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Abstract:

Function-on-scalar linear regression has been widely used to model the relation-

ship between a functional response and multiple scalar covariates. Its utility is,

however, challenged by the presence of measurement error, a ubiquitous feature

in applications. Naively applying usual function-on-scalar linear regression to

error-contaminated data often yields biased inference results. Further, estima-

tion of the model parameters is complicated by the presence of inactive variables,

especially when handling data with a large dimension. Building parsimonious and

interpretable function-on-scalar linear regression models is in urgent demand to

handle error-contaminated functional data. In this paper, we study this im-

portant problem and investigate the measurement error effects. We propose a

debiased loss function, combined with a sparsity-inducing penalty function, to
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simultaneously estimate functional coefficients and select salient predictors. An

efficient computing algorithm is developed with tuning parameters determined by

data-driven methods. Under mild conditions, the asymptotic properties of the

proposed estimator are rigorously established, including estimation consistency,

selection consistency, and the limiting distributions. The finite sample perfor-

mance of the proposed method is assessed through extensive simulation studies,

and the usage of the proposed method is illustrated by a real data application.

Key words and phrases: functional data analysis, function-on-scalar regression,

measurement error, variable selection.

1. Introduction

Functional data analysis has attracted extensive attention in the last two

decades (e.g., Ramsay and Silverman (2005); Horváth and Kokoszka (2012)).

Typically, the function-on-scalar linear regression model (Ramsay and Sil-

verman, 2005, Chapter 13) has been proven to be useful to describe the

relationship between a functional response and multiple scalar covariates,

and many methods have been proposed for inference about the coefficient

functions of this model. To name a few, see Chiang et al. (2001), Ramsay

and Silverman (2005, Section 13.4), Zhang and Chen (2007); Zhu et al.

(2012), and the references therein.

Recently, research on variable selection has become increasingly inter-
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esting, which is paramount in the era of big data. With data of a large

dimension, usually only a small number of variables have the effects on ex-

plaining the change of the functional response and others have no explana-

tory effects. Excluding those inactive covariates is mandatory to build a

parsimonious and interpretable model and conduct valid inference accord-

ingly. Based on the widely-used methods developed for scalar response

regression models, such as group LASSO (Yuan and Lin, 2006), adaptive

LASSO (Zou, 2006), SCAD regularization (Fan and Li, 2001), and MCP

regularization (Zhang, 2010), several methods have been proposed to han-

dle variable selection for functional response models. Wang et al. (2007)

proposed a group SCAD estimator and applied it to analyze gene expression

data. Taking the within-subject correlation into consideration, Chen et al.

(2016) introduced a group MCP procedure, combinded with the general-

ized least squares technique. Barber et al. (2017) and Fan and Reimherr

(2017) extended group LASSO and group adaptive LASSO respectively to

the high dimensional function-on-scalar model. Parodi and Reimherr (2018)

developed a functional linear adaptive mixed estimation procedure to simul-

taneously obtain sparsity and smoothness for the coefficient functions. Cai

et al. (2022) considered a robust selection approach with the exponential

squared loss function employed.
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While these methods can conduct variable selection for functional data

analysis, they have a serious limitation for handling real data in applica-

tions. In reality, collected data commonly involve measurement error, a

ubiquitous feature that has been a long standing concern in various fields,

including medical research, epidemiological studies, nutritional studies, and

cancer research (e.g., Yi and Cook (2005)). It is well known that naively

ignoring measurement errors may lead to inconsistent estimators. A com-

prehensive account of measurement error can be found in Carroll et al.

(2006), Yi (2017), and Yi et al. (2021), among others.

There have been only a few papers dealing with functional data with

error-contaminated covariates. Zhu et al. (2019), Zhu et al. (2020), and

Meng et al. (2021) investigated estimation under partially functional linear

models, semi-functional partially linear models, and functional partially

linear single index models, respectively, with additive measurement error

models considered. Jiang et al. (2021) studied partially functional linear

models where the variables are distorted by some multiplicative factors.

However, the response variable for all those methods is merely a scalar but

not a functional variable. Further, none of these methods discuss variable

selection. Recently, Zhao et al. (2022) studied variable selection for a lon-

gitudinal varying coefficient model with a sparsely observed longitudinal
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response and time-varying contaminated variables. They assumed that the

components of measurement errors are uncorrelated and did not provide

the asymptotic distribution for their proposed estimator.

In this paper, we consider this notable problem concerning functional

data analysis for data with both measurement error and unimportant vari-

ables. Our contributions are multifaceted. First, we reveal the effects of co-

variate measurement error on the function-on-scalar linear regression analy-

sis, and uncover an interesting connection of such effects with the usual ridge

regression method for error-free settings. Secondly, we propose a method

to conduct estimation and variable selection simultaneously with covariate

measurement error effects fully accounted for. Our development encom-

passes both the least squares and generalized least squares loss functions.

Theoretical properties are rigorously established for the proposed method.

