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Abstract: The baseline parametrization for two-level factorial designs has been

receiving increasing attention recently. While the orthogonal parametrization is

appropriate for experiments where the two levels of each factor are symmetrical,

the baseline parametrization is well suited for experiments where the two levels of

each factor are asymmetrical and one level, called a baseline level, is the default

level. This paper considers a general situation where some factors have a baseline

level while others do not. A mixed parametrization of factorial effects is proposed

and its connection with the existing parametrizations is established. Under this

new parametrization, we show that orthogonal arrays continue to be optimal for

estimating main effects, and then put forward two minimum aberration criteria

for further design selection. Both theoretical and algorithmic constructions of

minimum aberration designs are examined and useful designs are obtained.

Key words and phrases: Baseline parametrization, contamination, orthogonal

array.
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1. INTRODUCTION

1. Introduction

Two-level factorial designs are a class of experimental plans useful in sci-

entific and technological investigations for studying the causal relationship

between several input factors and a response variable. Factorial effects

are utilized to attribute changes of the mean response due to various level

combinations to the factors under study. The most commonly used fac-

torial effects are those given by the orthogonal parametrization (Box and

Hunter, 1961), which is termed so because those factorial effects form a set

of orthogonal treatment contrasts. When it is too expensive to examine

all level combinations, factorial effects cannot be all estimated and a frac-

tional factorial design needs to be selected to entertain the estimation of

the lower-order effects. One popular approach to design selection is to em-

ploy the minimum aberration criterion (Fries and Hunter, 1980; Tang and

Deng, 1999). We refer to Mee (2009), Cheng (2014) and Wu and Hamada

(2021) for comprehensive accounts on factorial designs under the orthogonal

parametrization.

Under the orthogonal parametrization, the two levels of the factors are

symmetrical and hence equally important. While this is true in most appli-

cations, there are situations, such as in microarray experiments (Yang and

Speed, 2002; Glonek and Solomon, 2004; Banerjee and Mukerjee, 2008),
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1. INTRODUCTION

where one of the two levels represents a baseline or default setting and

is thus more important than the other level. Investigators are interested

in the impact on the mean response by changing the levels of a few fac-

tors while keeping other factors set at the baseline levels. This calls for

a baseline parametrization in which factorial effects are defined in relation

to the baseline levels. To select a fractional factorial design under this

parametrization, Mukerjee and Tang (2012) put forward a minimum aber-

ration criterion which aims at minimizing the bias caused by higher-order

interactions on the estimation of main effects.

The blanket approach to defining factorial effects via either the orthog-

onal parametrization or the baseline parametrization can hardly represent

all practical situations. Entirely conceivable are the scenarios that we know

the importance of one of the two levels for some factors but are indifferent

to the two levels for other factors. In an industrial experiment on quality

improvement, besides studying the potential impact of changing the current

settings of several machine components in a production line, we may also

want to examine some additional factors along the way. Then the current

settings may be regarded as the baseline levels for the machine components,

but no importance can be attached to any of the two levels for the addi-

tional factors. To deal with such practical situations, we propose a mixed
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1. INTRODUCTION

parametrization of factorial effects in which some factors have baseline lev-

els while the others do not. Our mixed parametrization includes as special

cases both the orthogonal and baseline parametrizations.

The remainder of the paper is arranged as follows. Section 2 first re-

views orthogonal and baseline parametrizations, and then introduces the

mixed parametrization. A connection between the mixed parametrization

and the existing parametrizations is established, through which we show

that orthogonal arrays are optimal for estimating the main effects under

the main-effects model. To protect the main effects from the contamina-

tion of nonnegligible higher-order interactions, two minimum aberration

criteria are developed in Section 3, depending on whether or not the main

effects of the factors with baseline levels need more protection than those of

the other factors. Theoretical constructions are then provided to minimize

the leading terms of these criteria. In Section 4, we present two algorithms

to search for designs that are exactly optimal or nearly optimal under these

criteria. All designs with 8, 12, 16 and 20 runs are found and made avail-

able online. The paper is concluded with a discussion in Section 5. All

the proofs and some selected designs are provided in the Supplementary

Material.
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2. A MIXED PARAMETRIZATION AND OPTIMALITY RESULTS

2. A mixed parametrization and optimality results

Consider a factorial experiment for m two-level factors F1, F2, . . . , Fm in

which the two levels are denoted by −1 and +1. Let S = {1, 2, . . . ,m}

collect the indices of these factors. Then for any subset u ⊆ S, there

corresponds a treatment combination xu = (xu1, . . . , xum) where xuj = +1

if j ∈ u and xuj = −1 otherwise. We use τu to represent the treatment

mean under the treatment combination xu.

We first review the orthogonal parametrization of factorial effects. For

any subset w = {j1, . . . , jk} ⊆ S, let βw be the factorial effect involving the

k factors Fj1 , . . . , Fjk under the orthogonal parametrization. Then we have

τu =
∑
w⊆S

βw
∏
j∈w

xuj, βw =
1

2m

∑
u⊆S

τu
∏
j∈w

xuj. (2.1)

Mathematically, the treatment means τu’s and the factorial effects βw’s are

just a linear transformation of each other. However, the βw’s are statistically

meaningful because they describe the change in treatment means due to

the level changes of factors indexed by w. More concretely, the factorial

effect βw defines a treatment contrast by averaging over all possible level

combinations of factors not contained in w. For example, the main effects

are given by βj = (1/2m)
∑

u⊆S\{j}(τu∪{j} − τu) for j = 1, . . . ,m.
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2. A MIXED PARAMETRIZATION AND OPTIMALITY RESULTS

The orthogonal parametrization is well suited for situations where the

two levels are symmetrical. For the opposite situations where one of the two

levels corresponds to a baseline or default setting, the baseline parametriza-

tion may be more appropriate. We suppose the level −1 is the baseline level.

