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Abstract:

We investigate multivariate calibrations from a modern perspective with a fo-

cus on incorporating auxiliary variables and handling complex data dependen-

cies with random effects. By introducing auxiliary variables, the roles of the

variables in multivariate calibration problems are no longer restricted to being

either response or explanatory, which offers much flexibility and adaptability to

a broader range of practical problems. Our analysis reveals that a new shrink-

age approach, that connects the conventional generalized least squares and the

inverse regression approaches, offers much improved performance. To accommo-

date complex dependence in contemporary studies, we develop a computationally

efficient expectation-maximization algorithm for solving multivariate calibration

problems with random effects. The shrinkage approach shows promising perfor-

mance in numerical simulations and an empirical study.

Key words and phrases: Inverse regression; Linear mixed-effect models; Multi-
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variate calibration; Multivariate response variables; Shrinkage estimation.

1. Introduction

Regression analysis is a class of foundational statistical tools for modeling

and predictions. In regression analysis, the response variables are modeled

by a collection of explanatory variables. Practically, interests may arise

from the opposite direction, concerning some or all of the variables whose

roles are explanatory rather than response in some established regression

models. Such problems, referred to as calibrations or inverse predictions in

the literature, are often seen in practical investigations in areas including

economics, sociology, earth sciences and analytical chemistry (Marden et al.,

2018; Yun et al., 2019; Wei et al., 2021). In this study, the term “calibration”

particularly refers to inversely predicting some or all of the explanatory

variables in the framework of regression models. It is worth noting that

the term “calibration” is employed in other contexts such as to describe the

adjustment that correcting the coverage probabilities in interval estimations

and the alignment of parameters in generic models like regression quantiles

(Kuleshov et al., 2018; Fasiolo et al., 2021).

Multivariate calibration problems have been extensively investigated

in the literature; see Sundberg (1999) for an overview. Two kinds of ap-

2

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



proaches – the generalized least squares (GLS) estimator and the inverse

regression (IR) estimator – are popular, and they are often compared to each

other (Krutchkoff, 1967; Hoadley, 1970; Brown, 1982; Sundberg, 1985).

In this study, we present a novel approach to multivariate calibrations

and inverse regression through a renewed methodological framework. Our

approach involves augmenting the regression model with additional vari-

ables to increase flexibility and estimation accuracy, and enabling a wider

range of practical problems. Additionally, we integrate multivariate cali-

brations with random effect models to account for complex and structured

data dependencies such as repeated measurements and clustered data. This

integration provides a more comprehensive framework for solving practical

problems and enhances its applicability to the real-world settings.

Our setting is commonly encountered in practice, such as in the fields

of healthcare and chemometrics. For instance, in the analysis of blood

samples, the response variables near infrared spectra (NIR) (Jiang et al.,

2020) are explained by a set of variables, including the blood sugar lev-

els, temperature, and others. While some of these explanatory variables,

such as the blood sugar level, may be of central interest in certain studies,

accurate measurements may be difficult to obtain due to cost or patient

availability constraints, thus motivating interest in the opposite direction
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of the previous regression model. In contrast, the measurements of NIR of

blood samples are often more readily available, albeit with a lower level of

accuracy. Moreover, a set of additional variables may be available during

the data collection process such as the temperature of the samples or sur-

rounding environmental condition, which is suitable as auxiliary variables.

Practical investigations often yield data that exhibit structured corre-

lations. For instance, in the health care example mentioned earlier, mea-

surements from the same patient are likely to be repeated, and data may

be clustered due to measurements taken in the same lab. Incorporating

such data dependencies is a challenging task, and increased attention is be-

ing given to this issue in fields such as spatial econometrics and statistics

(Katzfuss and Cressie, 2011; MacKinnon et al., 2023). Our new develop-

ment in multivariate calibrations, which incorporates random effects, offers

a promising approach to addressing these challenges.

Our investigation makes several contributions. Methodologically, we

first demonstrate that in a cross-sectional setting, the inverse regression

estimator is a shrinkage version of the generalized least squares estima-

tor, which was previously unknown. Furthermore, we show that the IR

estimator can be treated as a Bayesian estimator with appropriate pri-

ors. Building on these findings, we propose an optimal shrinkage estimator
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that minimizes the limiting mean squared errors. These results provide

a fresh perspective on conventional multivariate calibrations and inverse

regressions. To address the computational challenges associated with esti-

mating the parameters of the random effects, we develop a highly efficient

expectation-maximization algorithm. Our algorithm is capable of handling

considerably large-scale problems. Together, these contributions enhance

our understanding of multivariate calibrations and inverse regressions and

provide a powerful tool for researchers and practitioners.

