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Abstract: The problem of constructing a simultaneous confidence surface for the

2-dimensional mean function of a non-stationary functional time series is chal-

lenging as these bands can not be built on classical limit theory for the maximum

absolute deviation between an estimate and the time-dependent regression func-

tion. In this paper, we propose a new bootstrap methodology to construct such

a region. Our approach is based on a Gaussian approximation for the maximum

norm of sparse high-dimensional vectors approximating the maximum absolute

deviation which is suitable for nonparametric inference of high-dimensional time

series. The elimination of the zero entries produces (besides the time depen-

dence) additional dependencies such that the ”classical” multiplier bootstrap is

not applicable. To solve this issue we develop a novel multiplier bootstrap, where

blocks of the coordinates of the vectors are multiplied with random variables,

which mimic the specific structure between the vectors appearing in the Gaus-

sian approximation. We prove the validity of our approach by asymptotic theory,

demonstrate good finite sample properties by means of a simulation study and

illustrate its applicability by analyzing a data example.
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1. Introduction

In the big data era data gathering technologies provide enormous amounts

of data with complex structure. In many applications the observed data

exhibits certain degrees of dependence and smoothness and thus may nat-

urally be regarded as discretized functions. A major tool for the statistical

analysis of such data is functional data analysis (FDA) which has found con-

siderable attention in the statistical literature (see, for example, the mono-

graphs of Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2010;

Horváth and Kokoszka, 2012; Hsing and Eubank, 2015, among others). In

FDA the considered parameters, such as the mean or the (auto-)covariance

(operator) are functions themselves, which makes the development of sta-

tistical methodology challenging. Most of the literature considers Hilbert

space-based methodology for which there exists by now a well-developed

theory. In particular, this approach allows the application of dimension

reduction techniques such as (functional) principal components (see, for

example, Shang, 2014). On the other hand, in many applications data is

observed on a very fine gird and it is reasonable to assume that functions are
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at least continuous (see also Ramsay and Silverman, 2005, for a discussion

of the integral role of smoothness). In such cases fully functional methods

can prove advantageous and have been recently, developed by Horváth et al.

(2014), Bucchia and Wendler (2017), Aue et al. (2018), Dette et al. (2020)

and Dette and Kokot (2020) among others.

In this paper we are interested in statistical inference regarding the

smooth mean functions of a not necessarily stationary functional time se-

ries (Xi,n), 1 ≤ i ≤ n in the space L2[0, 1] of square integrable functions

on the interval [0, 1]. As we do not assume stationarity, the mean func-

tion t → E[Xi,n(t)] is changing with i and we assume that it is given by

E[Xi,n(t)] = m( i
n
, t), where m is a smooth function on the unit square. Our

goal is the construction of simultaneous confidence surfaces (SCSs) for the

(time dependent) mean function (u, t) → m(u, t) of the locally stationary

functional time series {Xi,n}i=1,...,n. As an illustration we display in Figure

1 the implied volatility of an SP500 index as a function of moneyness (t) at

different times to maturity (u, which is scaled to the interval [0, 1]). These

functions are quadratic and known as “volatility smiles” in the literature

on option pricing. They seem to slightly vary in time. In practice, it is

important to assess whether these “smiles” are time-invariant. We refer the

interested reader to Section 4 for a more detailed discussion (in particular
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Figure 1: Volatility Smile at different (one minus) times to maturity (u =

0.2, 0.4, 0.6 and 0.8). The x-axis corresponds to ’moneyness’.

we construct there a confidence surface for the function (u, t) → m(u, t)).

To our best knowledge confidence bands have only been considered in the

stationary case, where m(u, t) = m(t). Under the assumption of stationar-

ity they can be constructed using the sample mean X̄n = 1
n

∑n
i=1Xi,n and

the weak convergence of
√
n(X̄n −m) to a centered Gaussian process (see,

for example Degras, 2011; Cao et al., 2012; Degras, 2017; Dette et al., 2020,

who either assume that data is observed on a dense grid or that the full

trajectory can be observed). More recently, alternative simultaneous con-

fidence (asymptotic) bands have been constructed by Liebl and Reimherr

(2019); Telschow and Schwartzman (2022) using the Gaussian Kinematic

formula.
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On the other hand, although non-stationary functional time series have

found considerable interest in the recent literature (see, for example, van

Delft and Eichler, 2018; Aue and van Delft, 2020; Bücher et al., 2020;

Kurisu, 2021a,b; van Delft and Dette, 2021), the problem of construct-

ing a confidence surface for the mean function has not been considered in

the literature so far. A potential explanation that a solution is still not

available, consists in the fact that due to non-stationarity smoothing is re-

quired to estimate the function u → m(u, t) (for a fixed t). This results in

an estimator converging with a 1/
√
bnn rate (here bn denotes a bandwidth).

On the other hand, in the stationary case (where m does not depend on u),

the sample mean X̄n can be used, resulting in a 1/
√
n rate.

As a consequence, a weak convergence result for the sample mean in

the non-stationary case is not available and the construction of SCSs for the

regression function (u, t) → m(u, t) is challenging. In this paper we propose

a general solution to this problem, which is not based on weak convergence

results. As an alternative to “classical” limit theory (for which it is not clear

if it exists in the present situation) we develop Gaussian approximations for

the maximum absolute deviation between the estimate and the regression

function. These results are then used to construct a non-standard multiplier

bootstrap procedure for the construction of SCSs for the mean function of a
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locally stationary functional time series. Our approach is based on approxi-

mating the maximal absolute deviation ∆̂ = maxu,t∈[0,1] |m̂bn(u, t)−m(u, t)|

by a maximum taken over a discrete grid, which becomes dense with in-

creasing sample size. We thus relate ∆̂ to the maximum norm of a sparse

high-dimensional vector. We then further develop Gaussian approximations

for the maximum norm of sparse high-dimensional random vectors based

on the methodology proposed by Chernozhukov et al. (2013) Zhang and

Cheng (2018). Finally, the covariance structure of this vector (which is

actually a high-dimensional long-run variance) is mimicked by a multiplier

bootstrap. Our approach is non-standard in the following sense: due to the

sparsity, the Gaussian approximations in the cited literature cannot be di-

rectly used. In order to make these applicable we reduce the dimension by

deleting vanishing entries. However, this procedure produces additional

spatial dependencies (besides the dependencies induced by time series),

such that the common multiplier bootstrap is not applicable. Therefore

we propose a novel multiplier bootstrap, where instead of the full vector,

individual blocks of the vector are multiplied with independent random

variables, such that for different vectors a certain amount (depending on

the lag) of these multipliers coincide. Our proposed Gaussian approxima-

tion and the bootstrap scheme are suitable for nonparametric inference of
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means of high-dimensional time series. In fact, we first discretize our func-

tional time series to nonstationary high-dimensional time series and then

utilize the above-mentioned Gaussian approximation and bootstrap scheme

for simultaneous inference.