Finally, we develop an easy-to-implement computing algorithm and discuss

two data-driven tuning parameter selection methods. The proposed proce-

dure yields consistent estimators for the model coefficients and successfully

detects all the active or inactive covariates in the presence of measurement

error. To the best of our knowledge, this is the first work about regression

models with the functional response and multiple covariates, which involve

both measurement error and inactive variables. This research adds new
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dimensions to the existing framework of classical function-on-linear models

to accommodate error-contaminated data with irrelevant variables.

The rest of this article is organized as follows. Section 2 presents the ba-

sic model setup and a commonly used estimation method for ideal settings

without measurement error. In Section 3, we investigate the measurement

error effects and develop a valid method. A computational algorithm, to-

gether with tuning parameters selection methods, is presented in Section

4. Theoretical results are rigorously established in Section 5. In Section

6, we utilize our method to analyze a daily activity dataset, with the as-

sociated physiological, environmental and behavioral covariates included.

Concluding remarks are placed in the final section. The technical details

and the numerical studies are deferred to the online supplementary mate-

rial, where we also include the extended development with both theoretical

and numerical results.

2. Function-on-Scalar Model

2.1 Model and Notation

For subject i, let Yi(t) denote the functional response at time t ∈ T

and let Xi = (Xi1, . . . , Xip)
T represent an associated random vector of p-

dimensional covariates, where T ⊂ R is a compact set. Without loss of gen-
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2.1 Model and Notation

erality, Xi and Yi(t) are assumed to be centered so that the mean of Xi and

of Yi(t) are both zero. Suppose that for t ∈ T , {{Xi, Yi(t)} : i = 1, 2, . . . , n}

is a random sample of n independent and identically distributed (i.i.d) ran-

dom variables.

Consider the function-on-scalar regression model

Yi(t) = β(t)TXi + εi(t) (2.1)

for i = 1, 2, . . . , n and t ∈ T , where β(t) = (β1(t), . . . , βp(t))
T is the vec-

tor of unknown parameter functions, and εi(t) is the random error pro-

cess independent of Xi and satisfies that E{εi(t)} = 0 for all t ∈ T and

supt∈T E[{εi(t)}2] < ∞.

In practice, functional data {Yi(t) : t ∈ T } are usually observed on

a discrete grid. For ease of exposition, we assume that all the subjects

in the sample are observed on a common grid t = {t1, . . . , tm} ⊂ T ,

where the number m of grid points satisfies Assumption C3 in Section

S1 of the supplementary material. Let Yi(t) = (Yi(t1), . . . , Yi(tm))
T and

εi(t) = (εi(t1), . . . , εi(tm))
T. Then model (2.1) gives that

Yi(t) = β(t)TXi + εi(t), (2.2)

where β(t) = [β(t1), · · · ,β(tm)] is a p×m matrix of unknown quantities.
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2.2 Least Squares Estimation

2.2 Least Squares Estimation

The least squares method may be considered to estimate the unknown coef-

ficient functions β(t) due to the additive structure of model (2.1). However,

owing to the infinite dimensionality, β(t) cannot be estimated without reg-

ularizations. To reduce the dimension of β(t), we employ the B-spline

approximation (De Boor, 1978) as the basis to carry out our following de-

velopment.

Let τ1 < τ2 < · · · < τM+1 denote M + 1 knots on T with τ1 and τM+1

representing the two endpoints of T , where M is chosen in light of both

the sample size n and the number m of the observation points, as required

in Assumption C in Section S1 of the supplementary material. Let d + 1

denote the order of the B-spline function, where d = 3 is often considered

in applications as well as in this paper. We then have the corresponding

B-spline basis functions of order d+1 (De Boor, 1978, Chapter IX), denoted

ϕ(t) = (ϕ1(t), . . . , ϕM+d(t))
T, t ∈ T .

For j = 1, . . . , p and t ∈ T , we approximate the function βj(t) by a

linear combination of ϕ(t):

βj(t) ≈
M+d∑
k=1

bjkϕk(t) ≜ bTj ϕ(t), (2.3)

where bj = (bj1, . . . , bj,M+d)
T is the vector of coefficients to be determined.
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2.2 Least Squares Estimation

With (2.3), the estimation of βj(t) now becomes the estimation of

bj. Let Φ(t) = [ϕ(t1), · · · ,ϕ(tm)]T be the m × (M + d) matrix, and let

b = (bT1 , · · · , bTp )T be the (M + d)p × 1 vector. Thus, the m × p matrix

β(t)T in (2.2) can be approximated by Φ(t)[b1, · · · , bp]. Neglecting the

approximation errors, the model (2.2) can be rewritten as

Yi(t) ≈ Φ(t)
[
b1, · · · , bp

]
Xi + εi(t)

= (XT
i ⊗Φ(t))b+ εi(t), (2.4)

where⊗ represents the Kronecker product. Let Y (t) = (Y T
1 (t), . . . ,Y T

n (t))T,

ε(t) = (ε1(t)
T, . . . , εn(t)

T)T and X = [X1, · · · ,Xn]
T. The equation (2.4)

then yields

Y (t) ≈ (X ⊗Φ(t))b+ ε(t). (2.5)

The form of (2.5) is similar to the classical linear regression model,

although the components in ε(t) may be correlated. The most direct way

to estimate unknown b is the least squares method by minimizing the loss

function

L̃n(b;Y (t),X) ≜
1

2
∥Y (t)− (X ⊗Φ(t))b∥2 , (2.6)

where ∥a∥ represents the L2 Euclidean norm
√

a21 + · · ·+ a2q of the vector

a ≜ (a1, . . . , aq)
T.