By treating the target variables in our study as missing, our study

connects to the area of missing data analysis. The methodology using im-

putations is commonly applied upon assuming some models respectively on

the data generation process (DGP) and the data missingness, e.g, missing-

at-random (MAR); see (Little and Rubin, 2002). When MAR assumption

does not hold, one may resort to some specific model settings on the DGP

and data missingness; see, for example, Hernández-Lobato et al. (2014).

Recently, imputation methodology has been used in conjunction with gener-

ative machine learning techniques, and have shown promising performance

in some settings with MAR; see Jarrett et al. (2022) and the reference

therein. Different from the approaches in typical missing data analysis,

our study does not necessitate the specification of the mechanism govern-
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ing data missingness. Instead, a pivotal aspect of our study is rooted in

exploiting the specification of regression models, accommodating the afore-

mentioned practical considerations.

This paper is organized as follows. Section 2 highlights the multivariate

calibration model and the main results under homogenous and heteroge-

neous scenarios. Section 3 presents model performance in simulation. Sec-

tion 4 gives a case study and Section 5 is the conclusion. Further technical

details are relegated to the supplementary material (SM).

2. Methods

2.1 Setting

We adopt a notation system that uses A for a matrix, a for a vector, and

a for a scalar; AT denotes the transpose of A. For a matrix A, we denote

by PA = A(ATA)−1AT and MA = I −PA be the projection matrices to its

column space and the orthogonal complement, respectively.

Suppose that we have a sample of n observations {(yi,xi, zi)}ni=1, where

yi ∈ Rq is the multivariate response with covariates xi ∈ Rp and zi ∈ Rp′ .

We consider the observation model

yi = α+BTxi +D
Tzi + ei, (2.1)
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where α ∈ Rq, B ∈ Rp×q, D ∈ Rp′×q are the parameters of appropriate

sizes, ei ∈ Rq is the model error. We use the notation zi to represent the

auxiliary variables, differentiating their role from that of xi, which typically

serves as the explanatory variable in conventional calibration problems.

In a calibration problem, repeated measurements {y′
j}lj=1 are available

together with only {z′j}lj=1. The un-observable counterpart of x
′
j is consid-

ered as shared by these l measurements, and is considered as a standalone

parameter denoted by ξ ∈ Rp. Then, one attempts to work with the cali-

bration model of the sames structure as (2.1)

y′
j = α+BTξ +DTz′j + e

′
j. (2.2)

In a conventional setting, (2.1) is cross-sectional with n independent

replications with no zj, while (2.2) allows l repeated measurements from

the same subject, to recover the un-observable variables with accuracy. We

begin with this conventional cross-sectional setting and then extend the

calibration problem to cover dependent yjs as shown in Section 2.4.

Collectively, we write the two models in their matrix forms as

Y = 1nα
T +XB +ZD +E, (2.3)
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Y ′ = 1lα
T + 1lξ

TB +Z ′TD +E′, (2.4)

where 1m ∈ Rm is a vector of 1s, Y = (y1, . . . ,yn)
T ∈ Rn×q,X,Z,E,Y ′,Z ′,E′,

of appropriate dimensions, are defined in the same fashion.

We make the following assumptions throughout the analysis.

Assumption 1. (i). The residuals {ei}ni=1, {e′j}lj=1 are IID satisfying

E(ei) = E(e′j) = 0, E(eieTi ) = E(e′je′Tj ) = Γ for a q × q positive

definite matrix Γ, and E||ei||2+δ
2 = E||ej||2+δ

2 < ∞ for a δ > 0 .

(ii). The design matrix [1n,X,Z] has full column rank, and without loss of

generality, each column ofX and Z are standardized so that
∑

i xij =∑
i zij′ = 0 and n−1

∑
i x

2
ij = n−1

∑
i z

2
ij′ = 1, for j = 1, . . . , p and

j′ = 1, . . . , p′.

2.2 Existing methods

The setting with no auxiliary variables has been investigated in the liter-

ature, i.e., when zi and z′i are not present. Let ȳ′ = (l−11T
l Y

′)T . The

so-called generalized least squares (Brown, 1993) estimator is

ξ̂gls = (B̂Γ̂−1B̂T )−1B̂Γ̂−1(ȳ′ − α̂)
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where α̂ and B̂ are the ordinary least squares (OLS) estimators of (2.3)

with a null Z, Γ̂ is some weight matrix.

By reversely regressingX on Y based on a working modelX = 1nθ
T +

Y Φ+ Ẽ with parameters θ and Φ, the inverse regression estimator is:

ξ̂ir = θ̂ + Φ̂T ȳ′ (2.5)

where θ̂ and Φ̂ are the OLS estimators. It is known that upon assuming

Gaussian distributions, ξ̂ir is a Bayesian estimator with appropriate priors

on the unknown model parameters; see Hoadley (1970) and Brown (1982).