The remaining part of the paper is organized as follows. The statistical

model is introduced in Section 2, where we describe our approach in an

informal way and propose two confidence surfaces for the mean function

m. Section 3 is devoted to rigorous statements under which conditions our

method provides valid (asymptotic) confidence surfaces. As a by-product of

our approach, we also derive in the online supplement of this paper new con-

fidence bands for the functions t → m(u, t) (for fixed u) and u → m(u, t)

(for fixed t), which provide efficient alternatives to the commonly used

confidence bands for stationary functional data or real-valued locally sta-

tionary data, respectively (see Section S4 for details). Although our main

focus is on SCSs excluding the boundary (as most work in the literature

does), we also provide - as a complement - simultaneous inference at the

boundary, which is of independent interest, see Remark 2. In Section 4 we

demonstrate the usefulness of our approach by means of analyzing a data

example. Finally, all technical results are deferred to the online supple-

ment. There, we also give remarks regarding noisy and multivariate locally
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stationary functional time series and some concrete examples of locally sta-

tionary functional time series. Moreover, the online supplement contains

implementation details and a simulation study illustrating the finite sample

properties of the asymptotic results.

2. SCSs for non-stationary time series

Throughout this paper we consider the model

Xi,n(t) = m( i
n
, t) + εi,n(t) , i = 1, . . . , n , (2.1)

where (εi,n)i=1,...,n is a centered locally stationary process in L2[0, 1] of

square integrable functions on the interval [0, 1] (see Section 3 for a pre-

cise mathematical definition) and m : [0, 1] × [0, 1] → R is a smooth mean

function. This means that at each time point “i” we observe a function

t → Xi,n(t).

Let Ca,b denote the set of functions f : [0, 1]2 → R, which are a-times

and b-times partially differentiable with respect to the first and second

coordinate, respectively, such that for fixed t and for fixed u the functions

u → ∂a

∂uaf(u, v) and t → ∂b

∂tb
f(u, t) are Lipschitz continuous with a uniformly

bounded Lipschitz constant on the interval [0, 1]. In this paper, we are
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interested in a SCS

Cn =
{
f ∈ C3,0 | L̂1(u, t) ≤ f(u, t) ≤ Û1(u, t) ∀u, t

}
(2.2)

for the mean function (u, t) → m(u, t), where L̂1 and Û1 are appropri-

ate lower and upper bounds calculated from the data. The methodology

developed in this paper allows the construction of SCSs for the functions

t → m(u, t) (for fixed u) and u → m(u, t) (for fixed t), which are developed

in Section S4 of the online supplement for the sake of completeness. More-

over, in the main part of this paper we investigate SCSs for u ∈ [bn, 1− bn].

SCSs on the boundary can be constructed in a similar spirit, even though

their form is distinct from their interior counterparts, see Remark 2.

Our approach is based on the maximum deviation

∆̂n = sup
t,u

|m̂bn(u, t)−m(u, t)| ,

where for u ∈ [bn, 1− bn]

m̂bn(u, t) =
n∑

i=1

Xi,n(t)K
( i

n
− u

bn

)
/

n∑
i=1

K
(i/n− u

bn

)
(2.3)

denotes the common Nadaraya-Watson estimate with kernel K. For u ∈

[0, bn) and for u ∈ (1− bn, 1] we use boundary kernels, say Kl(·) and Kr(·),

respectively, in the definition of m̂bn(u, t). Throughout this paper, we make

the following assumptions on these kernels.
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10 2.1 Confidence surfaces with fixed width

Assumption 2.1. The kernel K(·) is symmetric continuous, supported

on the interval [−1, 1] and satisfies
∫
R K(x)dx = 1,

∫
R K(v)v2dv = 0 and∫

RK(v)v4dv > 0. Kl (used for estimation on [0, bn)) is supported on the

interval [0, 1] and satisfies Kl(0) = Kl(1) = 0,
∫
Kl(x)x

jdx = 0 for j = 1, 2,∫
Kl(x)dx = 1,

∫
Kl(x)x

3dx > 0. Additionally, both K and Kl are twice

differentiable on their support, respectively and K ′′ and K ′′
l are Lipschitz

continuous. The kernel Kr (used for estimation on (1 − bn, 1]) is given by

Kr(x) = Kl(−x).

As a consequence of Assumption 2.1, the bias of the estimator (2.3) is

of order O(b4n) in the interval [bn, 1− bn], and of order O(b3n) at the region

[0, bn) and (1− bn, 1] if the function u → ∂3

∂u3m(u, v) is Lipschitz continuous

with bounded Lipschitz constant. As alternative one could consider the

local polynomial regression estimate of order 3. As this will make the

theoretical analysis even more technical, we leave the study of the statistical

properties of local polynomial estimator of higher order for a 2-dimensional

mean function of a non-stationary functional time series for future work.

2.1 Confidence surfaces with fixed width

Note that under smoothness assumption the deterministic term in (2.3)

approximates m(u, t). For an increasing sample size n, we can approximate
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the maximum deviation on a discrete grid, i.e.

∆̂bn := max
bn≤u≤1−bn,

0≤t≤1

√
nbn|∆̂(u, t)| ≈ max

⌈nbn⌉≤l≤n−⌈nbn⌉
1≤k≤p

√
nbn|∆̂( l

n
, k
p
)|

≈ max
⌈nbn⌉≤l≤n−⌈nbn⌉

1≤k≤p

∣∣∣ 1√
nbn

n∑
i=1

εi,n(
k
p
)K

( i
n
− l

n

bn

)∣∣∣, (2.4)

where p is increasing with n as well. Therefore, the bootstrap procedure will

be based on a Gaussian approximation of the right hand side of (2.4), which

is the maximum norm of high-dimensional sparse vector. In this section our

approach will be stated in a rather informal way, rigorous statements can

be found in Section 3.

