follows, λmax(A) and λmin(A) denote the maximum and minimum eigen-

values for a symmetric matrix A respectively. A1 ≥ A2 means A1−A2 is semi-positive

definite for two matrices A1 and A2. C is a generic constant with different values in

different places.

The following assumptions are needed for the main result.

(a) There exist two positive constants bmin and Bmax such that bmin ≤ h
′
(ηi) ≤ Bmax.

(b) With probability 1, maxi,j |xij| <∞ and there exist two positive constants cmin

and Cmax such that cmin ≤ λmin(Sn/n) ≤ λmax(Sn/n) ≤ Cmax.
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(c) There is a positive constant c00 such that

min
1≤i≤n

g(hα(X>i β0)){1− g(hα(X>i β0))} ≥ c00. (2.11)

(2.11) indicates that, for any p-vector v,

c00b
2
minv

>Snv ≤ v>
n∑
i=1

Xih
′
(ηi)Hi(β)h

′
(ηi)X

>
i v ≤ 1/4B2

maxv
>Snv.

Assumption (a) ensures the probabilities lie between 0 and 1. The rest of the as-

sumption bounds the eigenvalues of Sn in probability. This is a stability assumption

to ensure Sn/n is not ill-conditioned.

Write Σβ = E(X>HX), Γ(u) = E{g′(X>β0)X
>Σ−1β I(X>W ≤ u)} , Ãn(α1, α2) =∫ 1

0
An(α1+s(α2−α1))ds, An(α) = −∂Ln(α)/∂α, Θ(u) = E{Σ−1α I(X>W ≤ u)g′(α0)},

and Ψu(X, ε) = {I(X>W ≤ u)−Γ(u)Xh
′−Θ(u)∂hα

∂α
}ε. We have the following result.

Theorem 2.1. Suppose that Assumptions (a)–(c) hold. Under the null hypothesis

(2.4), the estimated empirical process Mn(u,W ) converges in distribution to M(u),

−∞ < u <∞, in the Skorohod space S[−∞,∞], where M(u) is a centered Gaussian

process with covariance functions

cov{M(u1),M(u2)} = E{Ψu1(X, ε)Ψu2(X, ε)}.

For the test statistic Tn, we have

Tn
L−→
∫
{M(u)}2F (du), (2.12)

where F is the distribution of X>W .
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2.3 A bootstrap option for critical value calculation11

It is shown that the estimated empirical process Mn(u,W ), −∞ < u < ∞,

converges to a centered Gaussian process, and Tn converges to an integrated squared

Gaussian process. The convergence theoretically demonstrates that the proposed test

Tn has attractive asymptotic properties.

In the following, the power behavior of the statistic under the local and global

alternatives are investigated. Consider the local alternative with a deviation in

hα(X>β) from the null hypothesis; i.e.,

H1n : Pr
{
E(Y |X) = g(hα(X>β + rnD(X)))

}
= 1 (2.13)

where D(X) is not a function of X>β for any β and is a measurable function of X

satisfying with 0 < ED2(X) <∞, rn is a constant depending on n.

It is easily proved that, under the alternatives (2.13), Tn−→∞ if rnn
1/2 →∞, and

is different from
∫
{M(u)}2FX(du) if rnn

1/2 approaches a positive but finite constant.

Consequently, the proposed statistic can detect a local alternative that approaches

the null hypothetical model at the parametric rate, and the statistic Tn diverges

to infinity under the global alternative hypothesis (2.13). Hence, it has asymptotic

power 1 and is consistent.

2.3 A bootstrap option for critical value calculation

Though Theorem 2.1 gives the asymptotic distribution of the statistic Tn under the

null hypothesis, this distribution may be case-dependent, which makes the calculation
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of the critical value inconvenient and sometimes difficult. To overcome this potential

difficulty, a bootstrap procedure is used to determine the critical value.

Step 1. Calculate the test statistic Tn.

Step 2. Generate a sample {Y ∗i , i = 1, . . . , n} of independent Bernoulli random vari-

ables, where Y ∗i has the probability of success given by {g(hα̂n(X>i β̂n)), i =

1, . . . , n}.

Step 3. Calculate the bootstrap test statistic, denoted by T ∗n , based on the bootstrap

sample {(Y ∗i , Xi) , i = 1, . . . , n}

Step 4. Repeat Steps 2 and 3 B times and obtain T ∗n1, . . . , T
∗
nB. Then calculate the

1 − α empirical quantile of the bootstrap test statistics {T ∗n1, . . . , T ∗nB} as the

α-level critical value.