As a new result, an implication from our Theorem 1 is that ξ̂ir is a

shrinkage of ξ̂gls in that

ξ̂ir = (I +H1)
−1ξ̂gls

where H1 = (B̂Γ̂−1B̂T )−1(n−1XTX)−1 is a positive definite matrix.

In random designs when the joint distribution of (X,Y ) is normal,

both conditional means ofX|Y and Y |X are linear functions. This means

that their roles as response or explanatory variables are exchangeable in a

linear model; so that both the GLS and inverse regression estimators are

valid. Furthermore, the inverse regression estimator is found empirically
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performing better when l = 1 as first discussed by Krutchkoff (1967). Ad-

ditionally, when the design of X is fixed, Sundberg (1985) showed that the

GLS estimator ξ̂gls often performs worse than ξ̂ir, except when ξ is far from

the mean of X in the observation model.

2.3 Main results

Our aim is generalizing GLS and inverse regressions to a new setting with

auxiliary variables Z. To this end, let α̂, B̂, and D̂ be the OLS estimators

of (2.3). Then, we show that the GLS estimator that minimizes the weighted

squared error loss of the calibration model (2.4) is

ξ̂gls = (B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′), (2.6)

where z̄′ = (l−11T
l Z

′)T , S = (Y −Ŷ )T (Y −Ŷ ), and Ŷ = 1nα̂
T+XB̂+ZD̂

is the fitted/predicted responses of the model (2.3).

Let θ̂, Φ̂ and Ψ̂ be the OLS estimators of a working modelX = 1nθ
T +

Y Φ+ZΨ+ Ẽ. The IR estimator is then

ξ̂ir = θ̂ + Φ̂T ȳ′ + Ψ̂T z̄′. (2.7)

We need the following assumptions on the prior distributions to estab-
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lish a Bayesian connection to ξ̂ir.

Assumption 2. (i). The parameters in (2.3) follow the noninformative

invariant Jefferys prior, namely P (α,B,D,Γ) ∝ |Γ|−(q+1)/2.

(ii). The prior distribution of ξ given X, Z and Z ′ is the multivariate

t-distribution

Tν−p

(
1
2
C−1

1 c2,
1

ν−p
(l−1 + n−1 + c3 − 1

4
cT2C

−1
1 c2)C

−1
1

)
, where ν = n −

p − p′ − q, C1 = (XTMzX)−1, c2 = ((XTMzX)−1XTZ(ZTZ)−1 +

(XTX)−1XTZ(ZTMxZ)−1)z̄′ and c3 = z̄
′T (ZTMxZ)−1z̄′.

(iii). The priori of ξ is conditionally independent of the other parame-

ters given Y , X, Z and Z ′, namely P (α,B,D,Γ, ξ|Y ,X,Z,Z ′) =

P (α,B,D,Γ|Y ,X,Z,Z ′)× P (ξ|Y ,X,Z,Z ′).

(iv). The residuals {ei}ni=1 and {e′j}lj=1 in (2.1) and (2.2) are IID from

N (0,Γ), respectively.

Let Hir = (B̂S−1B̂T )−1(XTMZX)−1 and ζ = XTZ(ZTZ)−1z̄′. Our

main results on the properties of the GLS and inverse regression estimators,

and a new shrinkage estimator are given in the following theorems.

Theorem 1. (i) Under Assumption 1,

ξ̂ir = (I +Hir)
−1(ξ̂gls − ζ) + ζ. (2.8)
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(ii) Under Assumptions 1 and 2, ξ̂ir is the Bayesian estimator, namely

the posterior mean that minimizes the Bayesian risk.

Here, ζ is the OLS estimate of ξ using a marginal model with only X

and Z. It serves as a baseline candidate for predicting the unobserved ξ

using only the auxiliary variables, and we assume it to be the mean of the

prior distribution of ξ. Remarkably, ξ̂ir is seen as a shrinkage estimator

towards ζ. In the special case when Z is null (the dimension of Z is 0),

Theorem 1 implies (2.5), which is a new finding elucidating the connections

between the commonly used GLS and IR approaches.

We give the key properties of a class of shrinkage estimators as follows.

Theorem 2. For the class of estimators

ξ̂ = (I +H)−1(ξ̂gls − ζ) + ζ (2.9)

with a positive definite H ∈ Rp×p, under Assumption 1, as n → ∞,

∥E(ξ̂ − ξ)− {(I +H)−1 − I}(ξ − ζ)∥2 → 0,

∥var(ξ̂)− l−1(I +H)−1(BΓ−1BT )−1(I +HT )−1∥2 → 0,

where Γ is the variance-covariance matrix of ei in (2.1).
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When H = 0, ξ̂ = ξ̂gls; Theorem 2 implies that the GLS estimator is

asymptotically unbiased. When H = Hir, ξ̂ = ξ̂ir; Theorem 2 gives the

bias and variance of the inverse regression estimator.