To be precise, define for 1 ≤ i ≤ n the p-dimensional vector

Zi(u) = (Zi,1(u), . . . , Zi,p(u))
⊤ (2.5)

= K
( i

n
− u

bn

)(
εi,n(

1
p
), εi,n(

2
p
), . . . , εi,n(

p−1
p
), εi,n(1)

)⊤
,

where K(·) and bn are the interior kernel and bandwidth used in the esti-

mate (2.3), respectively. Next we define the p-dimensional vector

Zi,l = Zi(
l
n
) = (Zi,l,1, . . . Zi,l,p)

⊤ ,

where

Zi,l,k = εi,n(
k
p
)K

( i
n
− l

n

bn

)
(1 ≤ k ≤ p) .
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Note that, by (2.4),

∆̂bn ≈ max
⌈nbn⌉≤l≤n−⌈nbn⌉

1≤k≤p

∣∣∣ 1√
nbn

n∑
i=1

Zi,l,k

∣∣∣ ≈ ∣∣∣ 1√
nbn

n∑
i=1

(Z⊤
i,⌈nbn⌉, . . . , Z

⊤
i,n−⌈nbn⌉)

⊤
∣∣∣
∞

,

(2.6)

where |a|∞ denotes the maximum norm of a finite dimensional vector a (the

dimension will always be clear from context). The entries in the vector Zi,l

are zero whenever |i− l|/(nbn) ≥ 1. Therefore, the high-dimensional vector

(Z⊤
i,⌈nbn⌉, . . . , Z

⊤
i,n−⌈nbn⌉)

⊤ is sparse and common Gaussian approximations

for its maximum norm (see, for example, Chernozhukov et al., 2013), Zhang

and Cheng (2018) are not applicable.

To address this issue we reconstruct high-dimensional vectors, say Z̃j,

by eliminating vanishing entries in the vectors Zi,l and rearranging the

nonzero ones. While this approach is very natural it produces additional

dependencies, which require a substantial modification of the common mul-

tiplier bootstrap as considered, for example, in Zhou and Wu (2010), Zhou

(2013), Karmakar et al. (2021) or Mies (2021) for (low dimensional) locally

stationary time series. More precisely, we define the (n − 2⌈nbn⌉ + 1)p-

dimensional vectors Z̃1, . . . , Z̃2⌈nb⌉−1 by

Z̃i =
(
Z⊤

i,⌈nbn⌉, Z
⊤
i+1,⌈nbn⌉+1, . . . , Z

⊤
n−2⌈nbn⌉+i,n−⌈nbn⌉

)⊤
. (2.7)
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13 2.1 Confidence surfaces with fixed width

We also put Z̃2⌈nbn⌉ = 0 and note that

∣∣∣ 1√
nbn

n∑
i=1

Z̄i

∣∣∣
∞

=
∣∣∣ 1√

nbn

2⌈nbn⌉−1∑
i=1

Z̃i

∣∣∣
∞
, (2.8)

where Z̄i := (Z⊤
i,⌈nbn⌉, Z

⊤
i,⌈nbn⌉+1, . . . , Z

⊤
i,n−⌈nbn⌉)

⊤. Note that the right hand

side of (2.8) is a sum of the (n− 2⌈nbn⌉ − 1)p dimensional vectors

Z̃1 = K
(1−⌈nbn⌉

nbn

)
(ε⃗1, ε⃗2, . . . , ε⃗n−2⌈nbn⌉+1)

⊤,

Z̃2 = K
(2−⌈nbn⌉

nbn

)
(ε⃗2, ε⃗3, . . . , ε⃗n−2⌈nbn⌉+2)

⊤,

...

Z̃2⌈nbn⌉−1 = K
( ⌈nbn⌉−1

nbn

)(
ε⃗2⌈nbn⌉−1, ε⃗2⌈nbn⌉, . . . , ε⃗n−1

)⊤
,

(2.9)

where ε⃗i = (εi,n(
1
p
), . . . , εi,n(

p
p
)). On the other hand the left hand side of

(2.8) is a sum of the sparse vectors

Z̄1 =
(
K
(1−⌈nbn⌉

nbn

)
ε⃗1 , 0 , 0 , . . . , 0 , 0

)⊤
,

Z̄2 =
(
K
(2−⌈nbn⌉

nbn

)
ε⃗2 , K

(1−⌈nbn⌉
nbn

)
ε⃗2 , 0 , . . . , 0 , 0

)⊤
,

...

Z̄n−1 =
(

0 , 0 , 0 , . . . , 0 , K
( ⌈nbn⌉−1

nbn

)
ε⃗n−1

)⊤
.

Although, the vectors on both sides of (2.8) are very different, and the num-

ber of terms in the sum is different, the non-vanishing elements over which

the maximum is taken on both sides coincide. We note that this transfor-

mation yields some computational advantages and, even more important, it
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allows the development of a Gaussian approximation and a corresponding

multiplier bootstrap, which is explained next.

To be precise, observing (2.6), we see that the right hand side of (2.8) is

an approximation of the maximum absolute deviation maxu,t
√
nbn|∆̂(u, t)|.

In Theorem 1 in Section 3.2 we will show that the vectors Z̃1, . . . , Z̃2⌈nb⌉−1

in (2.8) can be replaced by Gaussian vectors. More precisely we prove

the existence of (n − 2⌈nbn⌉ + 1)p-dimensional centered Gaussian vectors

Ỹ1, . . . , Ỹ2⌈nbn⌉−1 with the same auto-covariance structure as the vector Z̃i

in (2.7) such that

sup
x∈R

∣∣∣P( max
bn≤u≤1−bn

0≤t≤1

√
nbn|∆̂(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹi

∣∣∣
∞

≤ x
)∣∣∣

= o(1) (2.10)

if p is an appropriate sequence converging to infinity with the sample size

(for example, p =
√
n).