This resampling strategy is proposed by Dikta et al. (2006). The numerical

experience shows that the results based on the current resampling strategy are better

than those based on the existing resampling strategy. For space concerns, we did

not present these comparisons. As argued by Dikta et al. (2006) this model-based

bootstrap strategy integrates the model assumption and is therefore expected to be

more efficient than the wild bootstrap resampling method, which is confirmed by

our numerical studies. When the outcome is binary, the residuals also have binary
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distributions, so the wild bootstrap’s ability to accommodate an arbitrary residual

distribution is not needed and, apparently, entails some cost.

Note that for the bootstrap procedure, it is not necessary to estimate any new

quantities such as the influence function. Also, the testing procedure is data-driven;

given only the sample, {(Y1, X1), . . . , (Yn, Xn)}, the proposed testing procedure using

the bootstrap-generated critical value can determine whether the Stukel model fits

the data adequately without any other information on the data generation process.

For the bootstrap testing statistic T ∗n , we have the following result.

Theorem 2.2. Under the null hypothesis (2.4) or alternative hypothesis (2.13), if As-

sumption (a)–(c) are satisfied, the conditional distribution of T ∗n converges in distribu-

tion to the limiting null distribution of Tn given the sample {(Y1, X1), . . . , (Yn, Xn)}.

This assertion indicates that T ∗n is not case-dependent, and gains the convenience

of calculating the critical value. By generating i.i.d. random variable series {Y ∗i }ni=1

repeatedly, we can get a series of bootstrap test statistics, which can be looked upon

as a sample coming from the population Tn. Then we can calculate the empirical

quantile of the distribution of Tn. The critical value determined by this method

approximates the theoretical one regardless of whether the data are from the null

hypothetical model (2.4) or the alternative hypothetical model (2.13).
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3. Simulation Studies

In this section, we assess the numerical performance of the proposed test. Note that

when α1 = α2 = 0, Stukel model reduces to a standard logistic regression model.

It means that the proposed test is applicable to GoF checking for logistic models.

We conduct two simulation studies for the assessment purpose. In the first example,

we focus on GoF checking for logistic models. In the second example, we evaluate

the numerical performance of the proposed method for checking Stukel generalized

logistic models in terms of type I error and power performance. LetN be the standard

normal variable.

Example 1. The data were generated from the simple logistic model

P (Y = 1|X) = {1 + exp(−Xβ + cX2)}−1 (3.1)

where X ∼ N(0, 1), β = 2, c ranges from 0 to 0.8 with increment 0.1. This is a

simple standard logistic model with an additional term cX2 in the linear predictor,

and when c = 0 it reduces to the simple logistic model. Three scenarios with clusters

m = 3, 7, and 10 were taken into account in this example. Within each group, 140 to

170 independent samples were generated. At each configuration, 1000 independent

datasets were generated. One thousand bootstrap samples were generated from each

of the 1000 datasets for calculating the empirical levels. The nominal levels of 0.05

and 0.10 were used. For the comparisons, the Hosmer-Lemeshow test THLn , Osius
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and Rojek test TORn (Osius & Rojek 1992), Stukel test T Stukeln (Stukel 1988), and the

proposed test are evaluated Tn.

We calculated the proportions of times the null hypothesis was rejected among

the 1000 replicates. They are the empirical sizes under the null hypothesis (i.e., c = 0)

and the empirical powers under the alternative hypothesis (i.e., c 6= 0).

Intuitively, increasing the deviance cX2 creates a larger distance away from the

null hypothesis, resulting in an increased chance to reject the null hypothesis. We

now report the rejection proportions of the tests in Figure 2. The performance of

the proposed test is very promising in the sense that the empirical sizes are close to

the nominal levels and the empirical powers increase with the distance away from

the null hypothesis. The Osius and Rojek test is the most conservative one and

the prerequisite of the test is the dataset should be large enough to maintain Type

1 error. The proposed test is comparable to Stukel’s test. When sample sizes are

comparatively low, for example, in the scenario with m = 3, the proposed test is

significantly better than Stukel’s test. Both the proposed test and Stukel’s test work

better than the Hosmer-Lemeshow test. When the deviance is small, the proposed

test works better in distinguishing the difference from the null hypothesis than the

Hosmer-Lemeshow test.
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Figure 2: Simulation results for Example 1: Rejection proportion of the four tests:

Hosmer-Lemeshow test (THLn ), Osius and Rojek test (TORn ), Stukel test (T Stukeln ),

and the proposed test (Tn), with the nominal levels 0.05 and 0.10 for different cluster

cases.
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Example 2. We extend the application to the generalized logistic model

P (Y = 1|X) = µα(Xβ − cX2)

= exp
(
hα(Xβ − cX2)

)
/
(
1 + exp

(
hα(Xβ − cX2)

)) (3.2)

There are m = 20 different clusters contained in each dataset, where Xs are 20

equally spaced numbers from −1.5 to 1.5, β = 2. This is a generalized logistic model

with an additional term −cX2 in the linear predictor, and when c = 0 it reduces to

Stukel’s generalized logistic model. The nominal levels of 0.05 and 0.10 were used.