Theorem 2 shows that the shrinkage estimators benefit from a reduced

variance at a cost of the associated bias. This trade-off is more beneficial

when l is smaller, resulting in a greater reduction in variance. This phe-

nomenon helps to explain the better performance of the inverse regression

estimators observed in previous studies.

From Theorem 2, as n → ∞, the limiting predictive mean square error

(MSE) of the ξ̂ is

G(ξ, ζ) = ∥{(I+H)−1−I}(ξ−ζ)∥22+l−1tr{(I+H)−1(BΓ−1BT )−1(I+HT )−1}.

Upon treating the design as random, we define the averaged MSE as

AMSE = E{G(ξ, ζ)}, (2.10)

where the expectation is taken with respect to the joint distribution of

(X,Z, ξ,Z ′). Inspired by Theorem 2, we propose to find the optimal

shrinkage estimator that minimizes the AMSE as given next.
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Theorem 3. If ξ and {xi}ni=1 are independent and identically distributed

(IID) from a distribution having finite (2 + δ)-th moment for a δ > 0, let

the covariance matrices of X and Z be Γx, Γz and Γxz, under Assumption

1, the AMSE (2.10) is minimized at

H̃opt = l−1(BΓ−1BT )−1(Γx − ΓxzΓ
−1
z ΓT

xz)
−1.

Furthermore, as n → ∞,

Hopt = l−1(B̂S−1B̂T )−1(XTMZX)−1

is consistent to H̃opt.

Here H̃opt in Theorem 3 is an unknown hyper-parameter; and we pro-

pose to implement its empirical counterpart Hopt for empirically obtaining

the optimal shrinkage estimator:

ξ̂opt = (I +Hopt)
−1(ξ̂gls − ζ) + ζ. (2.11)

In summary, the relationship between these estimators is depicted in

Figure 1, which shows the spectrum of trade-offs between bias and variance

in the class of shrinkage estimators.
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Figure 1: The relationship among GLS, inverse regression and optimal
shrinkage estimators. When l = 1, the optimal shrinkage estimator co-
incides with the inverse regression estimator. The optimal shrinkage esti-
mator converges to the GLS estimator as l → ∞.

In the classical calibration setting where there is no Z, the shrinkage

interpretation of the inverse regression approach presented in our Theorem

1 remains valid; the optimal shrinkage estimator, developed based on our

Theorem 3, remains applicable. As shown in the next theorem, incorporat-

ing auxiliary variables Z indeed provides an opportunity for improving the

accuracy in predicting ξ.

Theorem 4. If ξ and {xi}ni=1 are IID from a distribution having finite

2 + δ-th moment for a δ > 0, then

(i) As n → ∞, ξ̂opt minimizes the AMSE (2.10) among all estimators

of the form ξ̂ = (I +H)−1(ξ̂gls − ζ) + ζ;

(ii) The AMSE (2.10) is non-increasing upon including Z in Models

(2.3) and (2.4).

Remarkably, as shown in theorem 5, the optimal shrinkage estimator,
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the GLS and IR estimators link to a class of the penalized estimations:

min
ξ

tr[{Y ′ − Ŷ ′(ξ)}S−1{Y ′ − Ŷ ′(ξ)}T ] + λσ2(ξ), (2.12)

where Ŷ ′(ξ) = 1lα̂
T +1lξ

T B̂+Z ′D̂, σ2(ξ) = 1/l+1/n+ξTC1ξ−cT2 ξ+c3,

with C1, c2 and c3 defined in Assumption 2 (b).

Theorem 5. Under Assumption 1, (i) ξ̂ir is the solution for λ = l; (ii)

ξ̂opt is the solution for λ = 1; (iii) ξ̂gls is the solution for λ = 0.

2.4 Calibrations with random effects

So far, our method treats the n measurements in Y of model (2.3) as inde-

pendent. Practically, it is realistic that there are some correlations between

them. For example, repeated or clustered measurements are common. For

incorporating such scenarios, we extend the framework to accommodate the

mixed or random effects in handling broader situations.

Specifically, we consider an extended observation model

Y = 1nα
T +XB +ZD +ΨA+E, (2.13)

where A = (a1, . . . ,ak)
T ∈ Rk×q, aj ∈ Rq (j = 1, . . . , k) are k random

effects, and Ψ ∈ Rn×k is a known model matrix.
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Corresponding to (2.2), the calibration model with random effect is

y′
j = α+BTξ +DTz′j +A

Tψ′ + e′j for j = 1, 2, . . . l, (2.14)

where the extra ATψ′ reflects the reality that some of the random effects

may be shared as reflected by the design ψ′.