The estimate (2.10) is the basic tool for the construction of a SCS

for the regression function m. For its application it is necessary to gen-

erate Gaussian random vectors Ỹi with the same auto-covariance struc-

ture as the vector Z̃i in (2.7), which is not trivial. To see this, note that

the common multiplier bootstrap approach for approximating the distri-

bution of 1√
nbn

∑2⌈nbn⌉−1
i=1 Z̃i replaces the Z̃i by block sums multiplied with
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15 2.1 Confidence surfaces with fixed width

independent random variables, such as Ri

∑i+m
s=i Z̃s/

√
m (see Zhang and

Cheng, 2014) or Ri

∑i+m
s=i (Zs− 1

2⌈nbn⌉−1

∑2⌈nbn⌉−1
s=1 Z̃i)/

√
m (see Zhou, 2013),

where R1, . . . , R2⌈nbn⌉ are independent standard normally distributed ran-

dom variables. However, this would not yield to valid approximation due

to the additional dependencies between Z̃1, . . . , Z̃2⌈nbn⌉−1. As an alternative

we therefore propose a multiplier bootstrap, which also mimics this depen-

dence structure by multiplying p-dimensional blocks of block sums of Z̃i by

standard normally distributed random variables, which reflects the specific

dependencies of these vectors. In other words the vectors Z̃1, Z̃2, Z̃3, . . . in

(2.9) are replaced by

K
(1−⌈nbn⌉

nbn

)
(ε⃗1:1+mnR1, ε⃗2:2+mnR2, . . . , ε⃗n−2⌈nbn⌉+1:n−2⌈nbn⌉+1+mnRn−2⌈nbn⌉+1)

⊤,

K
(2−⌈nbn⌉

nbn

)
(ε⃗2:2+mnR2, ε⃗3:3+mnR3, . . . , ε⃗n−2⌈nbn⌉+2:n−2⌈nbn⌉+2+mnRn−2⌈nbn⌉+2)

⊤,

K
(
3−⌈nbn⌉

nbn

)
(ε⃗3:3+mnR3, ε⃗4:4+mnR4, . . . , ε⃗n−2⌈nbn⌉+3:n−2⌈nbn⌉+3+mnRn−2⌈nbn⌉+3)

⊤,

...

(2.11)

respectively, where

ε⃗j:j+mn =
1√
mn

j+⌊mn/2⌋−1∑
r=j

ε⃗r −
1√
mn

j+2⌊mn/2⌋−1∑
r=j+⌊mn/2⌋

ε⃗r.

Here we consider local block sums (of increasing length) to mimic the de-

pendence structure of the error process. A difference of local block sums is
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used to mitigate the effect of bias if all elements of the unknown errors ε⃗i

are replaced by corresponding nonparametric residuals ε̂i,n(s/p), 1 ≤ s ≤ p

where ε̂i,n(t) = Xi,n(t)− m̂bn(
i
n
, t), where m̂bn is defined (2.3). We empha-

size that the use of boundary kernels in this estimate (see Assumption 2.1)

allows us to construct SCSs for the boundary region as well. Details are

given in Remark 2 below. With the residuals we define the p-dimensional

vector

Ẑi(u) = (Ẑi,1(u), . . . , Ẑi,p(u))
⊤

= K
( i

n
− u

bn

)(
ε̂i,n(

1
p
), ε̂i,n(

2
p
), . . . , ε̂i,n(

p−1
p
), ε̂i,n(1)

)⊤
as an analog of (2.5). Similarly, we define the analog of (2.7) by

ˆ̃Zj =
(
Ẑ⊤

j,⌈nbn⌉, Ẑ
⊤
j+1,⌈nbn⌉+1, . . . , Ẑ

⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
, (2.12)

where Ẑi,l = Ẑi(
l
n
) = (Ẑi,l,1, . . . Ẑi,l,p)

⊤ . Note that we have replaced Zi,l in

(2.7) by Ẑi,l, which can be calculated from the data. These vectors will be

used in Algorithm 1 to define empirical versions of the vectors in (2.11),

which then mimic the dependence structure of the vectors Ỹ1, . . . , Ỹ2⌈nbn⌉−1

in the Gaussian approximation (2.10) (see equations (2.14) and (2.15) in

Algorithm 1 ). The SCS for the mean function m is finally defined by

Cn =
{
f ∈ C3,0 : [0, 1]2 → R| L̂1(u, t) ≤ f(u, t) ≤ Û1(u, t) ∀u ∈ [bn, 1−bn] ∀t ∈ [0, 1]

}
,

(2.13)
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17 2.2 Confidence surfaces with varying width

where the definition of functions L̂1, Û1 : [0, 1]
2 → R is given in Algorithm

1. Finally, Theorem 2 in Section 3 shows that Cn defines a valid asymptotic

(1− α) confidence surface for the regression function m in model (2.1).

Remark 1. In this paper we assume that at each time point the full tra-

jectory is observed. Therefore, smoothing with respect to the variable t is

not necessary. Smoothing with respect to both variables becomes necessary

if the trajectories are observed with measurement error. Our method is

also applicable to dense and discrete observations from the trajectory. In

these cases smoothing with respect to the variable t yields a further bias.

Another scenario when smoothing is important is the situation where the

trajectory is observed at sparse discrete points. This case is beyond the

scope of our paper because it requires a different theory.

2.2 Confidence surfaces with varying width

The confidence surface in Algorithm 1 has a constant width and does not

reflect the variability of the estimate m̂ at the point (u, t). In this section

we will construct a SCS adjusted by an estimator of the long-run variance

(see equation (4.1) in Section 3.1 for the exact definition). Among others,

this approach has been proposed by Degras (2011) and Zheng et al. (2014)

for repeated measurement data from independent subjects where a variance
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18 2.2 Confidence surfaces with varying width

Algorithm 1

(a) Calculate the (n− 2⌈nbn⌉+ 1)p-dimensional vectors ˆ̃Zi in (2.12)

(b) For window size mn, let m
′
n = 2⌊mn/2⌋, define the vectors

Ŝjm′
n
=

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

ˆ̃Zr −
1√
m′

n

j+m′
n−1∑

r=j+⌊mn/2⌋

ˆ̃Zr (2.14)

and denote by ˆ⃗εj:j+m′
n,k the p-dimensional sub-vector of the vector

Ŝjm′
n
in (2.14) containing its (k − 1)p+ 1st − kpth components.

(c) For r=1, . . . , B, do Generate i.i.d. N(0, 1) random variables

{R(r)
i }i=1,...,n−m′

n
. Calculate

T
(r)
k =

2⌈nbn⌉−m′
n∑

j=1

ˆ⃗εj:j+m′
n,kR

(r)
k+j−1 , 1 ≤ k ≤ n− 2⌈nbn⌉+ 1,(2.15)

T (r) = max
1≤k≤n−2⌈nbn⌉+1

|T (r)
k |∞.

end

(d) Define T⌊(1−α)B⌋ as the empirical (1 − α)-quantile of the bootstrap

sample T (1), . . . , T (B) and

L̂1(u, t) = m̂bn(u, t)− r̂1, Û1(u, t) = m̂bn(u, t) + r̂1

where

r̂1 =

√
2T⌊(1−α)B⌋√

nbn
√

2⌈nbn⌉ −m′
n.