For w ⊆ S, let θw be the factorial effect involving factors indexed by w under

the baseline parametrization. Let zuj = xuj +1 for u ⊆ S and j = 1, . . . ,m.

Then we have

τu =
∑
w⊆S

θw
∏
j∈w

zuj, θw =
1

2|w|

∑
u⊆w

τu
∏
j∈w

xuj, (2.2)

where |w| denotes the cardinality of w. In contrast to βw’s, the θw’s char-

acterize the factorial effect due to factors in w by fixing all other factors

at the baseline level −1. For example, the main effects under the baseline

parametrization are θj = (τj − τφ)/2 for j = 1, . . . ,m.

In the existing work on baseline designs, the two levels ±1 are converted

to 0 and 1 by zuj = (xuj + 1)/2. Our slightly different definition transforms

±1 to 0 and 2, which is to ensure that βw and θw have the same scale

and are comparable. This modification gives rise to the extra 1/2|w| in the

expression of θw in (2.2).

We now consider a general situation in which the two levels are asym-

metrical for some factors and symmetrical for the others. Without loss of

generality, we assume the level −1 is the baseline level for the first m1 fac-
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2. A MIXED PARAMETRIZATION AND OPTIMALITY RESULTS

tors F1, . . . , Fm1 , and for the remaining m2 = m−m1 factors Fm1+1, . . . , Fm,

the two levels are symmetrical. For convenience, we call the first m1

factors B-factors and the last m2 factors O-factors. To define a mixed

parametrization of factorial effects, we need to introduce some notation.

Let S1 = {1, . . . ,m1} and S2 = {m1 + 1, . . . ,m}, representing the index

sets of B-factors and O-factors, respectively. For w1 ⊆ S1 and w2 ⊆ S2, let

ξw1∪w2 be the factorial effect involving factors in w1 ∪ w2 under the mixed

parametrization. Then we have

τu =
∑
w1⊆S1

∑
w2⊆S2

ξw1∪w2

∏
j∈w1

zuj
∏
j∈w2

xuj,

ξw1∪w2 =
1

2|w1|+m2

∑
u⊆w1∪S2

τu
∏

j∈w1∪w2

xuj, (2.3)

where zuj = xuj + 1. Clearly, (2.3) reduces to (2.1) if S1 = φ and to (2.2) if

S2 = φ. Therefore, our mixed parametrization includes as special cases the

orthogonal and baseline parametrizations. The factorial effects under the

mixed parametrization inherit features of the two parametrizations intro-

duced above: The parameter ξw1∪w2 measures the effect of factors in w1∪w2

by averaging over all level combinations of O-factors in S2 \ w2 while fix-

ing the B-factors in S1 \ w1 at the baseline level. For example, the main

effects for B-factors are given by ξj = (1/2m2+1)
∑

u⊆S2
(τu∪{j} − τu) for j =

1, . . . ,m1, and those for O-factors are defined as ξj = (1/2m2)
∑

u⊆S2\{j}(τu∪{j}
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2. A MIXED PARAMETRIZATION AND OPTIMALITY RESULTS

− τu) for j = m1 + 1, . . . ,m. The following example illustrates the three

parametrizations by a 22 factorial.

Example 1. Suppose that m = 2 with m1 = m2 = 1 so the first factor is a

B-factor and the second is an O-factor. There are 4 treatment combinations

τφ, τ1, τ2 and τ12. Under the three parametrizations discussed above, we

obtain that

βφ = (τφ + τ1 + τ2 + τ12)/4, θφ = τφ, ξφ = (τφ + τ2)/2;

β1 = ξ1 = (−τφ + τ1 − τ2 + τ12)/4, θ1 = (τ1 − τφ)/2;

β2 = (−τφ − τ1 + τ2 + τ12)/4, θ2 = ξ2 = (τ2 − τφ)/2;

and β12 = θ12 = ξ12 = (τφ − τ1 − τ2 + τ12)/4.

As can be seen from (2.1), (2.2) and (2.3), the factorial effects under

the three parametrizations are all linear transformations of the treatment

means, and hence must be linearly related to each other. Sun and Tang

(2022) established a linear relationship between the orthogonal and base-

line parametrizations. Theorem 1 further reveals relationships between the

mixed parametrization and the other two.

Theorem 1. For any w1 ⊆ S1 and w2 ⊆ S2, we have that

(i) ξw1∪w2 =
∑

v1⊇w1
(−1)|v1|−|w1|βv1∪w2 and βw1∪w2 =

∑
v1⊇w1

ξv1∪w2;

and
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2. A MIXED PARAMETRIZATION AND OPTIMALITY RESULTS

(ii) ξw1∪w2 =
∑

v2⊇w2
θw1∪v2 and θw1∪w2 =

∑
v2⊇w2

(−1)|v2|−|w2|ξw1∪v2.