The formulation (2.6) focuses on expressing the differences between the

responses Y (t) and their approximate mean (X⊗Φ(t))b, offering us a sim-
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ple way to perform inference about model parameters without facilitating

the correlation structure for the error terms ε(t). Incorporating possible

dependence among the components of ε(t) can be done by adding a weight

matrix to (2.6) to form a generalized least squares loss function. Its de-

velopment is carried out in a manner similar to the development here. We

defer the details to Section S5 of the supplementary material.

3. Measurement Error and Variable Selection

While (2.6) can be utilized to estimate b, its validity hinges on the condi-

tion that Xi is precisely measured. This condition, however, is commonly

violated in practice (Yi and Cook, 2005). Furthermore, some covariates in

Xi may have no effect on the response. In this section, we consider data

with these features.

3.1 Measurement Error Effects

In applications, the covariate vector Xi is often subject to measurement

error, and we can only observe its surrogate version, denoted X∗
i . To facil-

itate possible differences between X∗
i and Xi, we consider the widely used

classical additive measurement error model:

X∗
i = Xi +Ui, (3.7)
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3.1 Measurement Error Effects

where the measurement error vector Ui ≜ (Ui1, . . . , Uip)
T is independent of

{Yi(t) : t ∈ T } and Xi. Further, U1, . . . ,Un are assumed to be indepen-

dent and identically distributed with mean vector 0 and covariance matrix,

say, Σ. To include the cases where some covariates in Xi are precisely

measured, we allow matrix Σ to contain zero block submatrices and not

to be strictly positive definite. To highlight the idea, we focus on the case

where Σ is taken as known. Estimation of Σ is possible when repeated

measurements of covariates or validation data are available (Carroll et al.,

2006), as investigated in Section S3.7 of the supplementary material.

When the covariates are contaminated with measurement error, simply

replacing X in loss function L̃n(b;Y (t),X) in (2.6) with X∗ results in

biased estimator, where X∗ = [X∗
1 , . . . ,X

∗
n]

T which equals X + U with

U ≜ [U1, . . . ,Un]
T. Indeed,

L̃n(b;Y (t),X∗) =
1

2
∥Y (t)− (X∗ ⊗Φ(t))b∥2

= L̃n(b;Y (t),X) +
1

2
bT

[
(UTU)⊗

{
ΦT(t)Φ(t)

}]
b

− {Y (t)− (X ⊗Φ(t))b}T (U ⊗Φ(t))b,

(3.8)

where the second step utilizes model (3.7). By the assumptions that U is

independent of Y (t) and X, E(U) = 0, and E(UTU) = nΣ, taking the

expectation of (3.8) with respect to the joint distribution for the associated
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3.1 Measurement Error Effects

random variables leads to

E
{
L̃n(b;Y (t),X∗)

}
= E

{
L̃n(b;Y (t),X)

}
+

n

2
bT

[
Σ⊗

{
ΦT(t)Φ(t)

}]
b.

(3.9)

Calling L̃n(b;Y (t),X∗) the naive loss function, we see that the ex-

pectation of the naive loss function, called the naive risk, is larger than

the expectation of the original loss function, E
{
L̃n(b;Y (t),X)

}
, i.e., the

true risk derived from using the true covariate X, unless at b = 0. It also

implies that directly applying (2.6) to X∗, together with Y (t), to conduct

inferences breaks down if the measurement error effects are naively ignored.

Motivated by (3.9), we construct a debiased loss function by subtracting

the quadratic term in (3.9) to alleviate the measurement error effects:

Ln(b;Y (t),X∗) ≜ L̃n(b;Y (t),X∗)− n

2
bT

[
Σ⊗

{
ΦT(t)Φ(t)

}]
b, (3.10)

which satisfies, by (3.9), E{Ln(b;Y (t),X∗)} = E{L̃n(b;Y (t),X)}. Then

minimizing Ln(b;Y (t),X∗) with respect to b produces a consistent estima-

tor of b, provided regularity conditions.

This derivation has two implications. First, it indicates that in the

presence of covariate measurement error, directly working with (2.6) by

replacing the true covariates with their surrogate measurements does not

necessarily ensure a consistent estimator. Secondly, the second term in
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3.2 Variable Selection

the right-hand-side of (3.10) resembles the L2 or ridge regression penalty

if taking the tuning parameter to be −nΣ ⊗
{
ΦT(t)Φ(t)

}
were allowed.