Output: SCS (2.13) for the mean function m.
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19 2.2 Confidence surfaces with varying width

estimator is used for standardization. It has also been considered by Zhou

and Wu (2010) who derived a simultaneous confidence tube for the param-

eter of a time varying coefficients linear model with a (real-valued) locally

stationary error process. In the situation of non-stationary functional data

as considered here this task is challenging as an estimator of the long-run

variance is required, which is uniformly consistent on the square [0, 1]2.

In order to define such an estimator let H denote the Epanechnikov

kernel and define for some bandwidth τn ∈ (0, 1) the weights

ω̄(t, i) = H
( i

n
− t

τn

)/ n∑
i=1

H
( i

n
− t

τn

)
.

Let SX
k,r = 1√

r

∑k+r−1
i=k Xi,n denote the normalized partial sum of the data

Xk,n, . . . , Xk+r−1,n (note that these are functions) and define for w ≥ 2

∆j(t) =
SX
j−w+1,w(t)− SX

j+1,w(t)√
w

.

An estimator of the long-run variance (where the exact definition is in (4.1))

is then defined by

σ̂2(u, t) =
n∑

j=1

w∆2
j(t)

2
ω̄(u, j), (2.16)

if u ∈ [w/n, 1 − w/n]. For u ∈ [0, w/n) and u ∈ (1 − w/n, 1] we define

it as σ̂2(u, t) = σ̂2(w/n, t) and σ̂2(u, t) = σ̂2(1 − w/n, t), respectively. We

will show in Proposition 1 in Section 3 that this estimator is uniformly

consistent.
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20 2.2 Confidence surfaces with varying width

To state the bootstrap algorithm for a SCS of the form (2.2) with

varying width, we introduce the following notation

Ẑ σ̂
i (u) = (Ẑ σ̂

i,1(u), . . . , Ẑ
σ̂
i,p(u))

⊤

= K
( i

n
− u

bn

)( ε̂i,n(
1
p
)

σ̂( i
n
, 1
p
)
,
ε̂i,n(

2
p
)

σ̂( i
n
, 2
p
)
, . . . ,

ε̂i,n(
p−1
p
)

σ̂( i
n
, p−1

p
)
,
ε̂i,n(1)

σ̂( i
n
, 1)

)⊤

and consider the normalized analog

ˆ̃Z σ̂
j =

(
Ẑ σ̂,⊤

j,⌈nbn⌉, Ẑ
σ̂,⊤
j+1,⌈nbn⌉+1 . . . , Ẑ

σ̂,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
(2.17)

of the vector ˆ̃Zj in (2.12), where Ẑ σ̂
i,l = Ẑ σ̂

i (
l
n
) = (Ẑ σ̂

i,l,1, . . . Ẑ
σ̂
i,l,p)

⊤ . The

SCS with varying width for the mean function m is then defined by

Cσ̂
n =

{
f ∈ C3,0 : [0, 1]2 → R | L̂σ̂

2 (u, t) ≤ f(u, t) ≤ Û σ̂
2 (u, t) ∀u ∈ [bn, 1−bn] ∀t ∈ [0, 1]

}
,

(2.18)

where the functions L̂2 and Û2 are constructed in Algorithm 2. Theorem 4

in Section 3.2 shows that this defines a valid asymptotic (1−α) confidence

surface for the function m in model (2.1).

We also emphasize that we can construct similar SCSs for noisy and

multivariate locally stationary functional time series; see Remarks S1 and

S2 in the supplementary material for details.
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21 2.2 Confidence surfaces with varying width

Algorithm 2

(a) Calculate the the estimate of the long-run variance σ̂2 in (2.16).

(b) Calculate the (n− 2⌈nbn⌉+ 1)p-dimensional vectors ˆ̃Z σ̂
i in (2.17).

(c) For window size mn, let m
′
n = 2⌊mn/2⌋, define

Ŝσ̂
jm′

n
=

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

ˆ̃Z σ̂
r − 1√

m′
n

j+m′
n−1∑

r=j+⌊mn/2⌋

ˆ̃Z σ̂
r

and denote by ˆ⃗ε σ̂
j:j+m′

n,k
be the p-dimensional sub-vector of the vector

Ŝσ̂
jm′

n
containing its (k − 1)p+ 1st − kpth components.

(d) For r = 1, . . . , B do Generate i.i.d. N(0, 1) random variables

{R(r)
i }i=1,...,n−m′

n
. Calculate

T
σ̂,(r)
k =

2⌈nbn⌉−m′
n∑

j=1

ˆ⃗ε σ̂
j:j+m′

n,k
R

(r)
k+j−1 , k = 1, . . . , n− 2⌈nbn⌉+ 1,

T σ̂,(r) = max
1≤k≤n−2⌈nbn⌉+1

|T σ̂,(r)
k |∞.

end

(e) Define T σ̂
⌊(1−α)B⌋ as the empirical (1 − α)-quantile of the sample

T σ̂,(1), . . . , T σ̂,(B) and

L̂σ̂
2 (u, t) = m̂bn(u, t)− r̂2(u, t), Û σ̂

2 (u, t) = m̂bn(u, t) + r̂2(u, t),

where

r̂2(u, t) =
σ̂(u, t)

√
2T σ̂

⌊(1−α)B⌋√
nbn

√
2⌈nbn⌉ −m′

n

Output: SCS (2.18) with varying width for the mean function m.
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3. Theoretical justification

In this section, we first present the locally stationary functional time series

model for which the theoretical results of this paper are derived (Section

3.1). We also describe under which conditions Algorithm 1 and 2 provide

valid asymptotic (1 − α) confidence surfaces for the regression function m

in model (2.1) (Section 3.2 and 3.3). Throughout this paper we use the

notation

Θ(a, b) = a
√

1 ∨ log((b/a))

for positive constants a, b, and the notation a ∨ b denotes the maximum of

the real numbers a and b.

3.1 Locally stationary processes and physical dependence

We begin with an assumption for the mean function m in model (2.1).

Assumption 3.1. m ∈ C3,0.

In fact, in the proof of Theorem 3, we show that the difference between

m̂bn(u, t) and m(u, t) can be uniformly approximated by a weighted sum

of the random variables ε1,n(t), . . . , εn,n(t). As a consequence, an approxi-

mation of the form (2.4) for an increasing number of points {t1, . . . , tp} is

guaranteed by an appropriate smoothness condition on the error process
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23 3.1 Locally stationary processes and physical dependence

{εi,n(t)}i=1,...,n, which will be introduced next.