We note that the relationship between the orthogonal and baseline

parametrizations can be obtained by taking S1 = S and S2 = φ in part

(i) of Theorem 1. More importantly, one can easily deduce from Theorem

1 the equivalency of the three conditions: (a) ξw = 0 for all |w| ≥ k, (b)

βw = 0 for all |w| ≥ k, and (c) θw = 0 for all |w| ≥ k, for any given positive

integer k. This leads to the following result.

Corollary 1. The factorial effects involving k or more factors are negli-

gible under any one parametrization implies the same under the other two

parametrizations. In particular, if all interactions are negligible under one

parametrization, they must be negligible under the two parametrizations, in

which case we have that ξj = βj = θj for j = 1, . . . ,m.

Now let’s focus on the estimation of main effects ξj’s under the mixed

parametrization, using a design D = (dij) of N runs for m factors. Let X1

be an N ×m matrix with its (i, j)th element equal to (dij + 1) if j ≤ m1

and dij otherwise. Consider the following main-effects model

Y = 1Nξφ +X1ξ
(1) + ε, (2.4)

where Y = (Y1, . . . , YN)T is the vector of responses, 1N is a column of N

ones, ξ(1) = (ξ1, . . . , ξm)T and ε is the vector of uncorrelated random errors
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that have a zero mean and a constant variance σ2. The results of Corollary

1 imply that such a model is equivalent to a main-effects model under

the orthogonal parametrization. Then the following optimality results as

stated in Corollary 2 can be established, where part (i) follows directly from

Proposition 1 of Mukerjee and Tang (2012) and the fact that ξj = βj for

j = 1, . . . ,m, and part (ii) is proved in the Supplementary Material. Recall

that D is an orthogonal array of strength t if any t columns of D contain

all possible level combinations of −1 and +1 the same number of times; we

denote such an array by oa(N, 2m, t).

Corollary 2. With reference to the model (2.4), we have that

(i) the best linear unbiased estimator ξ̂j of ξj satisfies Var(ξ̂j) ≥ σ2/N

for j = 1, . . . ,m, where the equality holds if and only if D is an oa(N, 2m, 2);

and

(ii) if design D is an oa(N, 2m, 2), then D is universally optimal for

estimating ξ(1).

3. Two minimum aberration criteria

3.1 Bias caused by nonnegligible interactions

Corollary 2 shows that under the model (2.4) which ignores interactions,

an orthogonal array is optimal for estimating the main effects ξ(1) in a very
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3. TWO MINIMUM ABERRATION CRITERIA

broad sense. Let ξ = (ξφ, ξ
(1)T)T. Then the best linear unbiased estimator

for ξ is ξ̂ = (XTX)−1XTY , where X = (1N , X1). However, this estimator

is actually biased if interactions are not negligible. Suppose the true model

is the full model

Y = 1Nξφ +X1ξ
(1) +X2ξ

(2) + · · ·+Xmξ
(m) + ε,

where ξ(k) collects all k-factor interactions ξw’s with |w| = k, and Xk is

the corresponding model matrix for k = 1, . . . ,m. Then the bias in the

estimator ξ̂ is given by

E(ξ̂)− ξ = (XTX)−1XTX2ξ
(2) + · · ·+ (XTX)−1XTXmξ

(m). (3.5)

In this section, we concentrate on selecting an orthogonal array that min-

imizes the contamination of the potentially active interactions on the esti-

mation of main effects. Two minimum aberration criteria are proposed to

implement the idea, depending on whether or not the main effects of the

B-factors need more protection than those of the O-factors.

3.2 Main effects of B-factors are more important

Under the mixed parametrization, there are two sets of main effects, one

for the B-factors and the other for the O-factors. In practice, the two sets

of main effects may not be of equal interest and thus ought to be treated
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3. TWO MINIMUM ABERRATION CRITERIA

differently. In this subsection, we consider the situation that the main

effects of the B-factors are more important than those of the O-factors,

and therefore need more protection from contamination by nonnegligible

interactions. This is reasonable because the B-factors may well be those

that have current default settings and the O-factors are some additional

factors the investigator want to study. Default settings need to be protected;

so do the B-factors that have default settings.

From the bias expression (3.5), one can see that for k = 2, . . . ,m, the

k-factor interactions ξ(k) contribute a bias term of Bkξ
(k) to the estimation

of main effects for B-factors, where Bk collects the rows 2, . . . ,m1 +1 of the

matrix (XTX)−1XTXk. Similarly, the bias caused by ξ(k) on the estimation

of main effects for O-factors is Okξ
(k), where Ok collects the last m2 rows

of the matrix (XTX)−1XTXk. If all components of ξ(k) are equally likely

to be active with the same scale, then πBk = tr(BT
kBk) and πOk = tr(OT

kOk)

provide reasonable measures of the amount of bias from ξ(k) on main-effects

estimation for B-factors and O-factors, respectively.