In contrast to the usual ridge penalty without the negative sign, we call

this term the specialized ridge penalty. Then the least squares estimator

derived from (2.6) based on X can be equivalently regarded as a ridge

regression estimator derived from using the surrogate measurementX∗ with

the specialized ridge penalty term. From now on we may use Ln(b) to

represent Ln(b;Y (t),X∗) for simplicity from time to time.

3.2 Variable Selection

Suppose that Xi contains unimportant components for predicting the out-

come and that only a small subset of the components in Xi is important

in explaining Yi(t) in model (2.1). Without loss of generality, we assume

that the first s covariates are active, or equivalently, βj(t) = 0 if j ∈ J0,

where J0 = {s + 1, . . . , p}, and the cardinality |J0| can be very close to p,

suggesting the sparsity of model (2.1) is present. Our goal is to estimate

β(t) and detect those inactive variables {Xij : j ∈ J0} which correspond

to the collection of all zero functions {βj(t) : j ∈ J0}.

Based on the loss function (3.10), we consider the penalized objective
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function:

Qn(b) = Ln(b;Y (t),X∗) + nm

p∑
j=1

Pλ(∥bj∥), (3.11)

where Pλ(·) is a penalty function with the tuning parameter λ ≥ 0. Here,

the penalty function Pλ(·) applies to each vector bj collectively as a group,

rather than to each individual element of bj; the inclusion m in the penalty

term reflects that Y (t) in the loss function Ln(b;Y (t),X∗) ism-dimensional.

Thereby, an estimator of b is given by

b̂ = argmin
b∈Rp(M+d)

Qn(b), (3.12)

which is written as b̂ = (b̂T1 , . . . , b̂
T
p )

T. We then take

β̂j(t) = b̂Tj ϕ(t) (3.13)

as an estimator of βj(t) for j = 1, . . . , p, and take Ĵ0 = {j : b̂j = 0} to be

an estimate of J0.

4. Computational Issues and Tuning Parameters Selection

In this section we develop an algorithm to minimize objective function (3.11)

and propose methods to select tuning parameters. For ease of computation,

we slightly modify the loss function Ln(b) to obtain a strictly convex func-

tion.
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First, Ln(b) in (3.10) can be re-written as

Ln(b) =
1

2
bT

[
(X∗TX∗ − nΣ)⊗ {ΦT(t)Φ(t)}

]
b

− bT (X∗ ⊗Φ(t))T Y (t) +
1

2
Y (t)TY (t), (4.14)

which is a quadratic function of b. Let W ≜ ∂2Ln(b)/∂b∂b
T. It is easily

seen that W = (X∗TX∗ − nΣ)⊗ {ΦT(t)Φ(t)}.

While X∗TX∗ and ΦT(t)Φ(t) are both positive definite, as assumed

in Assumptions A2 and C3 in Section S1 of the supplementary material,

unfortunately, W may be indefinite because the matrix X∗TX∗ − nΣ is

not necessarily guaranteed to be positive definite for any sample, which is

concretely shown in Section S3 of the supplementary material. Because of

this, Ln(b) may not be lower bounded, yielding the resultant estimator to

be inconsistent. To overcome this issue, following the idea of Datta and Zou

(2017), we replace the matrix W by its “nearest” positive definite matrix

W , defined by the matrix projection. Specifically, for a small positive pre-

determined threshold parameter τ , let

Wτ = {W1 : W1 − τI is semi-positive definite}.

Here and elsewhere, I represents an identity matrix whose dimension is

indicated by the context. Define

W = argmin
W1∈Wτ

∥W −W1∥max (4.15)
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to be the matrix projection of W , where ∥ · ∥max denotes the maximum of

the absolute values of all matrix entries. An algorithm for solving (4.15)

is provided in Appendix of Datta and Zou (2017). The determination of

W is not very sensitive to the choice of τ , as shown in Section S3.5 of the

online supplementary material.

Consequently, we consider a modified loss function for (4.14) by replac-

ing W with its projected matrix W :

L̄n(b) =
1

2
bTWb− bT (X∗ ⊗Φ(t))T Y (t) +

1

2
Y (t)TY (t),

which is quadratic in b with W being positive definite, and thus has

a unique global minimizer. It is immediate that solving the equation

∇bL̄n(b) = 0 yields the closed-form minimizer:

b̃ = W
−1

(X∗ ⊗Φ(t))T Y (t). (4.16)

Because L̄n(b) is a quadratic function of b, the modified loss function

L̄n(b) can be written as

L̄n(b) = L̄n(b̃) +
1

2
(b− b̃)TW (b− b̃). (4.17)

Substituting L̄n(b) for Ln(b) in (3.11) yields a modified objective func-

tion for Qn(b):

Q̄n(b) =
1

2
(b− b̃)TW (b− b̃) + nm

p∑
j=1

Pλ(∥bj∥),
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where the term unrelated to b is omitted. Since W is positive definite, we

have the unique Cholesky decomposition

W = V TV , (4.18)

where V is an upper-triangular square matrix. Hence we can re-write Q̄n(b)

as

Q̄n(b) =
1

2

∥∥∥V b̃− V b
∥∥∥2

+ nm

p∑
j=1

Pλ(∥bj∥).