Assumption 3.2. The error process has the form

εi,n(t) = G( i
n
, t,Fi) , i = 1, . . . , n

where Fi = (. . . , ηi−1, ηi), (ηi)i∈Z is a sequence of independent identically

distributed random variables in some measurable space S and G : [0, 1] ×

[0, 1]× SZ → R denotes a filter with the following properties:

(1) There exists a constant t0 > 0 such that

sup
u,t∈[0,1]

E(t0 exp(G(u, t,F0))) < ∞.

(2) Let (η′i)i∈N denote a sequence of independent identically distributed

random variables which is independent of but has the same distribu-

tion as (ηi)i∈Z. Define F∗
i = (. . . , η−1, η

′
0, η1, . . . , ηi) and consider for

some q > 2 the dependence measure

δq(G, i) = sup
u,t∈[0,1]

∥G(u, t,Fi)−G(u, t,F∗
i )∥q.

There exists a constant χ ∈ (0, 1) such that for i ≥ 0

δq(G, i) = O(χi) .
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24 3.1 Locally stationary processes and physical dependence

(3) For the same constant q as in (2) there exists a positive constant M

such that

sup
t∈[0,1],u1,u2∈[0,1]

∥G(u1, t,Fi)−G(u2, t,Fi)∥q ≤ M |u1 − u2|.

(4) The long-run variance

σ2(u, t) :=
∞∑

k=−∞

Cov(G(u, t,F0), G(u, t,Fk)) (4.1)

of the process (G(u, t,Fi))i∈Z satisfies

inf
u,t∈[0,1]

σ2(u, t) > 0.

Assumption 3.2(2) requires that the dependence measure is geometrically

decaying. Similar results as presented in this section can be obtained under

summability assumptions with substantially more intensive mathematical

arguments and complicated notation, see Remark S3(ii) in the supplemen-

tal material for some details. Assumption 3.2(3) means that the locally

stationary functional time series is smooth in u, while the smoothness in t

is provided in the next assumption. They are crucial for constructing SCSs

of the form (2.2).

Assumption 3.3. The filter G in Assumption 3.2 is differentiable with

respect to t. If G2(u, t,Fi) = ∂
∂t
G(u, t,Fi), G2(u, 0,Fi) = G2(u, 0+,Fi),
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25 3.2 Theoretical analysis of the methodology in Section 2.1

G2(u, 1,Fi) = G2(u, 1−,Fi), we assume that there exists a constant q∗ > 2

such that for some χ ∈ (0, 1) and i ≥ 0,

δq∗(G2, i) = O(χi).

In the online supplement we present several examples of locally station-

ary functional time series satisfying these assumptions (see Section S5).

3.2 Theoretical analysis of the methodology in Section 2.1

The bootstrap methodology introduced in Section 2 is based on the Gaus-

sian approximation (2.10), which will be stated rigorously in Theorem 1.

Theorem 2 shows under which conditions the confidence surface (2.13) has

asymptotic level (1− α).

Theorem 1 (Justification of Gaussian approximation (2.10)). Let Assump-

tions 2.1, 3.1 - 3.3 be satisfied and assume that n1+ab9n = o(1), na−1b−1
n =

o(1) for some 0 < a < 4/5. Then there exists a sequence of centered

(n − 2⌈nbn⌉ + 1)p-dimensional centered Gaussian vectors Ỹ1, . . . , Ỹ2⌈nbn⌉−1

with the same auto-covariance structure as the vector Z̃i in (2.7) such that

the distance Pn defined in (2.10) satisfies

Pn = O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn(b
4
n +

1

n
), np

)
+Θ

(
((np)1/q

∗
((nbn)

−1 + 1/p))
q∗

q∗+1 , np
))
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26 3.2 Theoretical analysis of the methodology in Section 2.1

for any sequence p → ∞ with np = O(exp(nι)) for some 0 ≤ ι < 1/11. In

particular, for the choice p = nc with c > 0 we have

Pn = o(1)

if the constant q∗ in Assumption 3.3 is sufficiently large.

In Section S2.4 of the supplementary material we investigate the finite

sample properties of the approximation in Theorem 1 by means of a sim-

ulation study. Moreover, Theorem 1 is the main ingredient to prove the

validity of the bootstrap SCS Cn defined in (2.13) by Algorithm 1. More

precisely, we have the following result.

Theorem 2. Assume that the conditions of Theorem 1 hold. Recall that

mn is the block size defined in (2.11) Define

ϑn =
log2 n

mn

+
mn log n

nbn
+

√
mn

nbn
(np)4/q.

If p → ∞ such that np = O(exp(nι)) for some 0 ≤ ι < 1/11 and

ϑ1/3
n

{
1∨log

(np
ϑn

)}2/3

+Θ
((√

mn log np
( 1√

nbn
+b3n

)
(np)

1
q

)q/(q+1)

, np
)
= o(1),

then the SCS (2.13) constructed by Algorithm 1 satisfies

lim
n→∞

lim
B→∞

P(m ∈ Cn | Fn) = 1− α

in probability.
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27 3.3 Theoretical analysis of the methodology in Section 2.2

Theorem 2 can also be built on alternative assumptions, such as the

polynomial decaying instead of geometric decaying dependence measure as

in Assumption 3.2(2). Due to page limit, we relegate further discussions on

conditions to Section S3 of the supplemental material.

3.3 Theoretical analysis of the methodology in Section 2.2

In this section we will prove that the surface (2.18) defines an asymptotic

(1− α) confidence surface with varying width for the mean function m. If

the long-run variance in (4.1) would be known, a confidence surface could

be based on the “normalized” maximum deviation of

∆̂σ(u, t) =
m̂bn(u, t)−m(u, t)

σ(u, t)
.

Therefore we will derive a Gaussian approximation for the vector
(
∆̂σ( l

n
, k
p
)
)
,

l = 1, . . . , n; k = 1, . . . , p first and define for 1 ≤ i ≤ n the p dimensional

vector

Zσ
i (u) = (Zσ

i,1(u), . . . , Z
σ
i,p(u))

⊤

= K
( i

n
− u

bn

)(
εσi,n(

1
p
), εσi,n(

2
p
), . . . , εσi,n(

p−1
p
), εσi,n(1)

)⊤
,

where εσi,n(t) = εi,n(t)/σ(
i
n
, t). Similarly as in Section 2.2 we consider the

p-dimensional vector

Zσ
i,l = Zσ

i (
l
n
) = (Zσ

i,l,1, . . . Z
σ
i,l,p)

⊤ ,
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28 3.3 Theoretical analysis of the methodology in Section 2.2

where

Zσ
i,l,k = εσi,n(

k
p
)K

( i
n
− l

n

bn

)
(1 ≤ k ≤ p).