Under the assumption that the main effects of B-factors are more im-

portant, it is a priority to protect these main effects from the contamination

of interaction terms. On the other hand, the effect hierarchy principle says

that lower-order interactions are more likely to be active than the higher-
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3. TWO MINIMUM ABERRATION CRITERIA

order ones. Therefore, when only two-factor interactions are present, an

orthogonal array that sequentially minimizes πB2 and πO2 is desirable. If, in

addition, there are nonnegligible three-factor interactions, we then proceed

to minimize πB3 and πO3 . Continuing this line of arguments, we obtain the

following minimum πB-aberration criterion for design selection.

Definition 1. An orthogonal array for m factors is said to have minimum

πB-aberration if it sequentially minimizes πB2 , π
O
2 , π

B
3 , π

O
3 , . . . , π

B
m, π

O
m.

The idea of minimum πB-aberration criterion is similar in spirit to

those of the minimum G2-aberration under the orthogonal parametrization

(Tang and Deng, 1999) and the minimum K-aberration under the baseline

parametrization (Mukerjee and Tang, 2012). To find a minimum aberra-

tion design is challenging, and our problem is further complicated by the

presence of two types of factors. Nevertheless, good designs can still be ob-

tained theoretically by concentrating on the leading terms in the criterion

of minimum πB-aberration.

Given k vectors a1, . . . , ak where aj = (a1j, . . . , aNj)
T for j = 1, . . . , k,

the J-characteristic of these vectors is defined as J(a1, . . . , ak) =
∑N

i=1

∏k
j=1 aij

(Tang, 2001). The next result expresses πB2 and πO2 in terms of the J-

characteristics of columns of a design D. Note that the design matrix D

has elements +1 and −1 in all columns.
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3. TWO MINIMUM ABERRATION CRITERIA

Lemma 1. Suppose that D = (b1, . . . , bm1 , o1, . . . , om2) is an orthogonal

array of N runs for m1 B-factors and m2 O-factors. Then we have that

πB2 =
3

N2

∑
i<j<k

J2(bi, bj, bk) +
2

N2

∑
i<j

∑
k

J2(bi, bj, ok)

+
1

N2

∑
i

∑
j<k

J2(bi, oj, ok) +m1(m1 − 1)

and

πO2 =
1

N2

∑
i<j

∑
k

J2(bi, bj, ok) +
2

N2

∑
i

∑
j<k

J2(bi, oj, ok)

+
3

N2

∑
i<j<k

J2(oi, oj, ok) +m1m2.

The J-characteristics are 0 for any three columns of an oa(N, 2m, 3),

which exists whenever m ≤ N/2 and a Hadamard matrix of order N/2 exists

(Cheng, 2014). By Lemma 1, such a design minimizes the bias from two-

factor interactions in estimating main effects of B-factors and O-factors.

Another implication of Lemma 1 is that switching signs of columns of a

design does not affect the values of πB2 and πO2 .

For m > N/2, we use regular designs to minimize πB2 and πO2 . Let the

columns of D be selected from a saturated regular design oa(2h, 22h−1, 2)

for some integer h. Such an oa(2h, 22h−1, 2) can be constructed by first

writing down h independent columns r1, . . . , rh that form a full factorial

and then adding all possible Hadamard products thereof. We assume that
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3. TWO MINIMUM ABERRATION CRITERIA

the columns of a regular oa(2h, 22h−1, 2) are arranged in Yates order. For

example, the 15 columns of an oa(24, 215, 2) are given by

(r1, r2, r1r2, r3, r1r3, r2r3, r1r2r3,

r4, r1r4, r2r4, r1r2r4, r3r4, r1r3r4, r2r3r4, r1r2r3r4),

where, for example, r1r2 denotes the Hadamard product of r1 and r2. For ex-

periments involving only O-factors, Chen and Hedayat (1996) showed that

a design obtained by taking the last m columns of a regular oa(2h, 22h−1, 2)

minimizes πO2 among all regular designs. Inspired by their construction, we

establish Theorem 2.

Theorem 2. Suppose R is a regular oa(2h, 22h−1, 2). Let DB select the last

m1 columns of R and DO select the remaining m2 columns from the last

m = m1 +m2 columns of R that are not already in DB. Then we have the

following results for the design D = (DB, DO).

(i). If m1 and m satisfy that m1 ≤ 2h − 2h1 and m ≥ 2h − 2h1 for

some integer h1 ∈ {0, 1, . . . , h − 1}, then design D minimizes πB2 over

all oa(2h, 2m, 2)s and sequentially minimizes πB2 and πO2 over all regular

oa(2h, 2m, 2)s.

(ii). If m satisfies that m = 2h−2h1 for some integer h1 ∈ {0, 1, . . . , h−

1}, then D sequentially minimizes πB2 and πO2 over all oa(2h, 2m, 2)s.
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3. TWO MINIMUM ABERRATION CRITERIA

It is worth remarking that although the constructed design D in Theo-

rem 2 is regular, its optimality properties are established in the whole class

of orthogonal arrays in two of the three optimality statements. Specifically,

design D minimizes πB2 over all oa(2h, 2m, 2)s in part (i) of Theorem 2,

and sequentially minimizes πB2 and πO2 over all oa(2h, 2m, 2)s in part (ii) of

Theorem 2.

The restriction on m1 and m values in part (i) of Theorem 2 is fairly

mild. Because m ≥ N/2 = 2h−1, we see that the condition is always satisfied

so long as m1 ≤ 2h−1. Example 2 further illustrates Theorem 2 with a case

for m1 > 2h−1.