Rescaling Q̄n(b) as Q̃n(b) = Q̄n(b)/(nm) and re-writing it by includ-

ing (M + d)p, we arrive at minimizing a standard penalized least squares

function:

Q̃n(b) =
1

2nm

∥∥∥V b̃− V b
∥∥∥2

+

p∑
j=1

Pλ(∥bj∥)

=
1

2(M + d)p

∥∥∥∥∥
√

(M + d)p

nm
V b̃−

√
(M + d)p

nm
V b

∥∥∥∥∥
2

+

p∑
j=1

Pλ(∥bj∥),

(4.19)

where
√

(M+d)p
nm

V b̃ is regarded as the pseudo-response with the “sample

size” (M + d)p, the factor
√

(M+d)p
nm

V before b is regarded as the pseudo

design matrix, and b is taken as an unknown parameter with dimension

(M+d)p. While any factor, rather than (M+d)p, can be included in (4.19),

using (M +d)p makes the resultant objective function (4.19) coincides with

the standardized optimization problem considered by Breheny and Huang
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(2015), thus allowing us to directly apply their algorithm. In particular,

the function grpreg in R package ‘grpreg’ is used, as done in our following

simulation studies. Let b̂τ denote the resultant estimator of b.

Specifically, to apply grpreg, we need to calculate V and V b̃ to obtain

the pseudo-design matrix and pseudo-response in (4.19), respectively. First,

matrix V is calculated by the Cholesky decomposition of W , given by

(4.18). Next, by (4.16) and (4.18), we determine V b̃ based on V TV b̃ =

(X∗ ⊗Φ(t))T Y (t). To find V b̃, it suffices to solve the linear systems of

equations:

V TỸ = (X∗ ⊗Φ(t))T Y (t) (4.20)

for the unknown vector Ỹ . Solving (4.20) can be efficiently done by forward

substitution (Phillips and Taylor, 1996, Chapter 9) without computing the

inverse of V .

The minimization of Q̃n(b) in (4.19) basically depends on the choice

of tuning parameters M and λ, which we suggest to be determined using

the leave-one-out cross validation (CV) criterion. To be specific, for i =

1, . . . , n, applying the formulation of (4.19) to the data with measurement

for the ith subject removed and minimizing the resulting function with
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respect to b, we let b̂
[−i]
τ denote the resulting estimate of b. Define

CV(M,λ) =
1

n

n∑
i=1

{∥∥∥Yi(t)− (X∗
i
T ⊗Φ(t))b̂[−i]

τ

∥∥∥2

− (b̂[−i]
τ )T

[
Σ⊗

{
ΦT(t)Φ(t)

}]
b̂[−i]
τ

}
. (4.21)

Except the factor n−1, the CV function (4.21) resembles (3.10); a similar

formulation was employed by Datta and Zou (2020) for high dimensional

linear regression models.

The tuning parameters are determined sequentially by minimizing CV(M,λ)

with respect to M and λ, which are evaluated over specified grids M ≜

{M1, . . . ,MD} and Λ ≜ {λ1, . . . , λK}, respectively. To be concrete, for each

fixed candidate of M ∈ M, we first calculate λ̂M = argminλ∈Λ CV(M,λ),

and then calculate M̂ = argminM∈M CV(M, λ̂M). Eventually, (M̂, λ̂M̂) is

taken as the value of (M,λ) when implementing (4.19).

Alternatively, we may consider the Bayesian information criterion (BIC),

where we construct the BIC function as

BIC(M,λ) = log

(
1

nm

∥∥∥Y (t)− (X∗ ⊗Φ(t))b̂τ

∥∥∥2
)

+
log(nm)

nm

(
p− |Ĵ0|

)
(M + d), (4.22)

with |Ĵ0| representing the number of elements in Ĵ0. Then tuning parame-

ters can be set as (M̂, λ̂) = argmin(M,λ)∈M×Λ BIC(M,λ). A similar crite-

rion was used in Liang and Li (2009) to do variable selection for the partially

linear model.
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5. Theoretical Properties

In this section we develop asymptotic results for the proposed method.

For any function f(t), with t ∈ T , let ∥f∥L2 =
√∫

T {f(t)}2dt and ∥f∥L∞ =

supt∈T |f(t)| denote the L2 and L∞ norms of f(t), respectively. Let ρmin(A)

denote the minimum eigenvalue of a square matrix A. We present all

regularity conditions and corresponding discussions to Section S1 in the

supplementary material due to the space limit.

Our first theoretical result shows the existence of the minimizer ofQn(b)

and its consistency. The asymptotic limit of b̂, denoted b0, is given by

equation (S1.3) in the supplementary material.