The random effectA and residualE are assumed to follow the Gaussian

assumption as follows.

Assumption 3. The random effect {aT
i }ki=1 are IID generated fromN (0,Γ1),

while the residuals {ei}ni=1, {e′j}lj=1 are IID from N (0,Γ2). In addition, we

assume that A and {ei}ni=1, {e′j}lj=1 are mutually independent.

The vector form of (2.13) is

vec(Y T ) = vec(α1T
n )+vec(BTXT )+vec(DTZT )+(Ψ⊗I)vec(AT )+vec(ET ).

(2.15)

Model (2.13) together with Assumptions 1 and 3 imply that

var{vec(Y T )} = ΨΨT ⊗ Γ1 + In ⊗ Γ2.

Both A and Ψ can be constructed, adapting to various practical situations.
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For example, observations {(yi,xi, zi)}ni=1 may contain measurements from

k clusters. Then aj is specified as the jth (j = 1, . . . , k) cluster-specific

random effect, and Ψ is set as a matrix whose ith row (i = 1, . . . , n) iden-

tifies the corresponding cluster where the measurement is taken from. In

spatial statistics, the design matrix can be constructed upon using some

basis function reflecting broad cluster effects such as from locations, e.g.,

the inverse of Euclidean distance from the location of the i-th observation

to a given point; see Cressie and Johannesson (2008).

The unknown parameters of (2.13) are α, B, D, Γ1 and Γ2. Directly

maximizing the likelihood is known to be computationally hard. To meet

this challenge, we develop an expectation-maximization (EM) algorithm

that is computationally highly efficient, whose detail is given in SM A.

Let α̂, B̂, D̂, Γ̂1, and Γ̂2 be the estimators using the EM algorithm.

Then, the GLS estimator incorporating the random effects is

ξ̂gls = (B̂S−1B̂T )−1B̂S−1(ȳ′ − α̂− D̂T z̄′ − ÂTψ′), (2.16)

where Â = E(AT |Y , α̂, B̂, D̂, Γ̂1, Γ̂2) and

S = l−1Γ̂2+ψ
′Tψ′⊗ Γ̂1− (ψ′TΨT ⊗ Γ̂1)(ΨΨT ⊗ Γ̂1+In⊗ Γ̂2)

−1(Ψψ′⊗ Γ̂1)
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is the conditional variance of ȳ′−α̂−D̂T z̄′−Âψ′ given (Y , α̂, B̂, D̂, Γ̂1, Γ̂2).

Inspired by (2.11), we can develop an optimal shrinkage estimator as

ξ̂opt = (I +H)−1ξ̂gls, (2.17)

where H = (B̂S−1B̂T )−1( 1
n
XTX)−1. The detailed derivations of (2.17)

are left in Section M of the SM.

Furthermore, we can develop an IR approach based upon a working

random effect model

vec(XT ) = vec(ω1T
n )+vec(ΦTY T )+vec(ΩTZT )+(Ψ⊗Ip)vec(AT )+vec(ET ).

Upon estimating the unknown parameters using the proposed EM al-

gorithm in SM, an IR estimator can be developed as

ξ̂ir = ω̂ + Φ̂T ȳ′ + Ω̂T z̄′ + ÂTψ′. (2.18)

With extra parameters involved, the connections between the GLS, IR,

and Bayesian estimator become more complicated. So, the implications

from Theorem 5 no longer hold, due to incorporating the random effects.

The biases of the calibrations in this setting with random effects may

19

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



be of interests. Here we can see that the limiting bias of ξ̂gls goes to 0 as

n → ∞, provided that the model (2.13) is correctly specified so that the

parameters are estimated consistently by the EM algorithm; see Balakrish-

nan et al. (2017). As a result, the limiting bias of ξ̂opt is dominated by the

shrinkage effect introduced by (I +H)−1.

3. Simulations

3.1 A baseline setting

We evaluated and compared the performances of the three estimators ξ̂gls,

ξ̂ir, and ξ̂opt by simulations. As a benchmark, we implemented a random

forest approach for comparison (Breiman, 2001). We set dimensions q = 10,

p = 2, p′ = 10 for Models (2.3) and (2.4). To compare the methods, we

used the prediction MSE from a 10-fold cross-validation as the criterion.

For each setting, we repeated the simulation 1,000 times to calculate the

mean and standard deviation of the prediction MSE.