Several scenarios were explored in this example. We conducted the simulations

among the h family model with four different sets of parameters (α1, α2) = c(0.2, 0.2),

c(0.2, 0.6), c(0.4, 0.4), and c(0.6, 0.2); α2h family model with four different parame-

ters: α2 = 0, 0.2, 0.4 , and 0.6; and h family model with given, fixed parameters

(α1, α2) = c(0.2, 0.2), c(0.2, 0.6), c(0.4, 0.4), and c(0.6, 0.2). Within each group, 140

to 2000 independent samples were generated. At each configuration, 200 independent

datasets (N = 200) were generated. 200 bootstrap (B = 200) samples were generated

from each of the 200 datasets for calculating the empirical levels. c ranges from 0 to

1.4 with increment 0.2.

In Figure 3, on the left panel, we estimated the additional parameters (α1, α2)

first, and the rejection proportion gets to increase to 1 when c = 0.4. The testing

performance works better with the setting c(0.6, 0.2), especially, when compared to

the curve with c(0.2, 0.6), which can be explained by Figure 1. Overall, this pattern
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Figure 3: Simulation results for Example 2: Rejection proportion of the proposed

test, left panel with (α1, α2) unknown, and right panel with (α1, α2) known.
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Figure 4: Simulation results for Example 2: Rejection proportion of the proposed

test for the α2h family, with the nominal levels 0.05 and 0.10.

confirmed that the proposed test maintains the type 1 error at null hypothesis well and

achieves good power performance within a reasonable deviation. The right panel is

similar to what we observed in Example 1. However, instead of taking c(0, 0), i.e., the

standard logistic regression, we treated the parameters (α1, α2) as given information.

As a result, the rejection proportion approaches 100% at c = 0.2. Figure 4 depicts

the performance of the proposed test on α2h family. With only one additional shape

parameter to be estimated, the rejection proportion gets to increase to 1 when c = 0.2.

The second scenario we explored in this example is to compare the difference

in performance between balanced data and unbalanced data. We considered two

settings: the balanced data with 200 independent samples within each group, and

the unbalance data with 50 to 400 samples within each group. 20 clusters in total,

N = 200, and B = 500. From Figure 5, no significant difference between these two
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scenarios, which indicates that the loss of balance won’t affect the performance of

the proposed test. However, the rejection proportion curves for the balanced data

are smoother than the crooked curves for unbalanced data. We expect to enlarge the

bootstrap times B and replication cases N to achieve a smoother and more reliable

curve with unbalanced data.
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Figure 5: Simulation results for Example 2: Rejection proportion of the proposed

test for balanced data and unbalanced data, with the nominal levels 0.05 and 0.10.
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4. Real Data Example

In this example we analyzed a dataset determining the age of menarche in a sample of

3, 918 Warsaw girls with more details in Milicer & Szczotka (1966), and analyzed by

Stukel (1988) for model checking, and referred to as the Warsaw study. This dataset

is available in R package MASS and contains 25 different age groups. By fitting a

standard logistic model, we obtained the intercept β̂0 = −21.226 and the slope of age

β̂1 = 1.632 with residual deviance 26.7. An examination of the residuals shows that

possible improvements to the fit could be made on the tails (Stukel 1988). We first

applied the Stukel test the following three hypotheses.

(i) H0: a standard logistic model ⇐⇒ Ha: h family

(ii) H0: a standard logistic model ⇐⇒ Ha: α1h family

(iii) H0: a standard logistic model ⇐⇒ Ha: α2h family

The results for the tests of shape of parameters are presented in Table 1.

For hypothesis (i), i.e., whether the two shape parameters equal zero, the statistic

values based on the Stukel likelihood-ratio and score tests are 12.117 and 7.938 with

p-values 0.002 and 0.019, respectively. For hypothesis (ii), i.e., whether the shape

parameter α2 equals zero, the statistic values based on the Stukel likelihood-ratio

and score tests are 0.824 and 0.706 with p-values 0.364 and 0.401, respectively. For

hypothesis (iii), i.e., whether the shape parameter α1 equals zero, the statistic values
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Table 1: Tests for Shape Parameters on Warsaw Age at Menarche Data: Likelihood

Ratio Test and Score Test.

Hypothesis Stukel Likelihood-Ratio Test Stukel Score Test

Test Statistic p-value Test Statistic p-value

(i) 12.117 0.002 7.938 0.019

(ii) 0.824 0.364 0.706 0.401

(iii) 10.338 0.001 7.232 0.007

based on the Stukel likelihood-ratio and score tests are 10.338 and 7.232 with p-

values 0.001 and 0.007, respectively. These results indicate that we do not have

enough evidence to reject α2 = 0, but have strong evidence to reject α1 = 0.