Theorem 1. Assume that the tuning parameter λ → 0 as n → ∞. Under

Assumptions A-E in Section S1 of the supplementary material, there exists

a local minimizer b̂ of Qn(b) such that

∥b̂− b0∥ = Op(
√

M/n), (5.23)

and hence, for j = 1, . . . , p,

∥β̂j − βj∥L∞ = Op(
√
M/n) and ∥β̂j − βj∥L2 = Op(

√
1/n). (5.24)

Theorem 1 encompasses the results for scenarios without measurement

error, where Σ in (3.7) is set to be 0. In this instance, the L∞ and L2
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convergence rates in (5.24) are analogous to the results in Lin et al. (2017,

Theorem 2) and Yu et al. (2021, Theorem 1), which are established for pre-

cisely measured data only. In the absence of measurement error, Chen et al.

(2016) and Wang et al. (2007) established faster convergence rates for using

spline methods than (5.24), but they ignored spline approximation error by

treating the original function-on-scalar model as a parametric model. On

the contrary, the L2 convergence rate, established by Cai et al. (2022) for

robust function-on-scalar linear regression, is slower than (5.24).

The next theorem presents the selection consistency and the point-wise

limiting distribution. Define Σε = Cov(εi(t)), where εi(t) is the error vec-

tor given in the model (2.2). Let XIi denote the subvector of the active

covariates in Xi, i.e., XIi = (Xi1, . . . , Xis)
T, and let UIi denote the subvec-

tor of Ui in (3.7) corresponding to XIi. Let ΣXI
represent the covariance

matrix of XIi, and let ΣI represent the corresponding sub-matrix of Σ

defined in (3.7), i.e., the covariance matrix of UIi. Further, we use Γ to

represent the s2 × s2 matrix Cov{vec(UIiU
T
Ii)}, where vec(A) represents

the column vector obtained by stacking the columns of matrix A under

each other starting from the left. Define B0s = [b0,1, · · · , b0,s] to be the

(M + d)× s matrix formed by the first s blocks of b0.

Theorem 2. Suppose the conditions in Theorem 1 hold. Assume further
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that λ
√
n → ∞ as n → ∞.

(i) Then with probability tending to 1, the minimizer b̂ in Theorem 1

satisfies b̂j = 0 for all j ∈ J0.

(ii) Assume ρmin(Σε) ≥ C5ξm, where C5 is a positive constant and {ξm :

m = 1, 2, . . . } is a sequence of constants satisfying

nξm
m

→ ∞ and
M2qξm
nm

→ ∞ as n → ∞ and m → ∞.

Then for any t ∈ T and j /∈ J0, we have that

β̂j(t)− βj(t)√
σ2
j (t)

d−→ N(0, 1) as n → ∞,

where

σ2
j (t)

=
1

n

(
(Ωjj + Ω̃jj)ϕ

T(t){ΦT(t)Φ(t)}−1{ΦT(t)ΣεΦ(t)}{ΦT(t)Φ(t)}−1ϕ(t)

+ Ωjjϕ
T(t)B0sΣIB

T
0sϕ(t) +

[
ΩT

j ⊗ {ϕT(t)B0s}
]
Γ
[
Ωj ⊗ {BT

0sϕ(t)}
] )

,

(5.25)

with Ωjj, Ωj and Ω̃jj being the (j, j) element of Σ−1
XI

, the jth column

of Σ−1
XI

and the (j, j) element of Σ−1
XI

ΣIΣ
−1
XI

, respectively.

Theorem 2(i) says that with probability tending to 1, J0 ⊂ Ĵ0, which es-

sentially implies J0 = Ĵ0 by (5.23) in Theorem 1. Theorem 2(ii) establishes

the asymptotic normal distribution for each estimator β̂j(t) with j /∈ J0.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



As in Theorem 1, Theorem 2 encompasses the case without measure-

ment error, for which the second and third terms in (5.25) become zero, and

then σ2
j (t) is simplified as the first term with Ω̃jj = 0. A similar formula

was presented by Reiss et al. (2010) for the variance of b̂ without a proof.

We now conclude this section with several remarks.

Remark 1. The validity of Theorems 1 and 2 requires conditions about

the penalty function Pλ(v) together with the tuning parameter λ. With the

penalty function Pλ(v) satisfying Condition E in Section S1 of the supple-

mentary material, we require that λ → 0 as n → ∞ to ensure estimation

consistency, as shown in Theorem 1, and that λ
√
n → ∞ to achieve selec-

tion consistency, indicated by Theorem 2(i). These assumptions are also

made by many others, including Fan and Li (2001) and Wang et al. (2007),

for different contexts.

Remark 2. The formula (5.25) clearly shows the dependence of the lim-

iting distribution of β̂j(t) on the variability of the response model (2.1)

and the measurement error (3.7), as well as on the B-spline approximation.

If the random error process εi(t) is white noise, the sequence ξm can be

taken as constant 1 since Σε = σ2
1I, with a positive constant σ2

1. When

εi(t) is a random function with well-defined continuous covariance func-

tion Cε(t, t
′) ≜ E{εi(t)εi(t′)} for t, t′ ∈ T , then we can take ξm such that
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ξm → 0 as m → ∞ if the eigenvalues of the covariance function Cε(·, ·),

denoted ν1 ≥ · · · ≥ νk ≥ · · · , decrease to 0 sufficiently fast as k → ∞.

For details about the eigenvalues decay rate of Σε, we refer the readers to

Bunea and Xiao (2015, Section 5.1).