We generated N individuals {xi}Ni=1, {zi}Ni=1 and coefficients α, B, D

from the standard normal distribution. For each observation i, we then

built the l repeated measurements of {zij}lj=1 by adding l independent

disturbances following N (0, σ2
zIp′) to zi with σz = 0.1. Then, {yij}lj=1 were
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Figure 2: Empirical means and the 10th, 90th quantiles of the MSEs (in log-
scale) calculated from 1000 simulation replications for the GLS, the inverse
regression (IR), the optimal shrinkage (OPT) and the inverse regression
with the random forest (RF) estimators with respect to numbers of repeated
measurements l (a) and the variances of the noises σ2 (b).

generated from

yij = α+BTxi +D
Tzij + eij,

with eij IID from N (0, σ2Iq). We randomly selected n = 0.9N individuals

to train Model (2.3), while the remaining 0.1N individuals with repeated

measurements are used for validation.

Furthermore, we compared the methods to assess the impact of multiple

effects: the number of repeated measurements, different signal-to-noise ratio

by varying the model variance parameter σ2, the robustness of the methods

by using data generated from mis-specified models. In this subsection, we
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show and compare results with respect to l and σ2, while the next subsection

will focus on the performance under model mis-specification.

Repeated Measurements. In Fig. 2 (a), we presented the mean

squared errors of all the four estimators as l was varied. Specifically, we set

l ∈ 1, 2, 4, 6, 8, 10 while keeping N = 2500 and σ2 = 1. Our primary find-

ing was that the optimal shrinkage estimator consistently outperformed the

other methods, and the approaches that properly incorporated the model

structure significantly outperformed the random forest approach. Addi-

tionally, as l increased, the MSE decreased, indicating that even incom-

plete measurements could provide valuable information. However, as l grew

larger, the margin of improvement became smaller.

Scale of noise. In Fig. 2 (b), we considered a comparison under

different noise scales. We fixed l = 3, N = 2500 with the values of σ2

selected from 2−1 to 24. We see that the GLS method was more sensitive

to larger error variances, though it had the second best MSE when such

variances were relatively small. If σ was large, the estimated B̂ was close

to zero, which led to an ill-posed inverse problem, and the GLS solution was

unstable. In contrast, other methods were quite stable for all the scenarios.

The optimal shrinkage still had the least MSE for all the choices of variance.
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3.2 Sensitivity analysis

We examine the performance of the concerned estimators under more chal-

lenging settings deviated from the baseline setting as in (3.1) with N =

2500, l = 3, σ2 = 1, q = 10, p = 2 and p′ = 10.

Omitted dependence variable. We began by considering the case

of fitting with incomplete dependence variables. In this setting, data were

generated from the baseline model. When fitting it, we interested in the

same X, with the same set of variables Z, but with a “smaller” model

involved fewer response variables Y . When dropping some columns of Y ,

we correspondingly drop some coefficientsB andD to match the dimension.

As shown in Table 1 (a), we trained and validated the calibration model

on the first q∗ columns of Y , where q∗ ∈ {0.2q, 0.4q, . . . , q} controlled the

number of accessible dependence variables. In fact, the true model still

held, while the problem become one of using less information (q∗ < q) from

the original model to evaluate the calibration accuracy with less number of

dependent parameters. It was shown that the optimal shrinkage estimator

was still the most accurate and robust against not observing the entire Y ,

while the GLS estimator was sensible to the changes of q∗. For the case

of q∗ = 0.2q, the GLS became extremely unstable as a few outliers could

dominate the averaged MSEs.
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Omitted covariates Z. Similar to the previous setting, the data

were generated from the baseline model, but we fit it by omitting some

components of Z, so it was a case with misspecified models. We considered

Table 1: Empirical means and standard deviations of the MSEs from 1000
simulations for the GLS, the inverse regression (IR), the optimal shrinkage
(OPT) and the inverse regression with the random forest (RF) estimators
with respect to (a) the number of dependence variables q∗ used for training,
(b) the number of covariates p′∗ used for training, (c) the sample size N and
(d) the explanation power of X as represented by shrinking B∗ to γB∗.

(a) with respect to number of dependence variables
q∗ 0.2q 0.4q 0.6q 0.8q q
GLS 3922±60948 0.298±0.568 0.117±0.207 0.069±0.045 0.049±0.022
IR 0.438±0.166 0.199±0.112 0.112±0.066 0.074±0.040 0.053±0.024
OPT 0.385±0.165 0.159±0.094 0.090±0.052 0.061±0.030 0.045±0.018
RF 0.746±0.120 0.599±0.114 0.489±0.103 0.432±0.094 0.391±0.085

(b) with respect to number of covariates
p′∗ 0.2p′ 0.4p′ 0.6p′ 0.8p′ p′

GLS 0.315±0.255 0.187±0.171 0.110±0.086 0.070±0.044 0.049±0.024
IR 0.211±0.085 0.149±0.069 0.103±0.052 0.072±0.036 0.054±0.025
OPT 0.214±0.097 0.141±0.072 0.092±0.049 0.063±0.030 0.046±0.019
RF 0.413±0.092 0.410±0.089 0.389±0.087 0.388±0.084 0.389±0.083