We further applied the proposed GoF procedure for the Stukel model to check h

family and α2h family. That is, we consider the following two hull hypotheses.

(Gi) H0: h family

(Gii) H0: α2h family

One thousand bootstrap samples were generated to calculate the empirical levels.

As shown in Table 2, the proposed test with B = 1000 shows that 73.8% of the test

statistics T ∗n are higher than the observed test statistic Tn = 0.015 for the hypothesis

(Gi); 43.1% of the test statistics T ∗n are higher than the observed test statistic Tn =
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Table 2: Goodness-of-Fit on Warsaw Age at Menarche Data.

Hypothesis Model Goodness-of-Fit

Test Statistics p-value

(Gi) h family 0.015 0.738

(Gii) α2h family 0.049 0.431

0.049 for the hypothesis (Gii). These results indicate that we have no evidence to

reject h family and α2h family. Since α2h family is a subfamily of h family, we choose

the former as our final model. The parameter estimates and variance matrix based

on the α2h family model are:
β̂0

β̂1

α̂2

 =


−18.824

1.457

0.219

 ,Vβ̂,α̂2
=


0.979 −0.073 0.063

−0.073 0.005 −0.005

0.063 −0.005 0.007

 .

It is equivalent to the two-parameter model in terms of fitted values, except that

the standard errors were much smaller. This result is consistent with the finding in

Milicer & Szczotka (1966) that the age of menarche distribution was slightly positively

skewed.
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Figure 6: The results for the Warsaw Exam-

ple. The estimated curve of m(age) (red bro-

ken line) and the associated pointwise confi-

dence band based on the semiparametric lo-

gistic model; The logit function based on the

standard logistic model (straight solid line),

and logit function based on the α2h family

(blue dotted line).

As a further illustration, we re-

placed the linear term in the standard

logistic model by a nonparametric term

m(age), where m(age) is an unknown

but smooth function. This flexible re-

placement can avoid potential misspec-

ifications. m(age) was estimated by

a data-driven strategy and obtained

using the R function gam. We refit

this particular semiparametric logistic

regression and display the estimated

m(age) (red broken line) and the asso-

ciated 95% confidence band (shaded)

in Figure 6. Intuitively speaking, if a

parametric model is close to the truth,

the corresponding parametric curve should

close to m(age), i.e., covered by the

reference band. If the parametric curve is far away from the reference band, we can

guarantee that the candidate model is inappropriate. We also insert the estimated

straight line (black solid line) based on the standard logistic model and the α2h fam-
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ily curve (blue dotted line) based on the Stukel α2h family. It is interesting to notice

that the α2h curve is closer to m(age) in the left tail and is encapsuled in the confi-

dence band, while the logit (straight) line is closer to m(age) in the right tail, yet the

straight line is almost but not completely covered by the confidence band. This may

also illustrate why we reject the standard logistic model with a weak evidence, yet

accept the α2h family. These analyses also illustrate the superiority of the proposed

test.

5. Discussion

This is the first attempt to develop a test for assessing the Stukel generalized logistic

model. The test is shown to be consistent and can detect parametric rate local

alternative hypotheses. The test is easy to implement, theoretically reliable, and has

good finite-sample performance. In implementing the proposed procedure, calculating

the critical value based the bootstrap procedure is the most computationally intensive.

We focus on the Stukel’s generalized logistic models, but the proposed method

can also be used for other generalized logistic model such as the one-parameter gen-

eralization of the logistic model mentioned in Hosmer & Hjort (2002):

Pr(Y = 1 | X) =

{
exp(X>β)

1 + exp(X>β)

}1+γ

(5.1)

The model in equation (5.1) is stochastically smaller than the logistic model when

γ > 0 and is stochastically larger when γ < 0. To our knowledge this transformation
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has never been used in logistic regression to assess overall model adequacy.

Per the simulation experience, the proposed method works well for the case of

univariate x. But the precision of the estimation gets worse when introducing more

covariates into the model. As a result, the proposed method may also become worse.

Additional efforts are needed for improving estimation of the parameters. In this

paper, we have discussed the performance of the proposed test with balanced and

unbalanced observations. If most of the observations gather at the tails, the estima-

tion of α may be out of a reasonable range and impact the reliability of the test in

the end. Generally speak, if estimation of the parameters works well, the proposed

procedure should perform satisfactorily.