Remark 3. The order conditions for n, m and M , i.e., Assumption C1 in

Section S1 of the supplementary material and the additional assumptions in

Theorem 2(ii), are compatible. Those conditions can be met if, for example,

we set ξm, m, and M to be of order m−k, nα, and nβ, respectively, for a

constant k with 0 ≤ k < q−1 and positive constants α and β. Alternatively,

setting 1
k+1

> α ≥ β > 1+α(k+1)
2q

enables Assumption C1 in Section S1 and

the additional assumptions in Theorem 2(ii) to be compatible.

The preceding results are basically established by conditioning on pre-

specified observation points t = {t1, . . . , tm}. When the observation times

are taken as random variables, the results can still hold if the imposed

conditions are modified, as discussed in Remark 2 in Section S1 of the

supplementary material.

6. Real Data Analysis

The performance of the proposed method is evaluated by extensive simu-

lation studies. For details, please refer to Section S3 in the supplementary
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material. To illustrate the utility of the proposed method, here we analyze

a real dataset.

Preventing obesity in childhood has received good attention, and one

important task is to examine the association of children’s daily physical ac-

tivity with potential risk factors to help prevent obesity. Here we apply the

function-on-scalar linear regression model to analyze the children’s activ-

ity and obesity data ( http://jeffgoldsmith.com/IWAFDA/shortcourse_

data.html). In this study, 420 participants were recruited from 50 Head

Start centers in New York between 2003 and 2005. All of them were asked

to wear accelerometers which monitored the body activity intensity by sum-

marizing the voltage signals in a period of 10 minutes, leading to 144 obser-

vations per day for each child. The experiment lasted 6 days and the original

activity data were averaged across these days at each observation points.

To use our setup to analyze the data, we re-scale the 24 hours time domain

to be [0, 1] and centralize the activity data at each time points by subtract-

ing the sample average from the individual measurements. For i = 1, . . . , n

with n = 420, let Yi(t) denote the final response function for child i, where

t ∈ [0, 1]. Figure 1 (a) plots all the functions {Yi(t) : i = 1, . . . .n}, showing

that data in the morning time are more concentrated than at other times.

The covariates of interest include children’s BMI Z-score, their triceps
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and subscapular skinfold thicknesses, age, sex, study season, behavioural

variables, presence of an asthma diagnosis, mother’s birthplace, mother’s

work status, and the number of rooms at home (Rundle et al., 2009; Lovasi

et al., 2011). More specifically, for subject i, let X̃i,1 denote the BMI Z-

score which is the measure of relative body mass index adjusted for child

age and sex (De Onis et al., 1997, Section 5.3); let X̃i,2 and X̃i,3 respectively

denote the triceps and subscapular skinfold thicknesses which are indicators

of children’s adiposity; and let X̃i,4 represent the age (in years) at the

recruitment. For subject i, sex is represented by a binary variable X̃i,5,

with value 1 or 0 indicating female or male; and study season, denoted

X̃i,6, shows whether measurements are obtained in warm months from May

to September (X̃i,6 = 1) or cold months from October to April (X̃i,6 = 0).

Let X̃i,7 and X̃i,8 denote two binary behavioural variables, which represent

whether child i spent over 2 hours per day on watching TV (X̃i,7 equals 1

if true, and 0 otherwise), and spent over 1 hour per day on playing video

games (X̃i,8 equals 1 if true, and 0 otherwise). The presence of an asthma

diagnosis for subject i is represented by a binary variable X̃i,9, with value

1 indicating diagnosed and 0 otherwise. Binary variable X̃i,10 is used to

represent mother’s birthplace for child i, with value 1 indicating born in

America and 0 otherwise. We use X̃i,11 to characterize whether the mother
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for child i has a job (X̃i,11=1) or not (X̃i,11=0). Let X̃i,12 represent the

number of rooms at home for child i. We center X̃i,j on its empirical mean

for j = 1, . . . , 12 and further divide by its empirical standard deviation for

j = 1, 2, 3, and let {Xi,j : j = 1, . . . , 12} denote the resulting covariates.

To investigate how the activity profiles are associated with the covari-

ates, we consider the model (2.1) with p = 12. It is known that the BMI

Z-score Xi,1 are error-prone, and the triceps Xi,2 and subscapular skinfold

thicknesses Xi,3 are measured by Lange calipers which are subject to read-

ing error. That is, the actual measurement for {Xi,j : j = 1, 2, 3} are the

surrogate values, denoted {X∗
i,j : j = 1, 2, 3}, in the notation of Section

3.1. The measurement error model is given by model (3.7). In the absence

of the information about the magnitude of measurement error degree, we

conduct sensitivity analyses to explore possible measurement error effects

on inference results.