(c) with respect to sample size
N 30 100 300 1000 2500
GLS 0.461±0.314 0.079±0.038 0.056±0.026 0.050±0.024 0.049±0.023
IR 0.418±0.245 0.079±0.033 0.059±0.026 0.054±0.025 0.053±0.024
OPT 0.441±0.279 0.074±0.030 0.052±0.021 0.047±0.019 0.045±0.018
RF 0.843±0.163 0.666±0.099 0.545±0.086 0.447±0.083 0.390±0.081

(d) with respect to explaining power of X
γ 0.1 0.2 0.33 0.5 1
GLS 4.471±1.832 1.157±0.471 0.420±0.171 0.187±0.076 0.047±0.019
IR 0.863±0.040 0.608±0.076 0.356±0.080 0.193±0.061 0.051±0.021
OPT 0.792±0.054 0.498±0.078 0.276±0.067 0.150±0.046 0.044±0.016
RF 0.999±0.022 0.934±0.034 0.819±0.058 0.676±0.077 0.383±0.082
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using the first p′∗ columns of Z with p′∗ ∈ {0.2p′, 0.4p′, . . . , p′}, and the

results were listed in Table 1 (b). Similarly, as more covariates were omitted,

the MSE increased for all the estimators, which suggested the important

role played by the auxiliary variables Z. In this case, since both GLS

and the optimal shrinkage estimators were under wrong models, they no

longer performed better than the inverse regression estimator when p′∗ was

small. However, as p′∗ got larger, the optimal shrinkage estimator became

more accurate along with the other estimators, and was the best performing

estimators among the four methods.

Effect of sample size. Here we considered a range of sample size N in

the simulation, where N was chosen from {30, 100, 300, 1000, 2500}. Since

the optimal shrinkage estimator is obtained by minimizing the AMSE, it

is of the great interest for evaluating how many observations are required

in practice. Table 1 (c) showed that the optimal shrinkage estimator per-

formed the best if N > 30, while the RF estimator incurred the largest

calibration errors for all the sample size considered, and was especially the

case in smaller sample size cases.

Weak explanation power on X. It is well known that the GLS esti-

mator suffers from weak regressorsX in the existed calibration studies with-

out additional covariates Z, say, the coefficient B is near zero. We consid-
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ered shrinking the coefficientB by a factor γ ranging in {0.1, 0.2, 0.33, 0.5, 1},

while keeping all other settings the same. Our goal is to see the effect of the

magnitude of B on the four estimators in the general calibration problem.

As shown in Table 1 (d), the GLS estimator was the most sensitive towards

γ, while the optimal shrinkage was robust although the linear effect B∗ on

X was not that significant.

3.3 Spatial-temporal settings

We demonstrate the applications of the methods in Section 2.4 for cali-

brations, incorporating additionally the random effects. Inspired by the

motivating practical scenario, we designed a setting where the between-

observation correlations had some spatial structures. In particular, the

distances of the observations play a key role. Due to the known difficulty,

there is no common parametric structure available to adequately account for

such structures. In the proposed method, the random effect ideally handles

such a challenging situation in a nonparametric manner, taking advantages

from the flexibility of the basis functions.

In the simulations, we generated N = 2, 500 individuals from the uni-

form distribution in a two-dimensional square region [0, 1]×[0, 1], as demon-

strated in Fig. 3 (b). The covariates {xi} and {zij} with i = 1, . . . , n,
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Figure 3: (a). Nine “bisquare” basis functions whose center points are
evenly located in the square region [0, 1]× [0, 1]. (b). Locations of the 2500
individuals, where the colors indicate the value of the first dependent vari-
able y1. It is clear that y1 has a correlation structure among the individuals.

j = 1, . . . , l and coefficients α, B and D were generated the same as what

in Section 3.1. The dimensions were defined to be q = 5, p = 2, p′ = 10.

To reflect the closeness between the sites where the observations were from,

the “bisquare” basis functions were generated using the newly developed

R package FRK (Zammit-Mangion and Cressie, 2021) with k = 9 (Fig. 3

(a)). Finally, {yij}lj=1 were generated from

yij = α+BTxi +D
Tzij +A

Tψi + eij,

where A = [a1, . . . ,ak]
T , {ai}ki=1 IID from N (0, Iq) and eij IID from

N (0, σ2Iq).
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Figure 4: Empirical means and the 10th, 90th quantiles of the MSEs (in
the log-scale), in the presence of the random effects, calculated from 1000
simulation replications for the GLS, the inverse regression (IR), the optimal
shrinkage (OPT) and the inverse regression with the random forest (RF)
estimators with respect to the numbers of repeated measurements l (a) and
different scales of noises σ2.