Example 2. Suppose we would like to study m1 = 18 B-factors and m2 = 7

O-factors with 25 = 32 runs. Then for h1 = 3, we have that m1 ≤ 32− 2h1

and m ≥ 32− 2h1 . Let DB = (r2r3r4, r1r2r3r4, r5, . . . , r1r2r3r4r5) and DO =

(r1r2r3, r4, r1r4, r2r4, r1r2r4, r3r4, r1r3r4). By Theorem 2, the design D =

(DB, DO) minimizes πB2 over all oa(32, 225, 2)s and sequentially minimizes

πB2 and πO2 over all regular oa(32, 225, 2)s.

Remark 1. As careful readers may observe, the results of Theorem 2 hold

no matter whether baseline or orthogonal parametrization is used for each

factor of the design D. As long as the main effects are divided into two

groups and more protection from two-factor interactions is needed for one
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3. TWO MINIMUM ABERRATION CRITERIA

of the two groups, the results of Theorem 2 are applicable. The existence of

two types of factors provides a natural application scenario for these results.

3.3 Main effects of all factors are equally important

If the main effects of the B-factors and the O-factors are of equal interest,

then, naturally, one wishes to minimize πk = πBk + πOk for k = 2, . . . ,m, as

πk measures the contamination of k-factor interactions on the estimation of

all main effects. Combined with the effect hierarchy principle, the idea can

be formulated as the following minimum π-aberration criterion.

Definition 2. An orthogonal array for m factors is said to have minimum

π-aberration if it sequentially minimizes π2, π3, . . . , πm.

Lemma 1 indicates that for a design D = (d1, . . . , dm) of N runs for m

factors, we have π2 = 3A3+m1(m−1) where A3 =
∑

i<j<k J
2(di, dj, dk)/N

2

is the leading term in the minimum G2-aberration criterion. However, for

π3, π4, . . . , πm, such a simple connection with the minimum G2-aberration

criterion no longer exists. The expressions of π3, π4, . . . , πm become more

complex as sign-switching columns of D may affect their values.

In the following, we focus on sequential minimization of π2 and π3

through the use of regular designs. Consider a regular design D of 2h runs

for a total of m = 2h − 2h1 factors where h1 and h are integers. Chen
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and Hedayat (1996) and Tang and Wu (1996) proved that A3, and thus

π2, are minimized if and only if columns of D are isomorphic to the last m

columns of a saturated regular design. We show that π3 of such a design D

is determined by the J-characteristics of the B-factors alone.

Lemma 2. Suppose that D = (b1, . . . , bm1 , o1, . . . , om2) is a regular oa(2h,

2m, 2) that minimizes π2, where m = 2h−2h1 for some integer h1. Then we

have that π3 = c1
∑

i<j<k J(bi, bj, bk)+c0, where c0 and c1 > 0 are constants.

Lemma 2 enables us to decide which columns should be assigned to the

B-factors and how to switch their signs to minimize π3. Note that among

the last m = 2h− 2h1 columns of a regular oa(2h, 22h−1, 2), there are h−h1

independent columns rh1+1, . . . , rh. Let’s arrange these h−h1 columns and

all their possible Hadamard products in Yates order. Then let DB collect

the first m1 columns with their signs all switched, where m1 ≤ 2h−h1 − 1.

Let DO include the remaining m−m1 columns in the last m columns of the

regular oa(2h, 22h−1, 2). Finally, let D = (DB, DO). We have the following

result for this design D.

Theorem 3. The design D sequentially minimizes π2 and π3 over all reg-

ular designs.

The design D in Theorem 3 can be constructed as long as the total num-
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ber m of factors satisfies m = 2h − 2h1 for some integer h1 and the number

m1 of B-factors satisfies m1 ≤ 2h−h1−1. In the saturated case of m = 2h−1,

such a design is obtainable for any choice of m1 and m2. In particular, if

m1 = m = 2h−1, then we have D = (−r1,−r2,−r1r2,−r3,−r1r3, . . . ,−r1r2

r3 · · · rh) which must have a row of −1’s. Mukerjee and Tang (2012) showed

that a saturated orthogonal array has minimum aberration under the base-

line parametrization if it contains a run of all baseline levels. Therefore our

result is consistent with theirs in this special case.

We illustrate Theorem 3 with an example.

Example 3. Suppose 64 experiments are allowed to examine the main ef-

fects ofm1 = 6 B-factors andm2 = 50 O-factors. LetDB = (−r4,−r5,−r4r5,

− r6,−r4r6,−r5r6) and DO = (r4r5r6, r1r4, . . . , r1r2r3r4r5r6) which con-

sists of all columns that do not occur in DB but do occur in the last

56 columns of the regular oa(64, 263, 2). According to Theorem 3, the

design D = (DB, DO) sequentially minimizes π2 and π3 over all regular

oa(64, 256, 2)s.

Theorems 2 and 3 provide two theoretical constructions for minimum

πB- and π-aberration designs. These methods have some restrictions on

the run size as well as the numbers of B-factors and O-factors. In the next

section, we develop efficient algorithms to search for minimum πB- and
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π-aberration designs for general cases.