To be specific, we consider the submatrix of the covariance matrix of

the measurement error term Ui in (3.7) for the first three elements to be

given by

Σe = (0.2a)2


1 −0.01c 0.05c

−0.01c 1 −0.03c

0.05c −0.03c 1

 ,
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with a = 0, 1, 2, or 3, and c = 0, 5, 10, or 15 to reflect different degrees of

measurement error; the marginal reliability ratio defined in Section S3 is 1,

0.96, 0.86 or 0.74 for a = 0, 1, 2, 3 respectively. Our choice of values for a

and c include three special situations: (1) the case of no measurement error,

reflected by a = 0; (2) settings with independently occurring measurement

error for all the covariates, reflected by c = 0; and (3) the case where Σe is

identical to the empirical covariance matrix of {X∗
i,j : j = 1, 2, 3}, given by

a = 5 and c = 1. Here we report the results for a = c = 1 only and defer

the results for other values of a and c to Section S4 of the supplementary

material, where we also compare the performance of CV and BIC methods

for the case with a = c = 1.

Let the degree of B-spline d = 3. We first apply the CV selection

method to determine the tuning parameters. Two skinfold thicknesses co-

variates, Xi,2 and Xi,3, together with other three covariates, Xi,9, Xi,10 and

Xi,11, are excluded in the model. With a = c = 1, we display in Figure

1 (b)-(h) the estimated coefficient functions and 90% bootstrap confidence

regions for all active covariates, where those confidence regions are con-

structed as follows: 5000 bootstrap samples are repeatedly generated from

the original sample using sampling with replacement. We then estimate

coefficient functions for each bootstrap sample and pool these estimates
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Figure 1: Centered activity profiles and coefficient function estimates.

together to obtain upper and lower 5% quantiles. The temporal effects of

covariates are clearly seen. For example, BMI Z-score Xi,1 shows a positive

effect on activity in the morning and a negative effect in the evening.

By contrast, we also analyze the data using the method of Chen et al.

(2016) who did not consider the potential measurement error effects. As the

number of the B-spline functions considered by Chen et al. (2016) must be

pre-determined, we set it to beM+d, withM being selected by the proposed

CV method and d = 3, to align with our setup. The results produced by

the method of Chen et al. (2016) , not reported in details here, show that

the norms of the estimated coefficient functions for mother’s work status
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Xi,10, the presence of an asthma diagnosis Xi,9, the number of rooms Xi,12,

and two skinfold thicknesses Xi,2 and Xi,3 are much smaller than those for

the rest of the covariates. These results are fairly comparable to the results

produced by our method using CV, except that our estimated coefficient

for the number of rooms is not penalized to 0, though it is small.

Finally, we comment that the specification of values for a and c is not

unique; other values of a and c can be considered to assess the sensitivity

of inference results to different magnitudes of measurement error, follow-

ing the same procedure discussed here. While sensitivity analyses cannot

reveal what the underlying truth is, such analyses help us understand the

measurement error effects on affecting inference results, and thus enhance

our interpretation of data analysis. The sensitivity analyses here hinges on

the use of the measurement error model (3.7). When this model is inade-

quate to facilitate the measurement error process, the analysis results here

do not necessarily uncover the impact of measurement error on inference

truthfully.

7. Discussion

Function-on-scalar linear regression models have been proved to be use-

ful to describe the relationship between a functional response and multiple
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scalar covariates. Such models, however, cannot be directly applied to han-

dle error-corrupted data. Naively ignoring the measurement error effects

typically distorts inference results. This issue is further exacerbated by the

presence of inactive variables. In this paper, we study the function-on-scalar

linear regression model with additive covariate measurement error. Under

the framework of B-spline approximation, we investigate the measurement

error effects and reveal the connection of such effects with the ridge regres-

sion. We propose a debiased loss function, coupled with a sparsity-inducing

penalty function, such as SCAD, to simultaneously estimate the coefficient

functions and detect important predictors. Under mild conditions, estima-

tion consistency, selection consistency, and the limiting distribution of the

resultant estimators are rigorously established. We develop an efficient algo-

rithm and tuning parameters selection methods to implement the proposed

procedure. Numerical studies demonstrate the satisfactory performance of

the proposed method, as opposed to the deleterious effects yielded from the

naive method which disregards the measurement error effects.

Future extensions of this work may take the following directions. Here

we consider the case where the dimension p of covariates is fixed. It is inter-

esting to extend the development in this article to accommodate settings

with a diverging p. Although the algorithm in Section 4 can still apply
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to this case, establishing theoretical results requires extra care. In addi-

tion, the effect of using projected matrix (4.15) should be considered since

the original matrix W is always not positive definite when p > n. In the

current development, we propose to use cross validation or Bayesian infor-

mation criteria to choose suitable values for the tuning parameters λ and

M to work out the estimates of the model parameters. The performance

of these two criteria is compared numerically. It is interesting to analyt-

ically compare how these methods may perform differently. Finally, it is

interesting to generalize the proposed method to handle measurement error

in both covariates and functional responses. Additional modeling of the

measurement error process for the functional response is basically needed

in such a circumstance.

Supplementary Material

The online supplementary material contains regularity conditions, techni-

cal proofs, simulation studies, and data analysis, along with the extended

development with the least squares loss function (2.6) replaced by the gen-

eralized least squares loss function.
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