Fig. 4 reports the mean, and the quantiles of the calibration MSEs in

the presence of the random effects with respect to the number of repeated

observations l and the signal-to-noise ratio by changing σ2. It shows that

with the number of repeated measurements increased, the performance of

the GLS estimator soon improved to outperform the inverse regression esti-

mator, while the optimal shrinkage estimator kept being the best method.

On the other side, the GLS estimator was sensitive to the signal-to-noise

ratio. When the noise was high, GLS would be unstable and showed a poor

performance. As a comparison, the RF seemed to be improper for the linear
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model setting, which emphasized that when we have a true model, using

this true model instead of a general non-parametric model can help us to

calibrate the wanted variable.

4. Real data analysis

4.1 Aqueous Glucose data

Diabetes Mellitus (DM) is one of the common chronic diseases throughout

the globe. A continuous blood glucose monitoring is important for DM

patients to understand their disease progression and adjust their lifestyle

management. However, such blood glucose measurements are often inva-

sive and expensive, thus not proper for regular use. Nowadays, NIR is a

promising technique for continuous blood glucose monitoring, since it is

cheap, non-invasive and easy to deploy on some wearable devices.

We applied the calibration methods we considered to an open-sourced

NIR spectroscopy dataset of aqueous glucose (Fuglerud, 2021). This dataset

contained 127 samples measured under laboratory conditions. The glucose

concentration was treated as the variable of interest X, and five covari-

ates Z (lactates, ethanol, caffeine, acetaminophen, and temperature) were

introduced to the dextrose water, along with 4200 NIR wavelength chan-

nels ranging from 400nm to 2500nm. The NIR spectra were collected in
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triplicate in each setting, sampled every 0.5nm frequency resolution with

a bandwidth of 8.75nm. We removed those NIR bands which were highly

absorbing water peaks (1900-2100nm, 2300-2500nm), the overlap of the

two spectrometer detectors (1090-1110nm), and the fringes of the detectors

(<500 and >2300nm), according to Fuglerud et al. (2021). After the data

cleaning, we selected the remaining NIR bands every 25nm, resulting in a

dimension of Y of 127×60. All the data were preprocessed to have a mean

of 0 and a variance of 1.

4.2 Calibration methods comparison

The same four methods in the simulations were applied here to predict the

glucose concentration. Ten-fold cross validation was applied to split the

training and validation datasets.

Table 2 presents the calibration performance using the glucose data.

We can see that the optimal shrinkage method consistently outperformed

the other methods, regardless of whether there were repeated observations

or not. It is worth noting that the inverse regression and optimal shrinkage

estimators were the same when l = 1. On the other hand, the GLS estimator

performed worse than the inverse regression when l = 1. With an increase

in the number of repeated measurements from one to three (l = 3), both
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Table 2: MSE and Bias for glucose prediction under different calibration
methods via the ten-fold cross-validation

MSE Bias
l=1 l=3 l=1 l=3

GLS 0.0912 0.0683 0.2038 0.1563
IR 0.0891 0.0714 0.2008 0.1604
OPT 0.0891 0.0676 0.2008 0.1555
RF 0.4411 0.4690 0.5511 0.5668

the GLS estimator and optimal shrinkage showed significant improvement in

their performance, which can be attributed to the reduction in measurement

error due to more observations. This result was not surprising since similar

results were obtained in the simulation section for such settings. On the

other hand, the RF method performed the worst for each model setting.

This may be due to the limited sample size relative to the large number of

NIR features, which hindered the performance of the RF method.

5. Conclusion

In this study, we generalize the traditional calibration problem with addi-

tional covariates Z, under both the IID and heterogeneity scenarios. We

derived the GLS and inverse regression estimators, and established the

equivalence between the inverse regression estimator and a Bayesian es-

timator, whose prior distribution is the multivariate t-distribution involv-

ing information of both X and Z. Moreover, we developed a novel optimal
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shrinkage estimator, theoretically showed that it has the minimum expected

AMSE, and verified its performance in both the simulation and case study.

Our study is a comprehensive summary for the properties and relationships

among the calibration estimators.

In particular, for many learning problems, one may encounter the re-

versed causality, say Y is the cause of X. Our study provided a direct way

to handle the reversed causality, and is the most helpful in the studies which

has repeated measurements. Compared with the inverse regression, which

is perhaps the most widely used calibration method, the optimal shrinkage

estimator is accurate, robust, and still easy to be implemented, which shows

more advantages with more repeated measurements being obtained.

Supplementary Materials

Further technical details and proofs are available with this paper at the

Statistica Sinica website. The example codes can be found at https://

github.com/tongpf/Inverse-Regression.
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