Finally, we define the (n−2⌈nbn⌉+1)p-dimensional vectors Z̃σ
1 , . . . , Z̃

σ
2⌈nb⌉−1by

Z̃σ
j =

(
Zσ,⊤

j,⌈nbn⌉, Z
σ,⊤
j+1,⌈nbn⌉+1, . . . , Z

σ,⊤
n−2⌈nbn⌉+j,n−⌈nbn⌉

)⊤
(4.2)

and obtain the following result.

Theorem 3. Let the Assumptions of Theorem 1 be satisfied and assume

that the partial derivative ∂2σ(u,t)
∂u∂t

exists and is bounded on [0, 1]2. Then there

exist (n−2⌈nbn⌉+1)p-dimensional centered Gaussian vectors Ỹ σ
1 , . . . , Ỹ

σ
2⌈nbn⌉−1

with the same auto-covariance structure as the vector Z̃σ
i in (4.2) such that

Pσ
n := sup

x∈R

∣∣∣P( max
bn≤u≤1−bn,0≤t≤1

√
nbn|∆̂σ(u, t)| ≤ x

)
− P

(∣∣∣ 1√
nbn

2⌈nbn⌉−1∑
i=1

Ỹ σ
i

∣∣∣
∞

≤ x
)∣∣∣

= O
(
(nbn)

−(1−11ι)/8 +Θ
(√

nbn(b
4
n +

1

n
), np

)
+Θ

([
(np)1/q

∗
((nbn)

−1 + 1/p)
] q∗

q∗+1 , np
)
+Θ

(
b

q−2
q+1
n , np

))
for any sequence p → ∞ with np = O(exp(nι)) for some 0 ≤ ι < 1/11. In

particular, for the choice p = nc for any c > 0 we have Pσ
n = o(1) if the

constant q∗ in Assumption 3.3 is sufficiently large, such that

Θ
([
(np)1/q

∗
((nbn)

−1 + 1/p)
] q∗

q∗+1 , np
)
= o(1).

The next result shows that the estimator σ̂ defined by (2.16) is uni-

formly consistent. Thus the unknown long-run variance σ2 in Theorem 3
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29 3.3 Theoretical analysis of the methodology in Section 2.2

can be replaced by σ̂2 and the result can be used to prove the validity of

the confidence surface (2.18) defined by Algorithm 2.

Proposition 1. Let the assumptions of Theorem 1 be satisfied and assume

that the partial derivative ∂2σ(u,t)
∂2u

exists on the square [0, 1]2, is bounded and

Lipschitz continuous in u ∈ (0, 1). If w → ∞, w = o(n2/5), w = o(nτn),

τn → 0 and nτn → ∞ we have that

∥∥∥ sup
u∈[γn,1−γn]

t∈[0,1]

|σ̂2(u, t)− σ2(u, t)|
∥∥∥
q′
= O

(
gn + τ 2n

)
,

∥∥∥ sup
u∈[0,γn)∪(1−γn,1]

t∈[0,1]

|σ̂2(u, t)− σ2(u, t)|
∥∥∥
q′
= O(gn + τn) ,

where

gn =
w5/2

n
τ−1/q′

n + w1/2n−1/2τ−1/2−2/q′

n + w−1 ,

γn = τn + w/n, q′ = min(q, q∗) and q, q∗ are defined in Assumptions 3.2

and 3.3, respectively.

We investigate the finite sample performance of the long-run variance

estimator σ̂2 in Section S2.5 of the supplementary material by means of

a simulation study. Proposition 1 and Theorem 3 yield that Pσ̂
n = op(1)

provided that Pσ
n = o(1).

Theorem 4. Assume that the conditions of Theorem 2, Proposition 1

hold, that p = nc for some c > 0, and that q∗ in Theorem 3 satisfies
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Θ
([
(np)1/q

∗
((nbn)

−1 + 1/p)
] q∗

q∗+1 , np
)
= o(1). Further assume there exists a

sequence ηn → ∞ such that

Θ
((√

mn log np(gn + τn)ηn(np)
1
q
)q/(q+1)

, np
)
+ η−q′

n = o(1) ,

where γn, gn and q′ are defined in Proposition 1. Then the SCS (2.18)

defined by Algorithm 2 satisfies

lim
n→∞

lim
B→∞

P(m ∈ Cσ̂
n | Fn) = 1− α

in probability.

Remark 2. Note that the SCS derived so far exclude the boundary re-

gion [0, bn) ∪ (1− bn, bn] for the varable u. This is common practice in the

context of simultaneous inference for kernel based estimates, as inference at

the boundary is very difficult due to the inaccurate estimation and sophisti-

cated statistical properties of most nonparametric estimators at the bound-

ary. The problem of simultaneous confidence bands including the boundary

region has even not been thoroughly investigated for one-dimensional re-

sponses (see for example Zhou and Wu, 2010; Wu and Zhou, 2017). In the

following discussion we provide a first solution to this problem. Since the

bias of the usual local linear estimates at the boundary is of order O(b2n)

and therefore too large for simultaneous inference, we use higher order one
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sided kernel for the boundary region. Simple calculations show that the

bias of the NW estimator with this kernel can be of order O( 1
n
+ b3n). We

discuss the constant width SCS for the boundary, while the varying SCS

could be constructed in a similar way. Let K̃l(v) =
∑n

i=1 Kl(
i/n−v/n

bn
) and

K̃r(v) =
∑n

i=1Kr(
i/n−v/n

bn
). Then, similar to (2.12), we define

Ẑ l
i(u) = Kl

( i
n
− u

bn

)(
ε̂i,n(

1
p
), εi,n(

2
p
), . . . , ε̂i,n(

p−1
p
), ε̂i,n(1)

)⊤
Ẑr

i (u) = Kr

( i
n
− u

bn

)(
ε̂i,n(

1
p
), ε̂i,n(

2
p
), . . . , ε̂i,n(

p−1
p
), ε̂i,n(1)