4. Searching designs by algorithms

4.1 A complete search algorithm

Two orthogonal arrays are combinatorially isomorphic if one can be ob-

tained from the other by permuting rows, permuting columns, switching

signs of columns, or a combination of these operations (Hedayat et al.,

1999). All orthogonal arrays can be generated by applying these opera-

tions to a complete set of non-isomorphic orthogonal arrays. Complete sets

of non-isomorphic orthogonal arrays are available for small run sizes (Sun

et al., 2008; Schoen et al., 2010), which allows us to find minimum πB- and

π-aberration designs over all orthogonal arrays.

When using an oa(N, 2m, 2) as a design for m1 B-factors and m2 O-

factors, there is no need to inspect all isomorphic operations, as many of

them lead to designs with the same πB- or π-aberration. Clearly, permuting

rows, permuting the first m1 columns and permuting the last m2 columns

won’t affect the πB- or π-aberration. In addition, we have the following

results on sign-switching columns.

Lemma 3. Switching the signs of O-factors in an oa(N, 2m, 2) does not

change πBk , πOk and thus πk values for k = 2, . . . ,m.
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Based on the above, we propose the following complete search algorithm

for minimum aberration designs. The algorithm used by Mukerjee and Tang

(2012) for the baseline parametrization can be seen as a special case where

all factors are B-factors.

Step 1: Obtain a complete list of non-isomorphic OA(N, 2m, 2)s.

Step 2: For each OA(N, 2m, 2) in the list, consider all m!/(m1!(m −

m1)!) possible ways to assign m1 columns to the B-factors. The re-

maining m2 = m−m1 columns are used for the O-factors.

Step 3: For every possible assignment of B-factors and O-factors in

Step 2, switch signs of the m1 columns of the B-factors in all 2m1

possible ways. Calculate the πBk , πOk and πk values for all possible

designs.

Note that for the minimum π-aberration criterion, only those oa(N, 2m, 2)s

with minimum π2 values need to be considered in Step 1. We apply this

complete search algorithm to obtain minimum πB- and π-aberration de-

signs of N = 8, 12 and 16 runs for all choices of m1 and m2, the num-

bers of B-factors and O-factors. For N = 20 runs, the complete search

is done for m ≤ 13. All the obtained designs are available online at

https://github.com/gz-chen/Mixed-Param.
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Suppose there are q(N,m) non-isomorphic oa(N, 2m, 2)s to be consid-

ered in Step 1. Then the total number of designs to be compared in a

complete search is q(N,m)2m1m!/(m1!(m−m1)!), which, as N , m and m1

increases, soon becomes too large for computer to handle, not to mention

that the computation of J-characteristics also grows rapidly and that com-

plete sets of non-isomorphic orthogonal arrays are no longer available for

large designs. Therefore, it is necessary to come up with an efficient algo-

rithm for the cases where the complete search is impossible.

4.2 An algorithm based on minimum G2-aberration designs

The aim of this subsection is to conduct an algorithmic search for large

designs that perform well under the minimum πB- or π-aberration criterion.

To achieve this, several measures are taken to reduce the computation. The

first is to focus on orthogonal arrays with minimum G2-aberrations instead

of all non-isomorphic ones in Step 1 of the complete search algorithm.

An oa(N, 2m, 2), say D = (d1, . . . , dm), is said to have minimum G2-

aberration if it sequentially minimizesA3, A4, . . . , Am, whereAk =
∑

j1<···<jk

J2(dj1 , . . . , djk)/N2 for k = 3, . . . ,m. As mentioned in Section 3.3, a mini-

mum G2-aberration design minimizes π2 in the minimum π-aberration cri-

terion. The next result shows that such a design is also promising in se-
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quentially minimizing higher-order terms πk for k = 3, . . . ,m and entries in

the minimum πB-aberration criterion.

Theorem 4. Suppose the B-factors of a design are generated by randomly

selecting and sign-switching m1 columns of an oa(N, 2m, 2) and the O-

factors are given by the remaining columns. Let π̄k be the average of πk’s

over all possible designs generated in this way. Then, for k = 2, . . . ,m, we

have

π̄k = c
(k)
k+1Ak+1 + c

(k)
k Ak + · · ·+ c

(k)
3 A3 + c

(k)
0 ,

where c
(k)
0 , c

(k)
3 , . . . , c

(k)
k+1 are positive constants, A3, . . . , Am are determined

by the oa(N, 2m, 2) and we define Am+1 = 0. Similar results also hold for

πBk and πOk .

Theorem 4 provides a rationale for the use of minimum G2-aberration

designs in Step 1 of the complete search algorithm. Related to Theorem

4 is a result of Xiao and Xu (2018) who justified the use of generalized

minimized aberration designs in generating space-filling designs.

Next, we improve the efficiency of Steps 2 and 3 of the complete search

algorithm through a local search algorithm (Aarts and Lenstra, 2003). The

idea is to iteratively replace a current design with the best one in a small

neighbourhood of the current design, until no further improvement can be
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made. A full description of our algorithm for minimum π-aberration designs

is given below.

Step 1: Obtain a minimumG2-aberration design from a list of oa(N, 2m,

2)s. Randomly permute and sign-switch its columns. Denote this de-

sign by D = (b1, . . . , bm1 , o1, . . . , om2) and calculate π = (π2, . . . , πm)

for D.