Appendix

We first present several lemmas and their proofs if needed. These lemmas establish

bounds for several terms, which will appear in the proofs of the main results, and a

representation for β̂n − β0, which we need later. The proofs of Lemmas A.3-A.5 are

similar to but more sophisticated than the proofs in Yin et al. (2006), Liang & Du

(2012), Li et al. (2023). Below C denotes a generic constant which may varies but is

independent of n.
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A.1 Several Lemmas

Lemma A.1. (Heuser 1981) If F is continuously differentiable on IR, then

F (t2)− F (t1) = (t2 − t1)
∫ 1

0

dF

ds
|s=t1+u(t2−t1)du,

where t1, t2 ∈ IR. �

Lemma A.2. (Chen et al. 1999) Let Υ be a smooth injection from IRp to IRp with

Υ(x0) = y0 and inf‖x−x0‖=δ ‖Υ(x) − y0‖ ≥ R. Then for any y with ‖y − y0‖ ≤ R,

there is an x with ‖x− x0‖ ≤ δ such that Υ(x) = y. �

Let Nn(δ) = {β : ‖G1/2
n (β − β0)‖ ≤ δ}, and v below be a unit p-vector. The

following lemma establishes bounds for several terms, which will appear in the proof

of the main results. The bounds or inequalities hold in the sense of “in probability”

unless specified otherwise.

Lemma A.3. Under the conditions of Theorem 2.1, we have

max
1≤i≤n

‖G−1/2n Xi‖2 = O(n−1), (A.1)

max
1≤i≤n

|X>i (β − β0)| = O(n−1/2δ). (A.2)

n∑
i=1

|v>G−1/2n Xi|2 ≤ C (A.3)

for β ∈ Nn(δ).

Proof. Note that

max
1≤i≤n

‖G−1/2n Xi‖2 = max
1≤i≤n

X>i G
−1
n Xi
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= max
1≤i≤n

X>i (X>HX)−1Xi

≤ max
1≤i≤n

X>i λ
−1
min(H)(X>X)−1Xi

≤ c−100 b
−2
minc

−1
minn

−1 max
1≤i≤n

X>i Xi

= O(n−1),

and

max
1≤i≤n

|X>i (β − β0)| ≤ max
1≤i≤n

‖G−1/2n Xi‖‖G1/2
n (β − β0)‖

= O(n−1/2δ).

In addition,

n∑
i=1

|v>G−1/2n Xi|2 =
n∑
i=1

v>G−1/2n XiX
>
i G

−1/2
n v

= v>G−1/2n SnG
−1/2
n v

= v>(X>HX)−1/2Sn(X>HX)−1/2v

≤ c−100 b
−2
minv

>(X>X)−1/2Sn(X>X)−1/2v = c−100 b
−2
min.

�

Lemma A.4. Under the conditions of Theorem 2.1, we have

sup
β∈Nn(δ)

|v>G−1/2n Qn(β)G−1/2n v − 1| → 0, (A.4)

where Qn(β) = −∂Ln(β)/∂β>.
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Proof. Recall εi = Yi−gi = Yi−g(hα(X>i β0)) and σ2
i = var(εi). A direct calculation

yields

v>G−1/2n Qn(β)G−1/2n v − 1 = An(β)−Bn − Cn(β)−Dn(β), (A.5)

where

An(β) = v>G−1/2n Gn(β)G−1/2n v − 1,

Bn =
n∑
i=1

v>G−1/2n XiX
>
i G

−1/2
n vh

′′

i εi,

Cn(β) =
n∑
i=1

v>G−1/2n XiX
>
i G

−1/2
n v{h′′i (β)− h′′i }εi,

Dn(β) =
n∑
i=1

v>G−1/2n XiX
>
i G

−1/2
n vh

′′

i (β){gi − gi(β)}.

We will show that each of these four terms approaches to zero on Nn(δ).

Note that

|An(β)| = v>G−1/2n {Gn(β)−Gn(β0)}G−1/2n v

= v>G−1/2n

n∑
i=1

XiH
(1)
i (β̃)X>i (β − β0)X

>
i G

−1/2
n v

≤ v>G−1/2n

n∑
i=1

XiC1|X>i (β − β0)|X>i G−1/2n v

≤ C1 max
1≤i≤n

|X>i (β − β0)|
n∑
i=1

|v>G−1/2n Xi|2.

Then (A.2) and (A.3) indicate that supβ∈Nn(δ) ‖An(β)‖ → 0.

A direct calculation yields

var(Bn) =
n∑
i=1

(v>G−1/2n XiX
>
i G

−1/2
n v)2(h

′′

i )
2σ2

i
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≤
n∑
i=1

|v>G−1/2n Xi|2|X>i G−1/2n v|2C2

≤ max
1≤i≤n

|v>G−1/2n Xi|2
n∑
i=1

|X>i G−1/2n v|2C2 → 0. (A.6)

This along with the fact that E(Bn) = 0 indicates |Bn| → 0.

Noting that sup E |εi| <∞, with the analogous arguments as inAn(β), supβ∈Nn(δ) ‖h
′′
i (β)−

h
′′
i ‖ → 0, and

E max
β∈Nn(δ)

‖Cn(β)‖ 6 sup
β∈Nn(δ)

∥∥∥h′′i (β)− h′′i
∥∥∥ sup E|εi|

n∑
i=1

∣∣v>G−1/2n Xi

∣∣2 → 0,

which implies that

max
β∈Nn(δ)

‖Cn(β)‖ p→ 0.