)⊤
and consider for 1 ≤ s ≤ ⌈nbn⌉ the ⌈nbn⌉ and ⌈nbn⌉+1 dimensional vectors

ˆ̃Z l
sand

ˆ̃Zr
s as

ˆ̃Z l
s = (Ẑ l⊤

s ( 1
n
)/K̃l(1), Ẑ

l⊤
s+1(

2
n
)/K̃l(2), . . . , Z

l⊤
s+⌈nbn⌉−2(

⌈nbn⌉−1
n

)/K̃l(⌈nbn⌉ − 1))⊤

ˆ̃Zr
s = (Ẑr⊤

n′+s(
n′+⌈nbn⌉

n
)/K̃r(n

′ + ⌈nbn⌉), Ẑr⊤
n′+s+1(

n′+⌈nbn⌉+1
n

)/K̃r(n
′ + ⌈nbn⌉+ 1), . . . ,

Zr⊤
n′+s+⌈nbn⌉−1(1)/K̃r(n))

⊤

where n′ = n− 2⌈nbn⌉+ 1. For window size mn, let m
′
n = 2⌊mn/2⌋, define

the vectors

Ŝl
jm′

n
=

1√
m′

n

j+⌊mn/2⌋−1∑
r=j

ˆ̃Z l
r −

1√
m′

n

j+m′
n−1∑

r=j+⌊mn/2⌋

ˆ̃Z l
r.

Let ˆ⃗ε l
j:j+m′

n,k
be the p-dimensional sub-vector of the vector Ŝl

jm′
n
containing

its (k− 1)p+ 1st − kpth components. Then for v = 1, . . . , B, we generate
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i.i.d. N(0, 1) random variables {R(v)
i }i=1,...,2⌈nbn⌉−m′

n
. and calculate for k =

1, . . . , ⌈nbn⌉

T
l,(v)
k =

⌈nbn⌉−m′
n∑

j=1

ˆ⃗ε l
j:j+m′

n,k
R

(v)
k+j−1 , T l,(r) = max

1≤k≤⌈nbn⌉
|T (r)

k |∞.

Similarly, using ˆ̃Zr
s and another sequence of i.i.d. N(0, 1) random variables

{V (v)
i }i=1,...,2⌈nbn⌉−m′

n
we could generate T r,(v) for v = 1, ...B, where {V (v)

i }

and {R(v)
i } are independent. Define T⌊(1−α)B⌋ as the empirical (1 − α)-

quantile of the bootstrap sample T l,(1), . . . , T l,(B), T r,(1), . . . , T r,(B), then the

lower and upper bound of the (1 − α)-SCS for u ∈ [0, bn) ∪ (1 − bn, 1]

are given by L̂boundary(u, t) = m̂bn(u, t) − r̂boundary and Ûboundary(u, t) =

m̂bn(u, t) + r̂boundary, respectively where r̂boundary =
√
nbnT⌊(1−α)B⌋√
⌈nbn⌉−m′

n.
and u ∈

[0, bn)∪(1−bn, 1], t ∈ [0, 1]. We examine the empirical coverage probabilities

of this SCS in Section S2.3 of the online supplement.

4. Real data

In this section we illustrate the proposed methodology analyzing the implied

volatility (IV) of the European call option of SP500. These options are

contracts such that their holders have the right to buy the SP500 at a

specified price (strike price) on a specified date (expiration date). The

implied volatility is derived from the observed SP500 option prices, directly
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observed parameters, such as risk-free rate and expiration date, and option

pricing methods, and is widely used in the studies of quantitative finance.

For more details, we refer to Hull (2003).

We collect the implied volatility and the strike price from the ‘option-

metrics’ database and the SP500 index from the CRSP database. Both

databases can be accessed from Wharton Research Data Service (WRDS).

We calculate the SCSs for the implied volatility surface, which is a two

variate function of time (more precisely time to maturity) and moneyness,

where the moneyness is calculated using strike price divided by SP500 in-

dices. The options are collected from December 21, 2016 to July 19, 2019,

and the expiration date is December 20, 2019. Therefore the length of time

series is 647. Within each day we observe the volatility curve, which is IV

as a function of moneyness.

Recently, Liu et al. (2016) models IV via functional time series. Fol-

lowing their perspective, we shall study the IV data via model (2.1), where

Xi,n(t) represents the observed volatility curve at a day i, with total sam-

ple size n = 647. We consider the options with moneyness in the range of

[0.8, 1.4], corresponding to options that have been actively traded in this

period (note that, our methodology was developed for functions on the

interval [0, 1], but it is straightforward to extend this to an arbitrary com-
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Figure 2: 95% SCS of the form (2.2) for the IV surface. Left panel: constant

width (Algorithm 1); Right panel: variable width (Algorithm 2).

pact interval [a, b]). The number of observations for each day varies from

34 to 56, and we smooth the implied volatility using linear interpolation

and constant extrapolation.

In practice it is important to determine whether the volatility curve

changes with time, i.e., to test H0 : m(u, t) ≡ m(t). As pointed out by

Daglish et al. (2007), the volatility surface of an asset would be flat and

unchanging if the assumptions of Black–Scholes (Black and Scholes, 1973)

hold. In particular, Daglish et al. (2007) demonstrate that for most assets

the volatility surfaces are not flat and are stochastically changing in prac-

tice. We can provide an inference tool for such a conclusion using the SCSs

developed in Section 4. For example, note, that by the duality between
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confidence regions and hypotheses tests, an asymptotic level α test for the

hypothesis H0 : m(u, t) ≡ m(t) is obtained by rejecting the null hypothesis,

whenever the surface of the form m(u, t) = m(t) is not contained in an

(1− α) SCS of the form (2.2).

Therefore we construct the 95% SCS for the regression function m with

constant and varying width using Algorithm 1 and Algorithm 2, respec-

tively. Following Section S2.1 of supplemental material we choose bn = 0.1

and mn = 36. The results are depicted in Figure 4 (for a better illustration

the z-axis shows 100× implied volatility). We observe from both figures

that the SCSs do not contain a surface of the form m(u, t) = m(t) and

therefore reject the null hypothesis (at significance level 5%). In the sup-

plement, we construct the simultaneous confidence bands of IV w.r.t. fixed

t and fixed u.

Supplementary Materials

contains further results for noisy and multivariate locally stationary func-

tional time series, the confidence bands for the functions t → m(u, t) (fixed

u) and u → m(u, t) (fixed t), implementation details, simulation and addi-

tional data analysis results, examples of locally stationary functional time
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series. It also includes all the detailed proofs.
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