Step 2: Exchange a column bj (j = 1, . . . ,m1) and a column ±ok (k =

1, . . . ,m2). Among all 2m1m2 designs generated this way, continue to

the next step if none of them improves π; otherwise select one with

the least π-aberration, denote it by D and update π. Then repeat

this step.

Step 3: Exchange a column pair (bj1 , bj2) (1 ≤ j1 < j2 ≤ m1) and a

column pair (±ok1 ,±ok2) (1 ≤ k1 < k2 ≤ m2). Among all m1m2(m1−

1)(m2−1) designs generated this way, continue to the next step if none

of them improves π; otherwise select one with the least π-aberration,

denote it by D and update π. Then go back to Step 2.

Step 4: Replace a column bj by −bj (j = 1, . . . ,m1). Among all m1

designs generated this way, continue to the next step if none of them

improves π; otherwise select one with the least π-aberration, denote
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it by D and update π. Then repeat this step.

Step 5: Replace a column pair (bj1 , bj2) by (−bj1 ,−bj2) (1 ≤ j1 < j2 ≤

m1). Among all m1(m1 − 1)/2 designs generated this way, continue

to the next step if none of them improves π; otherwise select one with

the least π-aberration, denote it by D and update π. Then go back

to Step 4.

Step 6: Output the designD and the associated vector π = (π2, . . . , πm).

The algorithm above generalizes that for the baseline parametrization pre-

sented in Li et al. (2014). One can replace the vector π = (π2, . . . , πm) in

the algorithm by πB = (πB2 , π
O
2 , . . . , π

B
m, π

O
m) if a minimum πB-aberration

design is the goal. If there is more than one minimum G2-aberration design

in Step 1, then we can apply the algorithm to all those designs and then

find the best output design.

To evaluate the performance of our algorithm, we apply it to 20-run

designs for 13 factors. There are 730 non-isomorphic oa(20, 213, 2)s in to-

tal; five of them have weak minimum G2-aberration with A3 = 15.92; and

three of them have minimum G2-aberration with A4 = 43.64 and A5 = 62.4,

while the other two weak minimum G2-aberration designs have A4 = 43.64

and A5 = 62.56. Therefore in a complete search, we search 730 orthogo-
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nal arrays for minimum πB-aberration designs and 5 orthogonal arrays for

minimum π-aberration designs, whereas in the incomplete search we focus

on the 3 minimum G2-aberration designs. For each case of the number

of B-factors m1 = 1, . . . , 13, we run the incomplete search algorithm 200

times for minimum πB- and π-aberration designs separately and compare

the results with those obtained from the complete search.

Under the minimum πB-aberration criterion, we are surprised to find

that all the designs obtained by the incomplete search algorithm sequen-

tially minimize the leading terms πB2 and πO2 among all orthogonal arrays.

So we move on to the next term and compare the 200 πB3 values in the

incomplete search with all the πB3 values of orthogonal arrays that have

sequentially minimized πB2 and πO2 . For each m1 = 1, . . . , 13, the distribu-

tions of these two sets of πB3 values can be described by two boxplots, as

shown in the left panel of Figure 1. It can be seen that the πB3 values from

the incomplete search are all centered near the minimum πB3 values from

the complete search. In Table 1, we provide the minimum and maximum

πB3 values found by our incomplete search algorithm, as well as proportions

of πB3 values in the complete search that are no less than these values. It

can be seen that in many cases the best designs from the incomplete search

algorithm attain the minimum πB3 values. When the algorithm cannot find
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Figure 1: The πB3 and π3 values obtained by 200 incomplete searches and

the complete search. For each m1 = 1, . . . , 13, the left and right boxplots

show the values from the complete and incomplete searches, respectively.

the optimal designs, even the worst designs found by the algorithm have

good performance in terms of the πB3 values, as the proportions of designs

beaten by them in the complete search are close to 100%. Similar observa-

tions on π3 values can also be made from the searching results for minimum

π-aberration designs, as presented in the right panel of Figure 1 and Table

2.

These empirical results demonstrate that our incomplete search algo-

rithm can be used to obtain designs that perform well under the minimum

πB- or π-aberration criterion. We apply this algorithm to 20-run designs
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Table 1: The range of πB3 values obtained in the complete and incomplete

search for minimum πB-aberration designs. For each m1 = 1, . . . , 13, the

two percentages are the proportions of oa(20, 213, 2)s that are no better

than the best and worst designs found by the incomplete search.

Complete search Incomplete search Complete search Incomplete search

m1 πB3 values min πB3 max πB3 m1 πB3 values min πB3 max πB3

1 [17.2, 17.2] 17.2 (100%) 17.2 (100%) 8 [431.36, 561.92] 432.64 (100%) 443.36 (99.953%)

2 [38.96, 42.16] 39.12 (99.697%) 39.12 (99.697%) 9 [577.04, 711.12] 577.04 (100%) 585.68 (99.919%)

3 [66.44, 77.96] 66.44 (100%) 66.44 (100%) 10 [746, 902.32] 746 (100%) 758.48 (99.828%)

4 [104.64, 131.52] 104.64 (100%) 104.64 (100%) 11 [946.12, 1129.32] 946.12 (100%) 961.8 (99.738%)

5 [157.76, 198.72] 157.76 (100%) 160.8 (99.989%) 12 [1174.08, 1407.68] 1174.08 (100%) 1197.12 (99.775%)

6 [228.72, 290.48] 228.72 (100%) 234.96 (99.934%) 13 [1447.52, 1715.52] 1447.52 (100%) 1467.04 (99.824%)

7 [318.84, 408.92] 319.8 (99.999%) 325.88 (99.967%)

Table 2: The range of π3 values obtained in the complete and incomplete

search for minimum π-aberration designs. For each m1 = 1, . . . , 13, the two

percentages are the proportions of oa(20, 213, 2)s that are no better than

the best and worst designs found by the incomplete search.