Similarly, noting that supβ∈Nn(δ)
∥∥h′′i (β)

∥∥ <∞, we obtain

sup
β∈Nn(δ)

‖Dn(β)‖ ≤ C3 max
1≤i≤n

|X>i (β − β0)|
n∑
i=1

|v>G−1/2n Xi|2 → 0.

�

If α1 = α2 = 0, the right-hand side of A.5 simplifies to An(β).

Lemma A.5. Suppose Assumptions (a)-(b) hold. Then there exist a sequence of

random variables β̂n such that

P{Ln(β̂n) = 0} → 1 (A.7)

and

β̂n − β0 = {Q̃n(β̂n)}−1Ln(β0), (A.8)
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where Q̃n(β) =
∫ 1

0
Qn(β0 + s(β − β0))ds.

(A.7) indicates that with probability tending to 1, there exists a solution of the

equation Ln(β) = 0, while (A.8) gives a representative of β̂n − β0.

Proof. We first show

v>G−1/2n Ln(β0)
D−→ N(0, 1). (A.9)

Let ξi = v>G
−1/2
n Xih

′
iεi. It is easy to verify that E(ξi) = 0. It now suffices to prove

that (Lindeberg’s condition), for any ζ > 0, as n→∞,

gn(ζ) =
n∑
i=1

E{|ξi|2I(|ξi|>ζ)} → 0. (A.10)

Let ani = v>G
−1/2
n Xih

′
i. Similar to (A.3), we can show that

max
1≤i≤n

‖ani‖2 ≤ max
1≤i≤n

B2
maxv

>G−1/2n XiX
>
i G

−1/2
n v = max

1≤i≤n
B2
max‖v>G−1/2n Xi‖2 → 0.

Also, (A.3) showed that
∑n

i=1 ‖ani‖2 is bounded. Combining these with the Cauchy-

Schwartz inequality, and (2.11) ensures (A.10). The central limiting theorem then

yields (A.9).

By Lemma A.1, we have

Ln(β)− Ln(β0) = −Q̃n(β)(β − β0). (A.11)

Furthermore, it follows from Lemma A.4 that

sup
β∈Nn(δ)

|v>G−1/2n Q̃n(β)G−1/2n v − 1| → 0 (A.12)
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and

sup
β1,β2∈Nn(δ)

|v>G−1/2n Q̃n(β1,β2)G
−1/2
n v − 1| → 0, (A.13)

where Q̃n(β1,β2) =
∫ 1

0
Qn(β1 + s(β2 − β1))ds. Next, we prove that for any ζ > 0

there is a δ > 0 such that when n is large enough

P{there is β̂n ∈ Nn(δ) such that Ln(β̂n) = 0} > 1− ζ. (A.14)

Write ∂Nn(δ) = {β : ‖G1/2
n (β − β0)‖ = δ}. Note that ‖G1/2

n (β − β0)‖/δ = 1 for

β ∈ ∂Nn(δ). By the Cauchy-Schwartz inequality, we have that for any δ > 0,

inf
β∈∂Nn(δ)

(β − β0)
>Q̃n(β)>G−1n Q̃n(β)(β − β0)

≥ inf
β∈∂Nn(δ)

δ2{(β − β0)
>Q̃n(β)>(β − β0)/δ

2}2. (A.15)

It follows from (A.12) that, for any ε > 0 and δ > 0, there is a c0 ∈ (0, 1) independent

of δ, such that

P

{
inf

‖e‖=1,β∈∂Nn(δ)
e>G−1/2n Q̃n(β)>G−1/2n e ≥ c0

}
> 1− ε

4
. (A.16)

(A.11), (A.15), and (A.16) indicate that, for any δ > 0 such that

P

{
inf

β∈∂Nn(δ)
|v>G−1/2n {Ln(β)− Ln(β0)}| ≥ c0δ

}
> 1− ε

4
. (A.17)

Taking δ = (4/ε)1/2/c0 and using the Markov inequality and (A.9) yield

P{|v>G1/2
n Ln(β0)| ≤ c0δ} ≥ 1− E|v>G−1/2n Ln(β0)|2/(c0δ)2
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≥ 1− 1/(c0δ)
2 = 1− ε

4
. (A.18)

Write En =
{
|v>G−1/2n Ln(β0)| ≤ infβ∈∂Nn(δ) |v

>G
−1/2
n {Ln(β)− Ln(β0)}|

}
. (A.17)

and (A.18) imply that

P (En) > 1− ε

2
. (A.19)

Write Ẽn =
{

det{Q̃n(β1,β2)} 6= 0 for all β1,β2 ∈ Nn(δ)
}

. Then (A.13) indicates

that

P (Ẽn) > 1− ε

2
. (A.20)

Lemma A.1 indicates that the map: β → v>G
−1/2
n Ln(β) is an injection for β ∈ Nn(δ)

on the set Ẽn. Using Lemma A.2 we know that, on En ∩ Ẽn, there is a β̂n such that

β̂n ∈ Nn(δ) and Ln(β̂n) = 0. (A.21)

(A.14) follows from (A.19)-(A.21). Then (A.7) holds. �

A.2 Proof of Theorem 2.1

By the definition of Mn(u,W ), we have

Mn(u,W ) =
1√
n

n∑
i=1

{Yi − g(hα̂(X>i β̂n))}I(X>i W ≤ u)

=
1√
n

n∑
i=1

{Yi − g(hα0(X
>
i β0))}I(X>i W ≤ u)

− 1√
n

n∑
i=1

{g(hα̂(X>i β̂n))− g(hα̂(X>i β0))}I(X>i W ≤ u)
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− 1√
n

n∑
i=1

{g(hα̂(X>i β0))− g(hα0(X
>
i β0))}I(X>i W ≤ u)

:= Bn1(u,W )−Bn2(u,W )−Bn3(u,W ). (A.22)

It follows from model (2.4) that

Bn1(u,W ) =
1√
n

n∑
i=1

εiI(X>i W ≤ u). (A.23)

Using Lemma A.1, the second term can be expressed as

Bn2(u,W ) =
1√
n

n∑
i=1

X>i (β̂n − β0)I(X>i W ≤ u)

∫ 1

0

g′(X>i β0 + s(X>i (β̂n − β0)))ds.

Substituting β̂n − β0 given in (A.8) and applying the mean-value theorem yield

Bn2(u,W ) =
1√
n

n∑
i=1

X>i {Q̃n(β̂n)}−1
n∑
j=1

Xjh
′

jεjI(X>i W ≤ u)g′(X>i β̃n)

=
1√
n

n∑
j=1

[
n∑
i=1

X>i {Q̃n(β̂n)}−1I(X>i W ≤ u)g′(X>i β̃n)

]
Xjh

′

jεj,

where β̃n is a vector such that X>i β̃n lies between X>i β̂n and X>i β0. Applying the

result of Lemma A.3 with additional simplifications yields

max
j

∣∣∣ 1
n

n∑
i=1

[
X>i {Q̃n(β̂n)}−1I(X>i W ≤ u)g′(X>i β̃n)

−E{X>Σ−1β I(X>W ≤ u)g′(X>β0)}
]
Xjh

′

j

∣∣∣→ 0. (A.24)

As a result, we have

Bn2(u,W ) =
1√
n

Γ(u)
n∑
i=1

εiXih
′

i + op(1). (A.25)
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Similarly, the third term can be expressed as

Bn3(u,W ) =
1√
n

n∑
i=1

(α̂n − α0)I(X>i W ≤ u)

∫ 1

0

g′(α0 + s(α̂n − α0))ds.

For simplicity, we consider the case with one additional shape parameter. Substitut-

ing α̂n − α0 using Lemma A.1 and applying the mean-value theorem yield

Bn3(u,W ) =
1√
n

n∑
i=1

{Ãn(α̂)}−1
n∑
j=1

Xjh
′

jεjI(X>i W ≤ u)g′(α̃)

=
1√
n

n∑
j=1

[
n∑
i=1

{Ãn(α̂)}−1I(X>i W ≤ u)g′(α̃)

]
Xjh

′

jεj,

where α̃ is a value lies between α̂ and α0, Ãn(α1, α2) =
∫ 1

0
An(α1 + s(α2 − α1))ds,

An(α) = −∂Ln(α)/∂α.

Denote Σα = E{
∑n

i=1 g(hα(η))(1 − g(hα(η)))∂h(α)
∂α

∂h(α)
∂α
}. Applying the result of

Lemma A.3 with additional simplifications yields

max
j

∣∣∣ 1
n

n∑
i=1

[
{Ãn(α̂)}−1I(X>i W ≤ u)g′(α̃)

−E{Σ−1α I(X>W ≤ u)g′(α0)}
]∂hα(ηj)

∂α

∣∣∣→ 0. (A.26)

Denote Θ(u) = E{Σ−1α I(X>W ≤ u)g′(α0)}. As a result, we have

Bn3(u,W ) =
1√
n

Θ(u)
n∑
i=1

εi
∂hα
∂α

+ op(1). (A.27)

So we have the following expression for Mn(u,W ).