Complete search Incomplete search Complete search Incomplete search

m1 π3 values min π3 max π3 m1 π3 values min π3 max π3

1 [210.32, 217.04] 213.2 (98.462%) 213.2 (98.462%) 8 [758.4, 891.52] 758.4 (100%) 760.64 (99.996%)

2 [259.8, 272.92] 261.72 (98.462%) 261.72 (98.462%) 9 [866.48, 1035.44] 882.48 (100%) 886.32 (99.994%)

3 [319.08, 339.56] 319.88 (99.965%) 320.36 (99.528%) 10 [1004.6, 1178.36] 1014.2 (99.998%) 1017.56 (99.984%)

4 [387.28, 422] 387.28 (100%) 391.12 (99.633%) 11 [1146.92, 1340.68] 1148.52 (99.999%) 1162.6 (99.859%)

5 [468.64, 515.2] 468.8 (99.999%) 471.04 (99.863%) 12 [1295.12, 1525.52] 1295.12 (100%) 1309.68 (99.862%)

6 [556.36, 626.6] 556.36 (100%) 560.68 (99.93%) 13 [1447.52, 1715.52] 1447.52 (100%) 1464.16 (99.866%)

7 [652.28, 748.76] 652.28 (100%) 657.08 (99.981%)
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with more than 13 factors under the both criteria. All findings are available

at https://github.com/gz-chen/Mixed-Param.

5. Concluding remarks

In this paper, we concern ourselves with the estimation of main effects.

However, in some situations, we may also wish to estimate a few two-factor

interactions in addition to the main effects. When it is uncertain which

two-factor interactions are active, our incomplete search algorithm based

on minimum G2-aberration designs is still useful from the viewpoint of

model efficiency, as it can be justified as follows. Let F collect certain f

subsets of size two of S = {1, . . . ,m}, and ξF be the set of factorial effects

ξφ, ξj’s for j = 1, . . . ,m and ξw’s for w ∈ F . Consider the model

Y = XFξF + ε, (5.6)

where XF is the model matrix corresponding to ξF for the design D. Then

the D-efficiency of design D under model (5.6) is given by det(XT
FXF).

On the other hand, assume the orthogonal parametrization is used for all

factors and consider the model Y = ZFβF + ε, where βF collects βφ, βj’s

for j = 1, . . . ,m and βw’s for w ∈ F and ZF is the corresponding model

matrix. Then we have the following result.
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Proposition 1. We have det(XT
FXF) = det(ZT

FZF).

Cheng et al. (2002) showed that when f is small, the minimum G2-

aberration criterion is a good surrogate for maximizing E[det(ZT
FZF)], where

the expectation E(·) is taken over all possible F . The result of Proposi-

tion 1 implies that minimum G2-aberration designs should also perform

well in maximizing E[det(XT
FXF)]. Therefore, the designs obtained by our

incomplete search algorithms, which must be minimum G2-aberration de-

signs themselves, should allow efficient estimation of main effects and a few

two-factor interactions, at least when averaging over all possible F .

When the prior knowledge as to which two-factor interactions are ac-

tive is available, it is preferable to use a design that entertains the esti-

mation of these active effects. To address this problem under the baseline

parametrization, Chen et al. (2021) carried out an algorithmic search for

non-isomorphic models with up to 3 two-factor interactions. For the mixed

parametrization, one needs to additionally take care of the type of two-

factor interactions (say, B×B, B×O or O×O), which makes it more com-

plicated to enumerate all possibilities. Nevertheless, the algorithm of Chen

et al. (2021) can easily be easily modified for the mixed parametrization

and used to search for an efficient design in practical applications.

There are several other possible directions for future research. First,
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all the designs considered in this paper are orthogonal arrays, because, as

shown in Corollary 2, they are optimal under the main-effects model. On

the other hand, under the baseline parametrization, Mukerjee and Tang

(2012) showed that one-factor-at-a-time designs may be more desirable

when the biases of the main effect estimators dominate their variances.

It is interesting to investigate for the mixed parametrization how to obtain

designs suitable for these situations.

Stallings and Morgan (2015) developed a weighted optimality theory

which allows variable interests in different estimable functions. When the

main effects of B-factors are more important, one possible approach is to

apply their framework by placing greater weights on the estimation of main

effects of B-factors under a model with interaction terms. This approach is

different from the one adopted in this paper, which is to find an orthogonal

array that protects the main effects of B-factors from the contamination

of potential two-factor interactions. The problem as to how the resulting

optimal designs are related to the designs studied in this paper is worthy

of future research.
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Supplementary Materials

Supplementary material available online includes all the proofs of theoreti-

cal results in this paper and all minimum πB- and π-aberration designs of

8 and 12 runs.
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