Mn(u,W ) =
1√
n

n∑
i=1

{
I(X>i W ≤ u)− Γ(u)Xih

′

i −Θ(u)
∂hα
∂α

}
εi + op(1). (A.28)
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It is easy to see that I(X>W ≤ u) is monotone with respect to u. By Lemma

9.10 of Kosorok (2008), the function class {I(X>W ≤ u) : u ∈ R1} is a VC-class.

Similarly the function classes {Γ(u) : u ∈ R1} and {Θ(u) : u ∈ R1} are VC-class

as well. By Theorem 2.6.8 of van der Vaart & Wellner (1996), the function classes

{εI(X>W ≤ u) : u ∈ R1}, the class {Γ(u)εXh
′

: u ∈ R1} and the class {Θ(u)ε∂hα
∂α

:

u ∈ R1} are all VC-class. Then by Lemma 9.17 of Kosorok (2008), the function

class {Ψu(u, y, ε, w) : u ∈ R1} is a VC-class. We can take the envelope function as

|ε| + E(‖ X ‖)|ε|Σ−1β |X||h
′| + |ε|Σ−1α |∂hα∂α |. By Theorems 2.6.7 and 2.5.2 of van der

Vaart & Wellner (1996), we can prove that the estimated empirical process Mn(u,W )

converges weakly to M(u) in the Skorohod space S[Π]. By the continuous mapping

theorem, we can prove the result for Tn. �

A.3 Proof of Theorem 2.2

Let β̂
∗
n be the MLE of β based on the bootstrap samples (Xi, Y

∗
i ) for i = 1, · · · , n.

Analogously to establish (A.8), we can verify that

Q̃n(β̂
∗
n)(β̂

∗
n − β̂n) = L∗n(β̂n) =

n∑
i=1

Xi{Y ∗i − g(hα̂(X>i β̂n))}h′i(β̂n). (A.29)

Write the bootstrap version of Mn(u,W ) as

M∗
n(u,W ) = 1/

√
n

n∑
i=1

{Y ∗i − gα̂∗(X>i β̂
∗
n)}I(X>i W ≤ u).
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Note that Y ∗i − gα̂∗(X
>
i β̂
∗
n) = {Y ∗i − gα̂(X>i β̂n)} − {gα̂∗(X>i β̂

∗
n) − gα̂∗(X

>
i β̂n)} −

{gα̂∗(X>i β̂n)− gα̂(X>i β̂n)}. Then, we have

M∗
n(u,W ) =

1√
n

n∑
i=1

{Y ∗i − gα̂(X>i β̂n)}I(X>i W ≤ u)

− 1√
n

n∑
i=1

{gα̂∗(X>i β̂
∗
n)− gα̂∗(X>i β̂n)}I(X>i W ≤ u)

− 1√
n

n∑
i=1

{gα̂∗(X>i β̂n)− gα̂(X>i β̂n)}I(X>i W ≤ u)

:= M∗
n1(u,W )−M∗

n2(u,W )−M∗
n3(u,W ). (A.30)

Applying (A.29) along with the similar proof to that for (A.25) yields that

M∗
n2(u,W ) =

1√
n

n∑
i=1

{gα̂∗(X>i β̂
∗
n)− gα̂∗(X>i β̂n)}I(X>i W ≤ u)

=
1√
n

Γ(u)
n∑
i=1

Xi{Y ∗i − gα̂(X>i β̂n)}h′i(β̂n) + op(1). (A.31)

Applying (A.29) along with the similar proof to that for (A.27) yields that

M∗
n3(u,W ) =

1√
n

n∑
i=1

{gα̂∗(X>i β̂n)− gα̂(X>i β̂n)}I(X>i W ≤ u)

=
1√
n

Θ(u)
n∑
i=1

{Y ∗i − gα̂(X>i β̂n)}∂hα̂
∂α̂

+ op(1). (A.32)

It follows from (A.30)-(A.32) that

M∗
n(u,W ) =

1√
n

n∑
i=1

{Y ∗i − gα̂(X>i β̂n)}[I(X>i W ≤ u)

− 1√
n

Γ(u)
n∑
i=1

Xi{Y ∗i − gα̂(X>i β̂n)}h′i(β̂n)

− 1√
n

Θ(u)
n∑
i=1

{Y ∗i − gα̂(X>i β̂n)}∂hα̂
∂α̂

+ op(1). (A.33)
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Recall that P (Y ∗i = 1|data) = gα̂(X>i β̂n) = g(hα̂(X>i β̂n)) and g(v) = {1+ exp(−v)},

the similar arguments to the proof of Theorem 2.1 along the line with the proof of

Theorem 2 in Dikta et al. (2006) can prove that the conditional distribution of T ∗n

converges in distribution to the limiting null distribution of Tn.

Note that the validity of (A.29) is independent of D(x) = 0 or not. We can

similarly prove that the conditional distribution of T ∗n converges in distribution to

the limiting alternative distribution of Tn. Theorem 2.2 follows. �
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